Kann man bei der Nährstoffbilanzierung im ökologischen Anbau mit den üblichen Faustzahlen rechnen?

Joachim Raupp 1

Einleitung

Nährstoffbilanzen sind ein wichtiges Instrument zur Überprüfung der Betriebsplanung. Die erforderlichen Inhaltsstoffanalysen vieler Dünge- und Futtermittel- sowie Ernteproben stellen einen erheblichen Aufwand dar. Zur Vereinfachung werden häufig nur die Mengenerhebungen durchgeführt und für die Nährstoffgehalte die üblichen Faustzahlen eingesetzt, die in der Regel von mineralisch gedüngten Kulturen stammen. Um die Übertragbarkeit dieser Daten auf ökologischen Anbau zu prüfen, wurden die Mineralstoffgehalte in Roggen aus einem Langzeitversuch ausgewertet.

Material und Methoden

Der Versuch liegt bei Darmstadt auf einer Sand-Braunerde in trocken-warmem Klima (9,5°C, 590mm) und vergleicht die Düngerarten Rottemist und Jauche (**RM**), Rottemist und Jauche mit allen biologisch-dynamischen Präparaten (**RMBD**) und Mineraldüngung (**MIN**, Kalkammonsalpeter, Superphosphat, Kalimagnesia). Alle Düngerarten werden in drei Mengen gegeben, bemessen nach dem Gesamt-N-Gehalt (Tab. 1). Weitere Einzelheiten des Versuches sind bei RAUPP (2001) veröffentlicht. Die Ergebnisse stamen aus den Erntejahren 1994 bis 1998. Mit dem Programm PLABSTAT (H.F. Utz, Univ. Hohenheim) wurden ANOVAs berechnet. Die Kennzeichnung signifikanter Mittelwertsdifferenzen gilt für p<0,05.

Tab. 1: Nährstoffmengen (kg ha⁻¹), die jährlich mit Stallmist und Jauche (RM und RMBD) sowie mit Mineraldüngern (MIN) zu Getreide ausgebracht wurden; die Werte für Phosphor, Kalium und Schwefel für RM und RMBD sind Mittelwerte mehrerer Jahre

Düngung	niedrig			mittel				hoch				
	Ν	P_2O_5	K_2O	S	Ν	P_2O_5	K_2O	S	Ν	P_2O_5	K_2O	S
RM Mist	60	36	91	9	80	48	122	12	100	60	152	15
Jauche	0	0	0		20	1	40		40	3	79	
RMBD	60	39	98	0	80	52	130	11	100	65	163	14
Jauche	0	0	0		20	2	39		40	3	78	
MIN	60	50	75	73	100	75	100	10	140	100	125	13

Ergebnisse und Diskussion

Der organisch gedüngte Roggen enthielt weniger Stickstoff in Korn und Stroh (Tab. 2). Im Stroh befand sich mehr Phosphor, aber weniger Kalium bei insgesamt höheren Aschegehalten als bei Mineraldüngung. Die Verwendung der üblichen Faustzahlen im ökologischen Landbau dürfte also zu Fehlberechnungen führen, welche die Aussagen von Nährstoffbilanzierungen in Frage stellen.

¹ Institut für biologisch-dynamische Forschung, 64295 Darmstadt (raupp@ibdf.de)

Tab. 2: Mineralstoffgehalte (%TS) in Roggen bei Rottemistdüngung (RM, RMBD) und Mineraldüngung (MIN) in 3 Mengen; Mittelwerte eines Versuchsfaktors mit verschiedenen Buchstaben unterscheiden sich signifikant (p<0,05); die LSD gilt für die Wechsel-

wirkung zwischen Art und Höhe der Düngung (p<0,05)

wirkung zwisc	nen Art und no	nie dei Dungung	y (p<0,03)				
	RM	RMBD	MIN	Mittelwert			
		Stickstoff (N) in	n Stroh				
niedrig	0,41	0,42	0,40	0,41 a			
mittel	0,42	0,41	0,49	0,44 b			
hoch	0,41	0,41	0,55	0,46 b			
Mittelwert	0,42	0,41	0,48	LSD = 0,04			
	,	Stickstoff (N) in	n Korn				
niedrig	1,28	1,32	1,29	1,30			
mittel	1,27	1,28	1,48	1,35			
hoch	1,28	1,28	1,54	1,36			
Mittelwert	1,28 a	1,29 a	1,44 b	LSD = 0,04			
	Phosphor (P) im Stroh						
niedrig	0,153	0,154	0,122	0,143			
mittel	0,150	0,152	0,126	0,142			
hoch	0,147	0,147	0,130	0,141			
Mittelwert	0,150 b	0,151 b	0,126 a				
		Kalium (K) im	Stroh				
niedrig	0,83	0,83	0,88	0,85 a			
mittel	0,87	0,87	1,00	0,91 a			
hoch	1,00	1,00	1,16	1,05 c			
Mittelwert	0,90 a	0,90 a	1,01 b				
		Asche im St	roh				
niedrig	5,09	5,09	4,06	4,75			
mittel	5,02	4,85	4,14	4,67			
hoch	4,86	4,81	4,31	4,66			
Mittelwert	4,99 b	4,92 b	4,17 a	LSD = 0,13			

Literatur

Raupp, J., 2001: Forschungsthemen und Ergebnisse eines Langzeitdüngungsversuchs in zwei Jahrzehnten; ein Beitrag zur Bewertung von pflanzenbaulichen Langzeitversuchen. Ber. Landw. **79**, 71-93.