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Abstract
Background The pea root rot complex is caused by various soil-borne pathogens that likely reinforce each other, 
influencing the composition of the root microbiome and leading to significant yield reductions. Previous studies 
have shown variations in the abundance of key microbial taxa and differences in disease susceptibility among plant 
genotypes. To better understand this relationship between plant genetics and microbiome dynamics, we conducted 
genetic analyses focusing on plant health and frequency of microbial taxa.

Results Two hundred fifty-two diverse pea lines were grown in naturally infested soil under controlled conditions, 
genotyped, assessed for their disease symptoms at the seedling stage, and analyzed the associated root microbial 
communities using amplicon sequencing. Genome-wide association studies (GWAS) revealed genomic loci that 
influence the abundance of various fungal and bacterial operational taxonomic units (OTUs). We identified 54 
independent quantitative trait loci (QTLs) significantly linked to the abundance of 98 out of 1227 detected OTUs, 
while an additional 20 QTLs were associated with more than one OTU. The most significant region was found on 
chromosome 6, influencing 50 OTUs across 10 distinct QTLs.
When comparing genomic markers and microbial OTUs as predictors in a genomic prediction model for root 
rot resistance and seedling emergence, we found that the abundance of specific microbial groups provided a 
significantly better predictive ability than QTLs. The abundance of Fusarium species was correlated with increased 
infection levels, while others, such as those linked to Dactylonectria and Chaetomiaceae, positively correlated 
with resistance to root rot. These findings were validated by specific QTLs and high genetic heritability for OTU 
abundance.

Conclusion The results highlight two key points: (1) the presence and abundance of certain microbial groups in 
the pea root are influenced by distinct QTLs and, thus, determined by the plant genotype, and (2) these microbial 
communities show heritable correlations with the plant resistance to root rot. By combining plant and microbiome 
genetic markers—using a “holobiont” approach—we can improve predictions of root rot resistance compared to 
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Background
Legumes are crucial in shifting toward more sustain-
able protein production [1]. A plant-based diet not only 
offers environmental benefits but also reduces the risk 
of chronic diseases such as type 2 diabetes and cardio-
vascular conditions [2]. Therefore, plant-based protein 
sources like peas have become more and more relevant. 
Pea (Pisum sativum L.) is one of the agronomically most 
essential members of high-value protein crops, with a 
total dry seed production of six million tons in 2021 in 
Europe [3]. Like other legumes, pea also has an excep-
tionally high value in organically managed farms, as 
their ability to form symbiotic interactions with rhizobia 
leads to the fixation of air-borne nitrogen [1, 4]. Besides, 
pea roots are colonized by arbuscular mycorrhizal fungi 
(AMF), which can allow the plant to access nutrients 
from the soil matrix more efficiently [5]. These charac-
teristics are of tremendous use in organic and other low-
input farming systems. Still, the production decreased 
in the past 30 years, from a peak world production of 
10.5 million tons in 1992 [3]. One reason for this decline 
are soil-borne pathogens that can severely impact pea 
development and yield. The pea root rot complex (PRRC) 
can cause massive yield reductions in pea and many 
other legume crops [6, 7]. This complex consists of vari-
ous pathogens [8], but it is assumed that iterative crop-
ping of legumes results in an accumulation of pathogens 
or microbiome dysbiosis in the soil [9]. The PRRC is com-
posed of various fungal species such as Fusarium oxys-
porum [7, 10], Fusarium solani, Fusarium avenaceum 
[11], Alternaria alternata [8], Aphanomyces euteiches 
[12] and Rhizoctonia solani [13], but also some bacte-
ria species are known to cause root rot [14]. The pres-
ence of these pathogens causes root rot accompanied by 
wilting, damping off, and, as a consequence, substantial 
yield reductions [15]. Therefore, it is essential to identify 
approaches to maintain high yields in short crop rotation 
intervals [16]. Otherwise, the transition towards a more 
plant protein-based diet could be decelerated.

In the absence of viable management practices (besides 
long rotation breaks [15]), breeding has been identified 
as a promising solution [17]. While there have been some 
successes in finding partial resistances against individual 
pathogens such as Fusarium root rot and Didymella root 
rots, Rhizoctonia rot and stem rot, Pythium damping-
off and Aphanomyces root rot (summarised in Wille et 
al.  [9]), there are currently no resistant varieties avail-
able that exhibit resistance against multiple, synergisti-
cally-interacting pea pathogen complexes. Besides the 

above-mentioned known pathogens and beneficial taxa, 
many other microbial groups (such as fungi, bacteria, and 
oomycetes) interact with each other and the plant. These 
interactions can be positive, neutral, or negative for the 
plant [18, 19]. The knowledge of these plant-microbe 
interactions and how microbes affect each other in a 
competition scenario for carbohydrates and nutrients 
could be the missing puzzle piece to untangle the genetic 
base of PRRC. Better understanding this interlink, called 
the holobiont [20], can lead to diagnostic and breed-
ing tools that improve the identification of field-relevant 
disease resistances. In fact, several recent studies reveal 
promising concepts for microbe-assisted breeding appli-
cations [21–23]. Thus, combining microbiome attributes 
with the diverse genetic resources of grain legumes is a 
key element in facilitating the breeding of high-yielding 
resistant pea lines [9]. Considering the microbial com-
position of the entire rot complex in an association panel 
of pea genotypes shows promise to identify robust plant 
quantitative trait loci (QTL) and microbial markers, 
which can be used in resistant pea breeding. Such QTLs 
can be identified in genome-wide association studies 
(GWAS), where phenotypes or microbial abundances are 
related to genetic markers in a diverse genotype panel.

This research aimed to determine the modulation 
capacity of pea genotypes on the root microbial compo-
sition and the heritability of individual operational taxo-
nomic units (OTUs). It was previously highlighted that 
pea genotypes can modulate their root microbiota when 
challenged by a complex of pathogens [24]. In this study, 
the target questions are (i) to identify genetic interactions 
between the pea root microbiome and its host genetics 
within a diverse set of genotyped pea lines, (ii) to anno-
tate variations in the microbial abundance to distinct 
genomic loci in a GWAS analysis, and (iii) to apply a sub-
sequent regression model on the genotypes, QTLs, and 
microbial abundances. All three should investigate the 
potential of holobiont genomics for pea resistance breed-
ing. We aligned these findings with disease phenotypes, 
reported by Ariza-Suarez et al. to determine a genotype 
- microbiome - plant phenotype connection [25].

