Bongiorno, Giulia; Bünemann, Else K.; Oguejiofor, Chidinma U.; Meier, Jennifer; Gort, Gerrit; Comans, Rob; Mäder, Paul; Brussaard, Lijbert and de Goede, Ron (2019) Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, pp. 38-50.
PDF
- Published Version
- English
Limited to [Depositor and staff only] 1MB |
Document available online at: https://www.sciencedirect.com/science/article/pii/S1470160X18309415
Summary
Soil quality is defined as the capacity of the soil to perform multiple functions, and can be assessed by measuring soil chemical, physical and biological parameters. Among soil parameters, labile organic carbon is considered to have a primary role in many soil functions related to productivity and environmental resilience. Our study aimed at assessing the suitability of different labile carbon fractions, namely dissolved organic carbon (DOC), hydrophilic DOC (Hy-DOC), permanganate oxidizable carbon (POXC, also referred to as Active Carbon), hot water extractable carbon (HWEC) and particulate organic matter carbon (POMC) as soil quality indicators in agricultural systems. To do so, we tested their sensitivity to two agricultural management factors (tillage and organic matter input) in 10 European long-term field experiments (LTEs), and we assessed the correlation of the different labile carbon fractions with physical, chemical and biological soil quality indicators linked to soil functions. We found that reduced tillage and high organic matter input increase concentrations of labile carbon fractions in soil compared to conventional tillage and low organic matter addition, respectively. POXC and POMC were the most sensitive fractions to both tillage and fertilization across the 10 European LTEs. In addition, POXC was the labile carbon fraction most positively correlated with soil chemical (total organic carbon, total nitrogen, and cation exchange capacity), physical (water stable aggregates, water holding capacity, bulk density) and biological soil quality indicators (microbial biomass carbon and nitrogen, and soil respiration).
We conclude that POXC represents a labile carbon fraction sensitive to soil management and that is the most informative about total soil organic matter, nutrients, soil structure, and microbial pools and activity, parameters commonly used as indicators of various soil functions, such as C sequestration, nutrient cycling, soil structure formation and soil as a habitat for biodiversity. Moreover, POXC measurement is relatively cheap, fast and easy. Therefore, we suggest measuring POXC as the labile carbon fraction in soil quality assessment schemes in addition to other valuable soil quality indicators.
EPrint Type: | Journal paper |
---|---|
Keywords: | Permanganate oxidizable carbon (POXC), Hot water extractable carbon (HWEC), Dissolved organic carbon (DOC) Particulate organic matter carbon (POMC), Hydrophilic dissolved organic carbon (Hy-DOC), Long-term experimental field (LTEs), soil quality, biodiversity, Bodenbearbeitung Frick, Bodenwissenschaften |
Subjects: | Soil > Soil quality Crop husbandry > Soil tillage Environmental aspects > Air and water emissions Environmental aspects > Biodiversity and ecosystem services |
Research affiliation: | Switzerland > FiBL - Research Institute of Organic Agriculture Switzerland > Soil Switzerland > FiBL - Research Institute of Organic Agriculture Switzerland > Sustainability > Climate Netherlands > Wageningen University & Research (WUR) |
ISSN: | 1470-160X |
Related Links: | https://orgprints.org/id/eprint/43143/ |
Deposited By: | Mäder, Paul |
ID Code: | 34684 |
Deposited On: | 25 Feb 2019 20:43 |
Last Modified: | 22 Apr 2022 08:17 |
Document Language: | English |
Status: | Published |
Refereed: | Peer-reviewed and accepted |
Repository Staff Only: item control page