home    about    browse    search    latest    help 
Login | Create Account

Grazed temporary grass-clover leys in crop rotations can have a positive impact on soil quality under both conventional and organic agricultural systems

Zani, Caio; Gowing, John; Abbott, Geoffrey; Taylor, James; Lopez-Capel, Elisa and Cooper, Julia (2020) Grazed temporary grass-clover leys in crop rotations can have a positive impact on soil quality under both conventional and organic agricultural systems. European Journal of Soil Science.

Full text not available from this repository.

Document available online at: https://hal.inrae.fr/hal-02942228


Summary in the original language of the document

Soil quality (SQ) is the ability of soil to provide ecosystem functions and services. Implementation of a certain agricultural system can affect SQ and therefore play an essential role in achieving sustainable agriculture. The aim of this study was to explore how agricultural systems (conventional vs. organic), grazing regime (non-grazed vs. grazed) and the different proportions of temporary grass-clover leys in crop rotations (ley time proportion, LTP) affect SQ within a mixed (cropping and pasture/dairy system) commercial farming enterprise in the UK. Seven SQ indicators were evaluated, including chemical (pH; available phosphorus (P); potassium (K)), physical (bulk density, BD; aggregate stability, AS) and biological (total carbon (C); microbial biomass carbon, MBC) sectors. All SQ indicators were measured at three depth intervals (0-0.15, 0.15-0.30, 0.30-0.60 m), except for AS and MBC, which were only considered for the top-soil (0-0.15 m). The findings reflected existing knowledge on the advantages of organic vs. conventional systems for SQ indicators, with the former showing higher MBC and similar K, BD, AS and C in the 0-0.30-m compared to the latter. Lower topsoil available P in organic systems can be related to the lack of measurements in all P pools. When grazing was included: (a) both agricultural systems showed higher topsoil available P, C and MBC; and (b) there was a higher topsoil K in organic systems, whereas it positively affected topsoil BD and C (0.15-0.30 m) in conventional systems. Increasing LTP to 30-40% of the full crop rotation increased topsoil AS and C (0-0.30 m) in a linear fashion. Subsoil conditions (>0.30 m) favoured K, BD and C in conventional systems, but these results should be considered carefully. It was concluded that both organic and conventional systems delivered similar levels of SQ and that reviving mixed farming systems may be a key factor for delivering multifunctional agroecosystems that maintain SQ and optimize ecosystem services.


EPrint Type:Journal paper
Keywords:ley-arable rotation (en), land management (en), ecosystem services (en), mixed farming (en), soil functions (en), soil health (en)
Subjects:"Organics" in general
Research affiliation: France > INRAe - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
ISSN:ISSN: 1351-0754
DOI:10.1111/ejss.13002
Related Links:https://hal.inrae.fr/hal-02942228/document
Project ID:HAL-INRAe
Deposited By: PENVERN, Servane
ID Code:40492
Deposited On:12 Aug 2021 10:37
Last Modified:12 Aug 2021 10:37
Document Language:English

Repository Staff Only: item control page