Materials and methods
Plant material and inoculation experiment
This study utilized a subset of 252 genotypes of the 261 
pea lines analysed for root rot resistance by Wille et al. 
[7]. The pea genotypes were grown in pots with naturally 
infested soil (NS) and sterilized soil (S) under controlled 
conditions for 21 days in a growth chamber at a 16 h/8 h 

predictions based on plant genetics alone. These findings set a foundation for practical applications in breeding 
programs aimed at enhancing disease resistance through microbiome-assisted approaches.
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light regime with four replicates. One of the four plants 
was sampled for genotyping. The soil properties have 
been described in detail before  and were characterized 
by a neutral ph of 7.1 and an organic matter content of 
3.8%. The composition of the soil fraction was dominated 
by Sand (46%) and silt (37%). Plant height and shoot dry 
weight (SDW) were measured to assess the overall per-
formance of the plants in the trial. The phenotypic traits 
of plant emergence and root-rot index (RRI: 1 = no symp-
toms; 6 = complete disintegration of the root system) 
under NS conditions, as well as the shoot dry-weight 
ratio between NS and S conditions (SDWNS/S) are used to 
assess the overall resistance level to root rot complex [7]. 
Plant emergence indicates resistance against damping-
off, while RRI shows resistance of plants that managed to 
emerge, and SDWNS/S indicates tolerance to disease dam-
age [25].

Genotyping
This diverse subset of 252 genotypes from the genotype 
panel described before in [7] was genotyped by genotyp-
ing-by-sequencing (GBS), as described in further detail 
[25]. Preprocessed reads were aligned to the reference 
genome “Zhongwang 6” [26] using bowtie2 [27], and 
SNPs were called using NGSEP (v4.1.0 [28]). Genotype 
calls with a minimum quality of 30 were filtered out. 
Similarly, sequence variants with a minor allele frequency 
(MAF) below 0.02 and a maximum heterozygosity rate 
of 0.05 were filtered out. Sequence variants with more 
than 78% missing calls were also removed to reduce the 
proportion of missing data in the entire genotypic matrix 
to approximately 30%. A total of 18,267 markers evenly 
distributed across all seven chromosomes were used to 
perform a genome-wide association study (GWAS) and 
genomic prediction (GP). Missing genotyping informa-
tion was imputed using beagle (v22.46e [29]), with default 
parameters for the genomic prediction, while no imputa-
tion was performed for the GWAS analysis.

Microbiome characterization
Pea root systems were sampled after 21 days, as described 
in  Wille et al. [7] and  Gfeller et al. [24]. In short, roots 
were shaken to remove loosely attached soil and washed 
in sterilized water. After lyophilization and milling, DNA 
was extracted from 15  mg dried root powder using the 
Mag-Bind Plant DNA DS 96 Kit (Omega Bio-Tek, Nor-
cross, United States) following the manufacturer’s 
instructions.

Microbiota profiling was performed as previously 
described [24]. For fungal communities, the entire ITS 
region was amplified using the ITS1f/ITS4 primers and 
sequenced by the Genome Quebec Innovation Center 
(Montreal, Canada) using a PacBio (Sequel II) sequencer. 
Quality filtered amplicons were error-corrected to obtain 

zero radius operational taxonomic units (zOTUs) using 
UNOISE [30]. zOTUs were further clustered into OTUs 
of 97% nucleotide similarity with UPARSE [31]. The 
UNITE (V83 [32]), ITS reference database was used to 
predict taxonomic associations. For the profiling of the 
bacterial communities, the V3 and V4 hypervariable 
regions of the 16 S rRNA gene were amplified using the 
V3F and 799R primers. Amplicons were sequenced on an 
Illumina MiSeq sequencer by the Genome Quebec Inno-
vation Center (Montreal, Canada). The bioinformatic 
analysis was done in QIIME2 [33] where the DADA2 
pipeline [34] was used for amplicon sequence vari-
ants (ASV) calling and before clustering into OTUs of 
97% nucleotide similarity (vsearch [35]). Taxonomy was 
assigned using the SILVA database [36]. An additional 
taxonomic classification was performed by a local blastn 
[37] mapping of OTU sequences to the entire NCBI fungi 
and bacteria database of complete genomes (downloaded 
22.03.2023 [38]). As the UNITE classification did not 
provide a sufficient resolution down to genus or species 
level for most OTUs, we decided to add this BLAST step, 
being aware of its limitations and uncertainties. A maxi-
mum of 10 matches was reported for each OTU in the 
mapping process, from which the best match observed 
was used to estimate a “best guess” of the OTU’s spe-
cies. If different taxa appear within the same taxonomic 
rank (e.g. species), the next higher rank was chosen (e.g. 
genus).The identity threshold was set to 95% for fungi 
and 90% for bacteria, with a minimum alignment length 
of 300 bp.

Statistical analysis on the microbiota profiling data 
was performed as previously described [24]. In short, the 
alpha diversity indices OTU richness and Shannon Index 
were calculated on rarefied count tables. Microbial com-
munity compositions (beta diversity) were visualized by 
Principal Coordinates Analysis (PCoA) on Bray-Curtis 
dissimilarity matrixes. Differential abundance analysis 
of individual OTUs was performed using the ALDEx2 
pipeline [39] on emergence and RRI as a resistance trait 
for fungi and bacteria. An OTU was considered differen-
tially abundant when the association with the two resis-
tance traits was significant (p < 0.05 after correction for 
multiple testing). Ultimately, four classes were specified 
– differential abundant bacterial OTUs (da bOTU), dif-
ferential abundant fungal OTUs (da fOTU), as well as not 
resistance-associated OTUs for both bacteria (bOTU) 
and fungi (fOTU). CLR transformed count tables 
obtained through the ALDEx2 pipeline were used as an 
abundance score for all analyses in thispaper.

