

Effect of clover species in grass-clover silages and concentrate supplementation on milk fatty acid composition

Håvard Steinshamn¹, Erling Thuen², and Ulrik Tutein Brenøe²

¹Bioforsk-Norwegian Institute for Agricultural and Environmental Research,
Organic Food and Farming

²Norwegian University of Life Sciences, Department of Animal and Aquacultural Sciences

Background

- Uneven production of organic milk during the year
 More milk during the winter is needed
- Organic standard revision
 100% organic produced feedstuffs

High quality silage

Objective

Compare white (WC) and red clover (RC) - grass silages with and without concentrate supplementation on:

- production,
- milk quality and
- N use efficiency

in autumn calving lactating dairy cows

Methods

- WC and RC grown in mixture with grasses
- Silage (round bales) made from 2nd and 3rd cut
- Autumn calving dairy cows (48 Norwegian Red Cattle)
- Lactation weeks: 1-20

Treatments

- Legume species
 - WC = White clover-grass silage
 - RC = Red clover grass silage
- Concentrate supplementation
 - C = 0 kg/cow and day
 - + C = 10 kg/cow and day

Herbage clover proportion (%)

White	clover	Red clover			
2. cut	2. cut 3. cut		3. cut		
42	37	58	57		

Silage quality

	WC	•	RC		
	2. cut	3. cut	2. cut	3. cut	
Dry matter, %	30.2	33.2	25.8	32.6	
pH	4.5	4.7	4.4	4.7	
NH3-N, % of TN	8.3	7,0	6.8	7.0	
Lactic acid, % of DM	4.7	3.7	5.5	3.5	

Total diet quality

	W	/C	RC		
	- C	+ C	- C	+ C	
CP, g/kg DM	170	167	163	162	
NDF, g/kg DM	415	344	426	346	
Fat, g/kg DM	37.2	41.2	35.4	40.2	

Milk yield

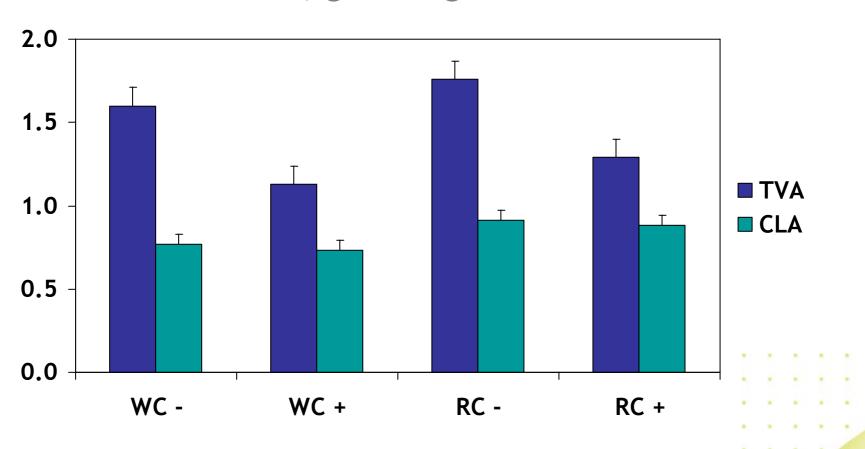
	V	WC		RC		ficance
	- C	+ C	- C	+ C	Species	Conc
Milk, kg/d	20.5	27.7	22.0	29.2	(*)	***
ECM, kg/d	19.1	28.3	20.2	28.5	ns	***

