# Nutrient composition and bioavailability of protein and energy in common fruits and vegetables prepared for human consumption

Henry Jørgensen

Charlotte Lauridsen

Department of Animal Physiology and Nutrition, Danish Institute of Animal Sciences, Research Centre Foulum, P.O. Box 50, DK-8830 Tjele, Denmark

## Introduction

The nutritional value of a certain food is to a high degree depending on its composition and nutrient amount. The only true measurement of energy availability and protein quality for human use is growth and/or metabolic evaluation carried out in suitable subjects of the target population. Such studies cannot be done on a routine basis. However, an animal assay technique that correlate closely with data from human experiments is recommended by FAO/WHO. This method uses growing rats to measure the digestibility of energy and protein. **Aim** 

In the present study growing rats were used as animal model to evaluate the digestibility of energy and protein digestible corrected amino acid score (PDCAAS) in some common fruits and vegetable grown in different cultivation systems during two subsequent growth seasons.

#### Table 1. Amino acid requirement of pre -school children, and in comparison with growing rats and piglets (mg/g protein)

|                        | Pre-school -child<br>FAO, 1985 | Growing rats<br>NRC, 1995 | Piglets, 9 -30 kg<br>DS, 2002 |
|------------------------|--------------------------------|---------------------------|-------------------------------|
| Histidine              | 19                             | 19                        | 22                            |
| Isoleucine             | 28                             | 41                        | 38                            |
| Leucine                | 66                             | 71                        | 66                            |
| Lysine                 | 58                             | 61                        | 65                            |
| Methionine+Cystine     | 25                             | 65                        | 35                            |
| Phenylalanine+Tyroxine | 63                             | 68                        | 73                            |
| Threonine              | 34                             | 41                        | 40                            |
| Tryptophane            | 11                             | 13                        | 11                            |
| Valine                 | 35                             | 49                        | 40                            |

# **Principle of PDCAAS**

- Measurement of the food protein (N x 6.25) and indispensable amino acids (see **Table 2**).
- Calculating the uncorrected amino acid score by dividing a particular indispensable amino acid by the corresponding amino acid with the requirement pattern for a 2-5 year child (see **Table 1**).
- Determine the protein digestibility corrected for metabolic faecal protein.
- PDCAAS is then calculated by applying the corrected protein digestibility (see Table 3).

### **Materials and Methods**

- At two consecutive years, potatoes, peas, kale, carrots and apples were grown under either an organic, or a conventional cultivation system, or a combination of the two systems.
- Potatoes, peas and kale were cooked and freezedried; raw carrots and apples were shredded and freeze dried.
- Ingredients were incorporated into test diets by adjusting the nitrogen content to 1.5 % of DM with a N-free mixture; however, in case of low protein ingredients (potatoes, carrots and apple) casein was supplemented.
- Five Wistar rats weighing 70 g were used for each diet.
- An adaptation period of 5 d was followed by a balance period of 4 d.
- The rats were housed individually in plexiglas cages which allowed urine and faeces to be collected separately (see Photos).



Table 2. Protein and indispensable amino acid composition of the experimental foods

| 10003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |      |      |          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|------|------|----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apples | Carrots | Kale | Peas | Potatoes |  |
| Protein, % DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7    | 7.1     | 18.6 | 25.6 | 8.8      |  |
| Amino acids, mg/g protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |         |      |      |          |  |
| Histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20     | 16      | 22   | 25   | 17       |  |
| Isoleucine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36     | 32      | 43   | 44   | 34       |  |
| Leucine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61     | 41      | 76   | 72   | 49       |  |
| Lysine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55     | 33      | 58   | 74   | 49       |  |
| Methionine+Cystine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28     | 21      | 31   | 23   | 27       |  |
| Phenylalanine+Tyroxine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47     | 41      | 82   | 70   | 57       |  |
| Threonine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37     | 29      | 44   | 41   | 34       |  |
| Tryptophane <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9      | 9       | 16   | 11   | 15       |  |
| Valine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46     | 41      | 57   | 52   | 54       |  |
| Table value (Levelanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderst |        |         |      |      |          |  |

<sup>1</sup>Table value (Levnedsmiddel tabeller, 1991).

# **Results and Discussion**

- There was no significant difference between the different cultivation systems on the present variables.
- A significant difference was detected between the two growth seasons: On average there was a one percentage unit difference in protein between the two years giving rise to a significant improvement of amino acid concentration relative to protein, as the amino acid concentration was equal between the two years.
- In spite of the relative low protein content in apples (1.7 % of DM, Table 2), and a low protein digestibility (52 %, Table 3), the amino acid composition was well balanced.
- Both energy and protein digestibility correlated negatively to the content of dietary fibre (data not shown).
- Lysine turned out to be the limiting amino acid in both carrot and kale.
- The protein in peas and potatoes complemented each other; methionine+cystine limiting in peas and leucine

#### and lysine limiting in potatoes. Table 3. Energy and protein digestibility together with protein digestibility corrected amino acid score (PDCAAS)

|                        | Apples | Carrots | Kale | Peas   | Potatoes     |
|------------------------|--------|---------|------|--------|--------------|
| Digestibility, %       |        |         |      |        |              |
| Energy                 | 75     | 80      | 57   | 69     | 89           |
| Protein, corrected     | 52     | 81      | 77   | 89     | 95           |
| PDCAAS                 |        |         |      |        |              |
| Histidine              | 56     | 66      | 90   | 115 ┥  | ▶ 84         |
| Isoleucine             | 68     | 92      | 117  | 141    | 118          |
| Leucine                | 49     | 50      | 88   | 97     | (71)         |
| Lysine                 | 51     | (46)    | (76) | 114 ┥  |              |
| Methionine+Cystine     | 60     | 68      | 96   | (81) 🚽 |              |
| Phenylalanine+Tyroxine | 39     | 52      | 100  | 99     | 87           |
| Threonine              | 57     | 70      | 99   | 107 ┥  | → 97         |
| Tryptophane            | 42     | 66      | 111  | 89 ┥   | <b>→</b> 130 |
| Valine                 | 69     | 95      | 124  | 131    | 147          |

# Conclusion

Based on the rat model it could be concluded, that the PDCASS can be used to range the protein quality of the dietary ingredients giving rise to the following ranking: apples, carrots, potatoes, kale and peas.

The amino acid pattern in peas and potatoes complemented each other fairly well as dietary sources.

Years, but not cultivation system influenced the protein and amino acid content of the foods.