Genotype-microbiome relationship approximation by PCA
Two principal component analyses (PCA) were per-
formed to estimate genotype relationships. The first was 
based on the genotype of each pea line, considering all 
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available 18,267 markers. The second was constructed 
based on the OTU-abundance scores for each pea line. 
All 1,227 fungal and bacterial OTUs were included in a 
second PCA. OTUs and markers with the highest effect 
on plant health status were identified using both PCA. A 
clustering of resistant pea lines was performed on both 
genotype and OTU-based PCAs to identify an intersec-
tion between the (i) OTU and (ii) marker-derived geno-
type PCA positions. Each genotype’s position was scaled 
against the center of the worst class (class 6). The scal-
ing was performed across the first 5 PCs (which explain 
the majority of the variation), corrected by the explained 
variance of each PC. The value obtained for each PC 
was summed up for each genotype to obtain a “distance 
value” from the center of the highest susceptibility class 
six. The 90% quantile of the most distant genotypes was 
calculated to extract the genotype with the greatest dis-
tance to the others for both approaches (OTU abundance 
and plant genetic). Similarities between these classes 
were defined by the ratio of matched to unmatched geno-
types. We hypothesized that a high number of matches 
between these two groups would indicate an effect of pea 
genotype on OTU abundance and microbiome composi-
tion. Additionally, Mantel’s test was employed to analyze 
the correlation between pea genotype genomic distances 
and associated microbiome distances, which were based 
on the first five principal components (PCs). The analy-
sis utilized the mantel function from the R package vegan 
with 999 permutations to assess these relationships. To 
minimize the impact of outliers, Spearman’s correlation 
analyses were employed [40, 41].

Genome-wide association study
A genome-wide association study was performed using 
the R package rrBLUP (version 4.6.2 [42]), to assess the 
genomic background of OTU abundance. We included 
five principal components of the pea genotype-based 
PCA and the kinship matrix for all markers with an 
MAF > 0.03 to correct for population structure.

In the first run, we performed a GWAS for the alpha 
and beta diversity of the entire microbiome. OTU rich-
ness and Shannon Index were taken as proxies of alpha 
diversity. The first two principal coordinates of the 
microbiome ordination were used for beta diversity, as 
described elsewhere [43]. We estimated narrow sense 
genomic heritability using an additive covariance matrix 
in the sommer package function mmer with 1,000 itera-
tions for alpha and beta diversity.

In a second run, we performed a GWAS on all 1,227 
OTUs separately. To do this, we clustered the OTUs into 
four different groups - “da bOTU”, “da fOTU”,” bOTU”, 
and “fOTU”. Each group contained 34, 51, 861, and 366 
units, respectively. We applied a Bonferroni corrected 

p-value threshold of 0.05 for each of these four classes to 
account for type I errors. Therefore, we used the formula:

 
pcritical = 0.05∑

Markers ∗
∑

OTUsm
n

∗ 0.9

to account for the multiple testing problem arising from 
the number of markers and multiple OTUs from group 
n with size m. We relaxed the threshold marginally by a 
factor of 0.9 to account for linkage blocks in the geno-
types studied.

Analogous to the alpha and beta diversity, the narrow 
sense heritability was calculated for each OTU. Further-
more, we included the QTLs identified for the plant phe-
notypes in Ariza-Suarez et al. [25] to distinguish potential 
co-segregations of OTU and plant phenotype QTL.

Prediction of pea phenotypes using pea genomic markers 
and OTU abundance in a holobiont approach
Genomic prediction (GP) was performed to predict the 
(i) emergence rate and the (ii) root rot index by fitting 
Bayesian models (Bayes A, Bayes B). We used the R pack-
age BGLR (v1.1.0 [44]), with 6,000 iterations and 1,000 
as burn-in. Five-fold cross validations in ten replications 
were performed so that each genotype was used once for 
the model validation (Test set size = 50 genotypes). The 
Bayes-B model was used solely for the GP based on all 
markers, as it has already been identified by Ariza-Suarez 
et al. [25] that few QTL loci have a major effect on the 
phenotypic variation in the tested population of pea 
lines. We used Bayes-A for all other GPs, assuming all 
predictors have at least a small effect on seedling emer-
gence and root rot index. In both Bayes models, the leaf 
morphology (leafless, semi-leafless) was added as a fixed 
cofactor due to its agronomic value. Eighteen different 
predictor combinations and compositions were tested, as 
listed below:

  – Plant genomic marker-based

1. All available markers
2. QTL markers identified for plant resistance traits 

(e.g. RRI, germination rate)
3. QTLs for both plant traits and OTU abundance 

together
4. The two most significant QTLs from the OTU 

GWAS
5. QTLs identified for non-differentially abundant 

OTUs (both fungi and bacteria)
6. QTLs identified for differentially abundant OTUs 

(both fungi and bacteria)

  – Additionally, as the explained variance of all 
OTU-associated QTLs was always smaller 1, we 
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repeated the genomic regression approach using 
the abundance of different OTU sets instead of the 
marker’s information. The abundance of:

7. all OTUs
8. all heritable OTUs
9. PCA derived OTUs (from Fig. 1)
10. PCA & QTL derived OTUs
11. The most descriptive OTUs

We collected the information on the three most domi-
nant OTUs by running a genomic regression model using 
all PCA derived OTUs. Across all cross validations (CV), 
the top 50% OTUs with the highest “marker effect” in the 
model were collected. The OTU intersect within the 10 
CV was determined to find the most descriptive OTUs. 
Afterward, the genomic regression model was repeated 
with only these three OTUs.

  – Lastly, the combination of genomic markers and 
OTU abundance.

12. all QTLs and all OTUs
13. all markers and all OTUs
14. the two most significant QTLs, together with the 

most descriptive OTUs

was assessed. The estimated phenotype per predictor 
combination was extracted from the model and com-
pared by Pearson’s correlation coefficient to the mea-
sured phenotype to obtain a “prediction ability”.

Results
Plant genotype and OTU abundance co-cluster with 
respect to plant disease phenotype
We were first interested in testing whether a general cor-
relation exists between microbial abundance and pea 
genotypes. We, therefore, performed separate PCAs 
for the microbial abundance (OTUs) and the pea geno-
types. The first five PCs highlighted a significant correla-
tion between the OTU abundance and the pea genotypes 
(p = 0.01).