ECM = energy corrected milk

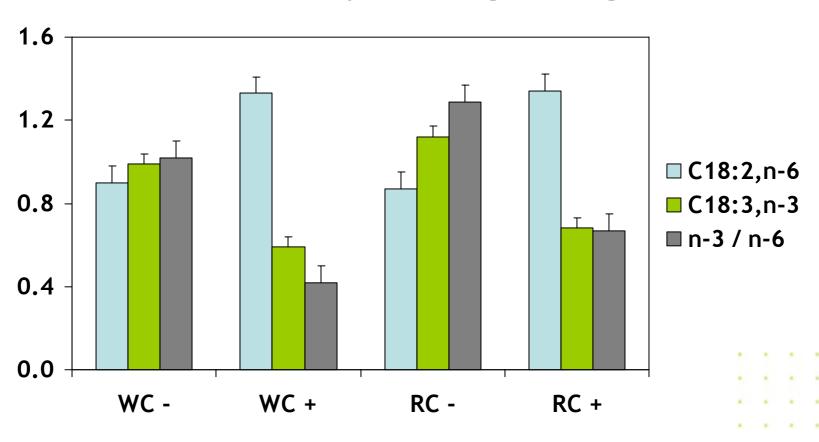
Milk fat and protein

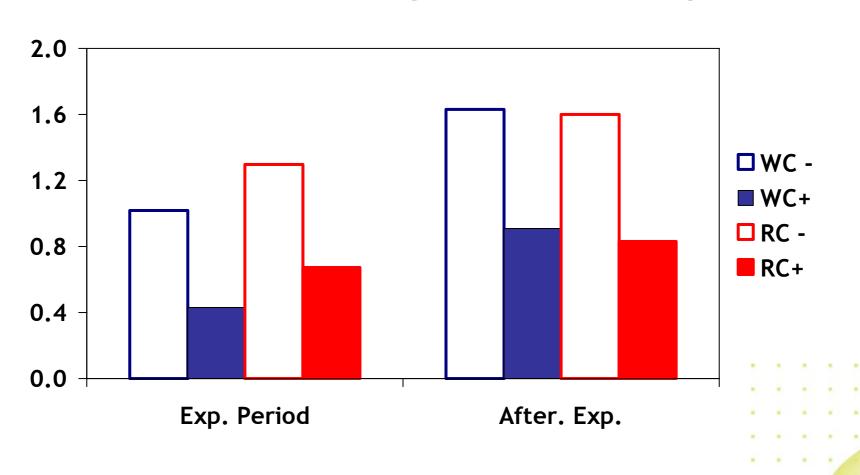
	٧	WC		C	Signif	icance
	- C	+ C	- C	+ C	Species	Conc
Fat, %	3.58	3.99	3.60	3.81	ns	**
Protein, %	3.05	3.50	3.00	3.30	*	***

Milk fatty acid (FA) composition, g / 100 g total FA


	V	WC		RC .	Significance	
	- C	+ C	- C	+ C	Species	Conc
SFA	66.1	68.3	63.6	66.4	(*)	(*)
MUFA	23.4	21.4	25.4	23.3	ns	ns
PUFA	2.89	3.01	3.06	3.18	*	ns

SFA = saturated FA; MUFA=monounsaturated FA; PUFA=polyunsaturated FA


Milk TVA and CLA, g / 100 g total FA


Milk n-3 and n-6 fatty acids, g / 100 g total FA

Milk n-3/n-6 ratio during and after the experiment

Conclusions

Red clover silage gave milk with higher proportion of

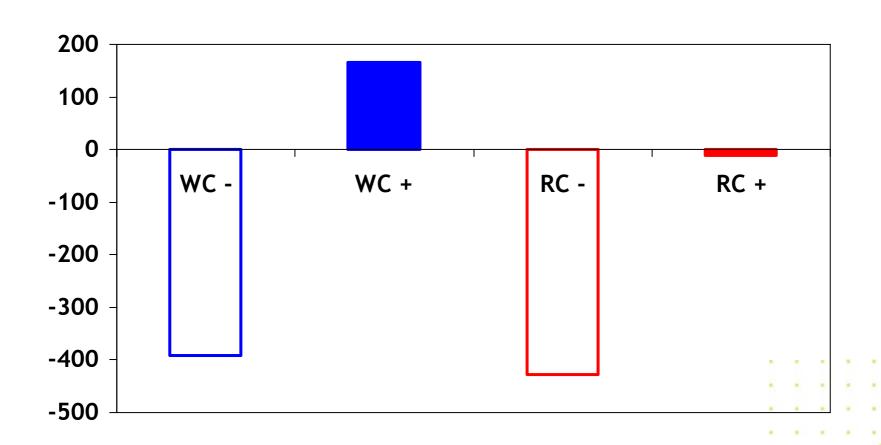
- > PUFA
- Trans-vaccenic acid (C18:1,t 11)
- > CLA (C18:2,c-9, t-11)
- \triangleright α -linolenic acid (C18:3,n-3)
- > n-3 / n-6

than white clover silage

Conclusions

Concentrate supplementation

- + linoleic acid (C18:2,n-6)
- > PUFA
- > Trans-vaccenic acid (C18:1,t 11)
- \triangleright α -linolenic acid (C18:3,n-3)
- > n-3 / n-6



Is it so that feeding dairy cows, or domestic ruminants in general, according to their "nature", i.e. with fibrious feed stuffs, yields food products that are healthier to us humans than feeding with feed stuffs based on starch?

Live weight change, g / dag

