home    about    browse    search    latest    help 
Login | Create Account

Predicting subsequent crop types in crop rotation using neural networks and multi-temporal crop rotation data in north-east of Germany

Donat, Marco; Geistert, Jonas; Halwani, Mosab; Grahmann, Kathrin and Bellingrath-Kimura, Sonoko Dorothea (2024) Predicting subsequent crop types in crop rotation using neural networks and multi-temporal crop rotation data in north-east of Germany. [Predicting subsequent crop types in crop rotation using neural networks and multi-temporal crop rotation data in north-east of Germany.] In: Landwirtschaft und Ernährung - Transformation macht nur gemeinsam Sinn, Forschungsinstitut für biologischen Landbau (FiBL), pp. 502-504.

[thumbnail of Beitrag_337_final_a.pdf] PDF - Published Version - English
186kB


Summary in the original language of the document

The prediction of subsequent crops in crop rotation is becoming increasingly important.Upcoming growing season crop types of Brandenburg, Germany are predicted using a baseline model and a neural network. The results show that our neural network predicts both organic and conventional subsequent crop types in crop rotations better than the baseline model. In addition, it was shown that organic crop types were better predicted than conventional crop types.


Summary translation

The prediction of subsequent crops in crop rotation is becoming increasingly important.Upcoming growing season crop types of Brandenburg, Germany are predicted using a baseline model and a neural network. The results show that our neural network predicts both organic and conventional subsequent crop types in crop rotations better than the baseline model. In addition, it was shown that organic crop types were better predicted than conventional crop types.

EPrint Type:Conference paper, poster, etc.
Type of presentation:Poster
Keywords:neural networks, deep learning, crop rotation
Agrovoc keywords:
Language
Value
URI
English
neural networks
http://aims.fao.org/aos/agrovoc/c_37467
English
learning
http://aims.fao.org/aos/agrovoc/c_37978
English
crop rotation
http://aims.fao.org/aos/agrovoc/c_6662
Subjects: Farming Systems > Buildings and machinery
Knowledge management
Research affiliation: Germany > University of Berlin - HU > Organic Agriculture and Horticulture
Germany > Centre for Agricultural Landscape Research - ZALF
International Conferences > 2024: Scientific Conference German Speaking Countries (Wissenschaftstagung Ökologischer Landbau)
DOI:10.5281/zenodo.11204339
Deposited By: Röder-Dreher, Ursula
ID Code:53977
Deposited On:31 Jan 2025 12:01
Last Modified:31 Jan 2025 12:01
Document Language:English
Status:Published
Refereed:Peer-reviewed and accepted
Additional Publishing Information:Dieser Beitrag ist im Tagungsband der 17. Wissenschaftstagung Ökologischer Landbau 2024 an der Justus-Liebig-Universität Gießen, Deutschland, 5.-8. März 2024 erschienen. This conference paper is published in the proceedings of the 17th scientific conference on organic agriculture 2024 at Justus-Liebig University Gießen, Germany, 5.-8. March 2024. V. Bruder, V.; Röder-Dreher, U.; Breuer, L.; Herzig, C. und Gattinger, A. (Hrsg.) (2024) Landwirtschaft und Ernährung - Transformation macht nur gemeinsam Sinn.

Repository Staff Only: item control page