Based on bOTU and fOTU abundance levels for each 
pea genotype, the first and second principal compo-
nents of the PCA explained 12% of the total variance. 
The first five PCs explained 20% of the variation. The 
visualization of the first two PCs revealed a continuous 
shift of the phenotype’s susceptibility scores towards the 
left, lower, and upper right edges (Fig. 1A). While geno-
types clustering in the upper right quadrant were asso-
ciated with high infection rates, genotypes in the far 
left and bottom areas indicated low infection with the 
pea root rot complex (PRRC). An analog PCA based on 
the pea genomic markers revealed a comparable rate of 

explained variance (Fig.  1B). While a considerable por-
tion of high and low susceptible genotypes do not differ-
entiate in the center, another set of resistant genotypes is 
clustered at the left (diamond) and bottom right (hexa-
gon) ends of the distribution (Fig. 1B). Interestingly, the 
clustering of the low-susceptibility genotypes S30, S49, 
S166, S62, S71, S10, and S98 (hexagon) was identical in 
the OTU- and genotype-derived PCAs, forming one 
group (Fig.  1A/B). The four most descriptive OTUs in 
this cluster were fOTU285, fOTU782, fOTU1657, and 
fOTU1508 (Suppl. Table 2). With descriptive, we refer 
to the OTUs with the highest PC loadings across the top 
two PCs. A BLAST search indicated these fOTUs belong 
to the family Chaetomiaceae (fOTU285) and the genus 
Dactylonectria (fOTU782, fOTU1657, and fOTU1508). 
The second group of genotypes (diamond) with low sus-
ceptibility consists of the nine genotypes G7, G17, G18, 
G20, G25, G34, G43, and G88. The most descriptive 
OTUs for this genotype cluster are bOTU121, bOTU115, 
bOTU107, bOTU191, and bOTU144. In contrast to the 
other low-susceptibility clusters, all originate from the 
bacterial kingdom, and none are differentially abundant. 
These bOTUs are related to Clostridium sp. (bOTU121, 
bOTU115), Aminipila sp. (bOTU191), and Pelosinus sp. 
(bOTU144).

The most descriptive OTUs for the high susceptibility 
cluster are bOTU63, bOTU28, fOTU53, and bOTU26. 
According to the best BLAST search match, these are 
related to Serratia sp, Stenotrophomonas sp. genus, or 
Tuber melanosporum. Except for bOTU63, all are da 
bOTUs. In general, the 20 most descriptive OTUs form-
ing this cluster of susceptible genotypes originate in the 
kingdoms of fungi (5) and bacteria (15) kingdoms (Suppl. 
Table 2). Besides the count bias, the PCA indicated that 
bacteria had a higher explanatory power for the cluster of 
highly infected pea genotypes than fungi. In contrast, the 
two low-susceptibility groups were described by a signifi-
cant effect of either fungi (19 out of 20 for the left-tailed 
group in Fig.  1A, Suppl. Table 2) or bacteria (11/20 for 
the top-tailed group in Fig. 1A, Suppl. Table 2).

GWAS of microbiome abundance co-locate with previous 
and reveal new resistance QTLs
With initial evidence of genotype-microbiome co-lin-
earity, we aimed to attribute these relations to genomic 
loci in a GWAS. We first examined the alpha and beta 
diversity of the entire microbial community (Fig. 2). Beta 
diversity revealed two significant loci for fOTUs, both 
located on chromosome 6, region 85  MB-95  MB and 
region 264 MB. The same loci showed an association in 
the second PCoA for bacterial beta diversity. However, 
the critical -logP threshold was not exceeded, and the 
genomic heritability of beta diversity ranged from 0.14 to 
0.28, while going up to 0.82 in the fungi beta diversity.
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Fig. 1 (See legend on next page.)
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In the next step, we investigated whether genome-
wide associations exist for the abundance of individual 
OTUs. The GWAS of differentially abundant (da) OTUs 
revealed 143 highly significant markers at 54 indepen-
dent loci across all seven chromosomes. Twenty of these 
loci are associated with more than one OTU, while only 
four are linked to both fungi and bacteria (Figs. 3A/B and 
4). The major region observed is located on chromosome 
6 from 85 to 95 MB and consists of 10 individual QTLs 
(Fig. 3A.2). Forty-seven fungal and three bacterial OTUs 
were found to be associated with this region. Addition-
ally, two multi-bOTU loci (with > 3 OTUs associated) 
were found on chromosome 1 at positions 157–161 MB, 
chromosome 2 at position 408 MB, and chromosome 6 at 
position 316 MB.

In total, we found significantly associated markers for 
98 different OTUs, of which 39 were identified as bOTUs 
(5% of all bOTUs observed in the root), 11 in the group of 

da bOTUs (32% of all da bOTUs), 23 for fOTUs (6%), and 
25 for da fOTUs (49%). We found 57 associated markers 
at ten independent loci for all daOTUs. QTLs on chro-
mosome 6, position 85–95 MB, co-segregated with QTLs 
for shoot dry weight ratio, root rot, and seedling emer-
gence identified by Ariza-Suarez et al. [25] (Fig. 3B). The 
notable aspect of this co-segregation is that the OTU-
QTL marker associations are much stronger than pea 
resistance QTL associations (higher LOD score Fig. 4).

Next, we examined the genomic heritability (h2) for 
all operational taxonomic units (OTUs). Some differ-
entially abundant OTUs exhibited a heritability of up 
to h2  = 0.46, while individual OTUs reached as high as 
0.99 when factoring in all OTUs found in the pea root 
(Fig. 3C). Among the 1,227 OTUs studied, 377 displayed 
a heritability of 0, and the average genomic heritability 
was measured at 0.059, with a standard deviation of 0.09. 
Heritabilities were lowest for non-daOTU.

(See figure on previous page.)
Fig. 1 First and second principal component analysis of the plant genotype relationships based on (A) the microbial abundance of both fungi and bac-
teria combined and (B) on 17,896 genomic markers. Each dot represents one of 252 plant genotypes, colored by the observed phenotypic susceptibility 
to root rot. A root rot index (RRI) of 1 indicates low infection, while a value of 6 represents the most infected genotypes. The colored areas show clusters 
of similar susceptible genotypes. Arrows highlight the most relevant loading in the first and second component (A – OTU; B - Marker). If loadings overlap, 
only the most relevant one is presented. The hexagon and rhombus illustrate two groups of resistant genotypes, which keep their composition and 
distance in microbial (A) and genomic marker (B) based PCAs

Fig. 2 Manhattan plots of the root microbiomes’ alpha and beta diversity. Alpha diversity (Shannon index and richness) was tested for associations 
with genomic loci in a GWAS (Subfigures A & B). The first and second principal coordinate of an ordination plot were used to approximate beta diversity 
(Subfigures C & D). The analyses were performed separately for fungi (left, A.1 – D.1) and bacteria (right A.2 – D-2). Horizontal dashed lines indicate the 
minimum threshold of significance after multiple testing corrections. Genomic broad-sense (H2) and narrow-sense (h2) heritability were calculated for 
each and illustrated in the top left corner. No dashed lines imply no detected QTLs
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groups, with an average h2 of 0.04 for bOTUs and 0.1 
for fOTUs, respectively. The genomic heritabilities for 
the da bOTU and da fOTU groups were 3.25 times higher 
(p < 10–15, Wilcox test) and 2.1 times higher (p < 10 − 7), 
with values of 0.13 and 0.21, respectively. The average 
genomic heritability of QTL-associated OTUs was 0.156, 
significantly higher (p < 0.001) than that of the non-QTL-
associated OTUs (h2=0.048).

In addition, we examined the heritability of the 60 
most prominent OTUs identified in the prior PCA analy-
sis. These OTUs, which differentiate PRRC (daOTUs), 
showed a significantly higher heritability of h2 = 0.176 

compared to h2 = 0.05 for all observed OTUs (p < 0.001 
– as determined by the Kruskal-Wallis rank sum test). 
Among these 60 OTUs, 21 were significantly associated 
with QTLs in the pea genome. In total, we identified 
36 QTLs across three distinct loci for these 21 OTUs. 
All but one locus were located on chromosome 6, with 
the most significant markers [27] located within the 
85–95 MB window. Notably, the majority of the 36 signif-
icant markers were associated with the left-tailed positive 
class (PCA of OTU abundance), connected with fOTUs 
(Fig. 1A).

Fig. 3 All QTLs of all single OTU GWAS compiled in one figure. A a summary plot of all detected genomic loci. Horizontal lines indicate the multiple-
testing corrected threshold for each category – adjusted by marker and tested feature (OTU, phenotype) count. Vertical dashed lines indicate robust QTLs. 
The QTLs related to root rot, emergence, or shoot dry weight ratio are annotated with trait names. The region with the most QTLs was zoomed in to il-
lustrate sub-QTLs. B overview of marker density and QTL locations. C the summary figure of heritability (da [differential abundant], non-da [not differential 
abundant]). Vertical lines indicate the average genomic heritability within the four groups. The boxplot (subplot) highlights the statistical comparison of 
the four groups. D Histogram of QTLs explained variance (da, non-da). The colors represent the four traits groups bOTU (all bacterial OTUs classified, red), 
fOTU (all fungal OTUs classified, green), da bOTU (differential abundant bacterial OTUs, yellow), da fOTU (differential abundant fungal OTUs). The subplot 
illustrated how many QTLs per OTU were detected
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Finally, we assessed the proportion of OTU abundance 
variance attributable to the detected QTLs (Fig.  3D). 
On average, these markers accounted for approximately 
14.3% of the total variance. For most OTUs, only a sin-
gle QTL was observed. The QTL explained, on average, 
9.87% of the total variance. The highest average explained 
variance was observed for the group of da fOTUs 
(20.15%), followed by the differentially abundant bacte-
rial OTUs (14.71%). The explained variation reached up 
to 53% for single OTUs (Fig 5). In general, the explained 
variance of all fOTU QTLs and bOTU QTLs was not sig-
nificantly different.

Heritable associations between OTU abundance and 
disease resistance
The relative abundance of several OTUs was strongly cor-
related with root rot index and plant emergence (Fig. 5). 

A total of 47 OTUs (30 fOTUs and 17 bOTUs) showed a 
QTL’s explained variance above 15%.

Fungi
A total of five fOTUs were identified by a QTL with an 
explained variance exceeding 30% (fOTU285, fOTU1517, 
fOTU782, fOTU1255, bOTU12). For the highly heritable 
fOTU285 and fOTU782 (h2>0.4; Fig. 5), we identified 
four and six QTLs that account for 32% and 53% of the 
total variance in abundance, respectively, alongside 13% 
and 12% of the variance in the root rot index, and 20% 
and 29% of the variance in seedling emergence for each 
fOTU. Both fOTUs have a significant negative and posi-
tive correlation with root rot and seedling emergence, 
respectively, and were most abundant in one of the PCA 
‘resistant’ groups (Fig.  1), indicating a positive effect of 
these OTUs on the plant’s health status. The best BLAST 

Fig. 4 List of all detected QTLs with more than two OTUs mapping to the same locus. Information on the genomic locus, the QTL interval, the number 
of QTLs detected for fungi and bacteria for each QTL interval, the corresponding minimum and maximum -logP values, and the minor allele frequency 
(MAF) of each QTL is provided. Loci with more than two associated OTUs are highlighted in black rows

 



Page 10 of 17Schneider et al. BMC Plant Biology         (2025) 25:1053 

estimates for these two OTUs were Chaetomiaceae sp. 
and Dactylonectria sp. Dactylonectria was the most fre-
quently observed genus in the group of these 40 most 
genetically heritable OTUs with 11 occurrences (Fig. 5). 
A positive or moderately positive effect on the root rot 
index of the pea lines could be attributed to all 11 (Fig. 6). 
We also found nine of these 40 OTUs belonging to the 
genus Fusarium. They all had either moderately negative 
or negative effects on pea root rot.

Bacteria
A single bOTU was described by a QTL with more than 
30% explained variance (bOTU12). In contrast to fungi, 
equal numbers of QTLs were found for non-differen-
tially and differential abundant bacterial OTUs (Fig.  6). 
The genomic heritability of these bOTUs was similar to 
fungi, with the highest genomic heritability observed 
for bOTU26 (0.31) and bOTU28 (0.12). These two daO-
TUs could be annotated to the genus Stenotrophomonas 
sp, with a single common QTL on chromosome 6, posi-
tion 85 MB (bOTU26, bOTU28). Negative effects on the 
pea phenotypes can be reported for this genus. Together 
with bOTU63, these four had the largest effects on the 
PCA cluster of highly susceptible pea genotypes (Fig. 1). 
bOTU63, identified as Serratia sp., did not indicate a 
significant QTL (Max. marker association -logP = 5.5 @ 
chr6, 85 MB), but was characterized by a genomic herita-
bility of h2=0.16.

Genomic prediction of plant health by OTUs and QTLs
After significant associations to single plant genomic 
markers were detected for the presence or abundance of 
fungal and bacterial OTUs, we aimed to utilize signifi-
cant SNP markers in a genomic regression approach to 
predict the pea root rot and emergence phenotypes. For 
comparative reasons, we also utilized all QTLs detected 
for all OTUs and plant phenotypes affected by the root 
rot complex (root rot index, shoot dry weight ratio, emer-
gence rate).

Root rot
The evaluation of these genomic regression models 
revealed a significantly higher prediction accuracy for 
those approaches where OTU markers (OTU abundance) 
were used alone or combined with genomic markers 
(µ = 0.53) to predict the pea root rot score compared to 
genomic markers alone (µ = 0.27; Fig. 7). The lowest pre-
diction ability was obtained when all available genomic 
markers were used (average r2=0.09 ± 0.12). In the analysis 
of plant genomic QTLs, the model utilizing 16 resistance 
phenotype QTL markers demonstrated the greatest aver-
age predictive ability (r2=0.36 ± 0.09), outperforming all 
other genomic marker combinations incorporating OTU-
derived QTL markers (0.29 ± 0.09). OTU markers (based 
on OTU abundances) significantly increase prediction 
ability up to an average of r2=0.59 ± 0.09 across five cross-
validations and ten replications (best result obtained for 
heritable OTUs). The average prediction ability remained 
similar when removing all nonheritable OTUs (all OTUs 

Fig. 5 Summary of OTUs characterized by an explained variance above 15% (using the detected QTL(s) to calculate the explainable variance for each 
OTU). Besides the abundance class (da, not da; da = differential abundant), the nearest blast species candidate (best guess) and the identified class by 
the UNITE reference alignment (Class) are illustrated to characterize the OTU. Further, the genomic heritability, the detected QTLs, and their explanatory 
power on the variance of the OTU abundance as well as root rot and emergence, are presented. Besides, the correlation of the OTU’s abundance towards 
the plant phenotypes emergence and root rot is also illustrated. Black-colored rows highlight OTUs, where QTLs could explain more than 30% of the total 
OTU abundance variance

 



Page 11 of 17Schneider et al. BMC Plant Biology         (2025) 25:1053 

r2 = 0.57 vs. heritable OTUs r2 = 0.59). Reducing the pre-
diction parameters to those 60 OTUs (Suppl. Table 2) 
derived from PCA led to a notable decline in average 
prediction ability (r2 = 0.46, p < 0.001). However, when 
concentrating on the 21 OTUs identified by PCA and 
GWAS, the prediction ability rose to an average of 0.57 
(“PCA selected OTUs with QTL”, p < 0.001). We can sum-
marize that a reduction from 1,238 OTU markers down 
to 21 selected OTU markers did not result in statistically 
different prediction abilities. These 21 OTUs consisted of 
five bacterial and 16 fungal OTUs. Two of the bacterial 
OTUs have been reported above (bOTU26 & bOTU28), 
while bOTU84 (Acidovorax sp.), bOTU39 (Neorhizobium 
sp.), and bOTU342 (Myroides sp.) have not. The 16 fun-
gal OTUs fall into the genus of Dactylonectria sp. (10), 

Chaetomium sp. (3), Microdochium sp. (1), Clonostachys 
sp. (1), and Thelonectria sp. (1). In the next phase, we 
sought to minimize the number of OTU predictors for 
effective OTU marker-assisted breeding. Throughout ten 
cross-validation tests, bOTU28, bOTU84, and fOTU144 
consistently ranked in the top 0.5 quantiles of the most 
influential variables within the regression models derived 
from 21 PCA-associated OTUs that displayed an observ-
able QTL. After selecting these three OTUs, we reran 
the regression model to predict the root rot phenotype 
using only these OTUs. The average prediction ability we 
achieved was 0.41, which indicates a notable decrease in 
predictive performance compared to the full set of heri-
table OTUs (p < 0.001), underlining the constraints of 
simplifying the model to just a few predictors. Merging 

Fig. 6 Sankey plot illustrates the interconnection of QTL loci, OTUs, their most similar blast guess, and their relation to the plant phenotype root rot. Lines 
connect each OTU with genomic features, pea phenotypes and genus and class information. The thickness of the line presents the abundance of obser-
vations. OTUs are linked to QTL regions and are clustered in taxa, determined by BLASTing. Grouping in class C1 to C5 for the effect on root rot is based on 
the correlation of the OTU abundance and the root rot index C1 = correlation r < −0.3; C2 – −0.3 < r < −0.1; C3 – −0.1 < r < 0.1; C4–0.1 < r < 0.3; C5 – r > 0.3. 
C1 – positive indicates a low OTU abundance at high root rot infestation levels. The class is estimated using the UNITE database
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the three chosen OTUs with the two most influential 
QTLs did not enhance the average prediction accuracy 
(µ = 0.42, Fig.  7). Additionally, combining QTLs with 
OTU abundance values did not yield better predictions 
than using OTU abundance on its own.

Emergence
Similar outcomes were found in forecasting the emer-
gence rate, showcasing a generally stronger predictive 
capability. The average prediction ability score across all 
cross-validations ranged from 0.46 to 0.76 (Suppl Fig. 1). 
Predictions using OTU markers are considerably greater 
than those using genomic (QTL) markers (p < 0.001). 
Additionally, QTL markers obtained from OTU abun-
dances do not enhance predictions compared to those 
based on QTL markers derived from plant phenotypes. 

Finally, combined markers (genomic SNPs + OTU abun-
dance) also increase predictions compared with genomic 
markers alone (p < 0.001) but do not further increase pre-
dictions compared with OTU markers. The overall best 
predictions were obtained by the PCA-selected OTUs 
with a QTL (n = 21, µ = 0.76). Even though not signifi-
cantly better than any other OTU-based predictions, the 
low number of 21 predictors makes them significantly 
more suitable for PCR-based assisted breeding than 
the other OTU sets. A further reduction to eight OTUs 
resulted in a significant decline of the prediction abil-
ity (µ = 0.68, p < 0.0001). However, the set of eight OTUs 
differs significantly from the three OTUs chosen to pre-
dict the PRRC (only fOTU144 is similar; the other seven 
are all fOTUs), making the 21 PCA and QTL-derived 

Fig. 7 Boxplots of the genomic prediction (phenotype forecast) correlation scores (predicted vs. measured in a dedicated test set) of the root rot index 
using either all available markers or a subset of these (e.g. QTLs) (6 left-sided boxplots, light gray background), OTUs as predictors (dark gray background), 
or a combination of both (3 right-sided boxplots). “N =” indicates the number of genomic markers or OTU markers used as predictors to estimate the 
root rot index in a Bayes-A or Bayes-B regression model. 5-fold cross validation with 10 replicates were performed for each set, highlighted by the dots. 
The brackets at the top present the pairwise comparisons derived p-values from a mean comparison. The gray horizontal line shows the highest average 
prediction ability across all predictor sets and ten cross-validations. The diamond shows the average prediction ability
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OTUs more universally applicable for predicting various 
phenotypes.

Discussion
The root rot complex is an important disease poten-
tially resulting in total yield loss in pea cultivation [14]. 
The colonization and success of pathogens in infest-
ing pea roots are highly dependent on the soil type and 
conditions (humidity and temperature) and the presence 
of other pathogens [45]. Besides, soils significantly vary 
in their ability to suppress pathogen colonization [46]. 
Although seed coating and fungicide applications can 
reduce the impact and development of negative micro-
biome composition, there is also a relevant genotype 
effect [15]. This indicates that some genotypes are more 
resistant to infections when grown in infested soil than 
others. Under sustainability aspects, genetic resistance is 
usually preferable to chemical plant protection [16].

Nevertheless, resistance towards PRRC has only been 
described as partial resistance [47]. It has also been 
shown that the efficacy of plant protection products is 
limited to control PRRC [48] and could harm positively 
acting microorganisms in the soil and root-like mycor-
rhiza [49].

Identification of heritable abundance of key taxa 
associated with PRRC
In general, we can report that more than 69% of the 
detected root microbial community abundance was 
genetically influenced by the pea genotypes, i.e., the 
genomic heritability is significantly higher than 0. Dif-
ferential abundant OTUs showed higher heritabilities 
and a higher explained variance of the QTL markers. The 
highest heritability was observed for the fungi OTU285, 
annotated as a member of the family Chaetomiaceae, 
whose members have been reported to act as antagonists 
against phytopathogenic fungi, particularly Fusarium 
oxysporum and Fusarium solani [50, 51]. It has been 
shown to inhibit mycelial growth of Fusarium sp. by up 
to 35% and reduce conidial production of the pathogen 
by up to 76% [52], resulting in reduced Fusarium dissem-
ination in the rhizosphere.

Furthermore, we found that OTUs related to Dacty-
lonectria and Fusarium were the most common among 
the fungal OTUs with significant SNP markers for the 
genetically inherited abundance of these OTUs. Plenty 
of evidence describes different Fusarium species having 
negative physiological effects on pea [53–57]. We identi-
fied three different Dactylonetria associated OTUs with a 
genomic heritability of up to 0.44 and a negative correla-
tion with root rot symptoms (Fig. 5). Up to six associated 
markers per OTU were identified at two different loci for 
the most significant Dactylonectria sp. related fOTU782 
(chromosome 6 @85  MB, 95  MB, 265  MB). Although 

we found a positive correlation between Dacytlonectria 
abundance and plant health, no report has yet indicated 
any Dactylonetria species as a relevant collaborator with 
pea so far - it is rather known to be a plant pathogen with 
low host specificity [58–61].

We observed that the abundance of Fusarium anno-
tated OTUs as genetically associated and can be attrib-
uted to the major QTL on chromosome 6 (Fig.  4A). 
Besides this major locus, we identified an additional 
QTL on the same chromosome (position 265 Mbp). The 
neighboring resistance QTL Fsp-Ps2.1 against F. solani 
was also identified by Coyne et al. [54] in the same region 
of chromosome 6. Similarly, two QTLs for resistance to 
Fusarium oxysporum were identified on chromosome 
6 in grass pea [62]. Another analysis for Fusarium root 
rot in pea found a QTL on chromosome 7. The reported 
QTL effect was rather weak and related to partial resis-
tance to Fusarium oxysporum races 1 and 5 [63]. The 
Fusarium vanettenii annotated OTUs, which were found 
to be genetically heritable in our analyses (h2 > 0.21 for 
3 OTUs with identified QTLs), have so far only been 
described in tomato root rot. It may also be relevant in 
pea [64]. Furthermore, the abundance and presence of 
Fusarium are not only determined by genotype but also 
by environmental effects, such as soil moisture and com-
paction [56, 57].

Besides, we observed the bOTU26 and bOTU28 
abundance to be positively correlated with the pea root 
rot infestation level (Suppl. Figure  2). Both OTUs were 
classified as Stenotrophomonas sp., from which the spe-
cies S. rhizophila has been reported to have a promot-
ing effect on plant growth and health – contrasting to 
our observations (Fig. 5) [65–67]. A QTL for both OTUs 
was found on chromosome 6 between 85 and 95 MB, the 
same region where the root rot, emergence, and biomass 
pea phenotypes were mapped. Together with a genomic 
heritability of 0.31 (bOTU26) and 0.12 (bOTU28), this 
highlights the fact that their abundance is genetically 
influenced by the pea genotype (Fig. 5). A similar promo-
tion effect of tomato plants on Stenotrophomonas sp. in 
infested soils was reported by Berendsen et al. [68]. In the 
context of Berendsen et al., the significant positive cor-
relation of disease intensity and Stenotrophomonas sp. 
abundance observed in our experiment might also be an 
indication for suppression of pathogens, if Stenotroph-
omonas sp. acts as antagonist to other soil borne patho-
gens. The same conclusion applies to the rhizobacterium 
bOTU63 (Serratia fonticola [100% BLAST identity], 
genomic heritability = 0.16). bOTU63 was observed to 
be the best explanatory variable for PRRC infestation in 
the PCA (Fig.  1). The abundance of bOTU63 was posi-
tively correlated with the root rot index (r = 0.22, p < 0.01, 
Suppl. Figure 2). In contrast to this observation, Serratia 
fonticola has been described as a plant growth-promoting 
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rhizobacterium by producing lytic enzymes against soil-
borne fungal pathogens [69]. These contrasting observa-
tions underline the importance of functional validations 
to determine causalities in the plant-microbe interaction 
network.

The major locus on chromosome 6 could be associated 
with a range of OTUs
We found evidence for genomic regions in the pea 
genome associated with the abundance of different 
Fusarium and Dactylonectria taxa. These are associated 
with a major and intermediate QTL on chromosome 6 
(position 85–95 & 265  MB). These QTLs also showed 
highly significant markers for the fungal beta diversity. 
The alpha diversity was not associated with any genomic 
locus for fungi or bacteria, suggesting that the pea geno-
type may not modulate the number of OTUs observed 
in the root under root rot stress. Besides, the number of 
QTLs was not significantly different between daOTUs 
and non-daOTUs.

The high number of detected QTLs on chromosome 
6 in the genomic region from 85 to 95 MB indicates the 
high importance of the entire region for modulating the 
microbiome–plant interaction. Furthermore, a QTL 
for resistance to Aphanomyces root rot in pea, a patho-
gen also present in the root samples examined [70], was 
found together with a QTL for vigor in the same region, 
underlining the importance of this region for resistance 
to an important Oomycetes pathogen [71, 72]. In addi-
tion to these associations with resistance, this region on 
chromosome 6 also seems to influence fibre content [73] 
and NDVI under heat and drought stress [74]. Ultimately, 
significant associations with the phenotypic traits, emer-
gence, shoot and root development, and root rot index 
were described for this region by Ariza-Suarez et al. [25].

Besides the main locus on chromosome 6, we identified 
50 additional QTL (Suppl. Table 1). Similar numbers of 
QTLs have been identified in foxtail millet and tomato 
[75, 76]. It can be concluded that chromosome 6 is the 
most relevant genomic region in this diverse panel of 
genotypes studied for modulating resistance to a root rot 
infection. As shown by Ariza-Suarez et al. [25], the region 
is characterized by low linkage disequilibrium, making it 
easier to target specific loci and allele combinations in a 
breeding program. Nevertheless, the high number of 10 
QTLs sub-regions (Fig. 4A) in the region on chromosome 
6 makes prediction of potential candidate genes challeng-
ing. We conclude that several candidate genes from this 
region influence the microbial composition.

Prediction PRRC using genomic markers and OTU 
abundance
Compared to research applying genomic predictions 
in pea, the predictive ability is in a comparable range to 

genomic predictions on Ascochyta blight (r = 0.56) [77] or 
the seed number (r = 0.4–0.7) but inferior to predictions 
on the seed weight (r = 0.8–0.9) or flowering (r = 0.7) [78]. 
The root rot index prediction correlations showed a com-
parable range to the equivalently complex trait seed yield 
[79].

Across all genomic plant marker-based approaches, 
no statistically significant differences in the prediction 
ability could be detected. Nevertheless, it is remarkable 
that two single markers can equally well predict complex 
traits like the emergence rate or the root rot compared 
to the entire set of 18,267 markers. As previously shown, 
increasing the number of markers does not necessar-
ily lead to an improved prediction power. The count and 
genomic composition of tested genotypes have a much 
higher relevance.

Likewise, when using the OTU abundance to predict 
the pea resistant phenotype, significantly higher predic-
tion abilities were observed than all SNP marker-based 
approaches (remerg=0.71, rRRI= 0.53; across all tested OTU 
combinations). Applying the OTU abundance instead 
of the SNP markers resulted, on average, in a 0.19 and 
0.26 higher predictive ability for the emergence and 
root rot index, respectively (p < 0.05). Similarly, Gu et al. 
[80]  highlighted the improved prediction ability of the 
microbiome on plant health. One reason for the lower 
prediction ability of genetic markers might be the genetic 
background of the tested pea lines. Based on the mark-
ers, we noticed two distinct groups in resistance related 
to the European and North American origin of these 
lines (Fig.  1B [25]). Further, the plant phenotype might 
be modulated by microorganisms that are not associ-
ated with plant genetics. A microbe’s abundance might 
depend on the pea genotype and the competition or sym-
biotic interactions in the root. Some key microbes rel-
evant for plant health might not directly be determined 
by the plant genotype but interact with other microbes, 
which abundance is modulated by the plant genotype 
(indirect effects). As the combination of markers and 
OTU abundance levels did not improve the prediction 
ability, we assume that the QTLs already carry redundant 
information in the OTU abundance.

The predictions could be further improved by add-
ing some selected markers to the two QTLs into the 
genomic prediction model, as proposed in the GMStool 
[81]. Still, adding dozens of additional markers might 
lead to reduced applicability in marker-assisted breeding. 
Therefore, we focused on the OTUs and used a compa-
rable approach, and selected the most relevant OTUs by 
PCA and QTL mapping filtering. The abundance of these 
OTUs was used in a phenotype forecast framework. It 
resulted in prediction accuracies of up to 0.81 for emer-
gence and the root rot index using 21 OTUs as predic-
tors (Fig. 7, Suppl. Figure 1, Suppl. Table 2, “PCA + QTL 
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derived OTUs”). Therefore, we want to stress that feature 
(genomic marker, OTU abundance) selection can be of 
value to retain similar prediction accuracies with signifi-
cantly reduced predictor features.

Application in breeding resistant pea lines
In terms of breeding more resistant genotypes towards 
root rot resistance, the detected OTU markers can be 
used in marker-assisted selection to select genotypes 
with a desirable phenotype. Besides, the abundance 
of relevant OTUs could also be used as markers for a 
marker-assisted selection (MAS) approach. Instead of 
testing the entire microbiome, PCR primers specific 
to key microbial markers could be generated to reduce 
sequencing costs. Nevertheless, the effort of collecting 
the samples for microbiome analysis and processing the 
collected data is an additional cost factor and potentially 
error-prone due to sampling deviations. Although a pre-
vious study did not find a significant correlation between 
highly abundant A. euteiches and pea root rot disease 
parameters [70], the examination of Oomycetes might 
be suitable to complement resistance prediction accura-
cies [82]. Here, we demonstrated that a holobiont-based 
approach can enhance selection efficiency and success 
for PRRC-resistant genotypes.

Conclusion
The obtained findings indicate that (i) the abundance of 
certain microbes is influenced by the pea genotype and 
can be attributed to specific genomic loci (QTLs); (ii) 
root rot resistance is associated with the holobiont, i.e. 
by the plant, its associated microbiome and complex 
interactions within the microbiome; and (iii) the holo-
biont-based genomic analyses and derived markers for 
plant resistance and recruitment of root microorganisms 
lead to an increased prediction ability of plant health 
compared to plant genetic markers as single source. 
This study identifies potential breeding applications for 
microbiome-assisted disease resistance.
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