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Abstract
Background Plants are constantly challenged by pathogens, which can cause substantial yield losses. The 
aggressiveness of and damage by pathogens depends on the host-associated microbiome, which might be shaped 
by plant genetics to improve resistance. How different crop genotypes modulate their microbiota when challenged 
by a complex of pathogens is largely unknown. Here, we investigate if and how pea (Pisum sativum L.) genotypes 
shape their root microbiota upon challenge by soil-borne pathogens and how this relates to a genotype’s resistance. 
Building on the phenotyping efforts of 252 pea genotypes grown in naturally infested soil, we characterized root 
fungi and bacteria by ITS region and 16 S rRNA gene amplicon sequencing, respectively.

Results Pea genotype markedly affected both fungal and bacterial community composition, and these genotype-
specific microbiota were associated with root rot resistance. For example, genotype resistance was correlated 
(R2 = 19%) with root fungal community composition. Further, several key microbes, showing a high relative 
abundance, heritability, connectedness with other microbes, and correlation with plant resistance, were identified.

Conclusions Our findings highlight the importance of crop genotype-specific root microbiota under root rot stress 
and the potential of the plant to shape its associated microbiota as a second line of defense.
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Introduction
Plant-associated microbiomes can promote plant health 
in many ways [1, 2]. A balanced microbiota, includ-
ing bacteria, is essential for plants to protect themselves 
against pathogens and survive [3]. To benefit from such 
beneficial microbiome-dependent services, plants shape 
the microbiota in their surrounding environment [4, 5]. 
This provides a promising tool to engineer a crop’s micro-
biome through host genetics [6]. Genotype-specific plant 
microbiome interactions affect not only the focal plant 
but also the growth and defense of succeeding plants in 
that soil [7], which is particularly interesting in the con-
text of crop rotation. For example, a mechanism to cope 
with the growth-suppressive effects of precrop-specific 
microbiota in the soil is the exudation of root secondary 
metabolites [8]. Therefore, to enhance the resistance of 
grain legumes against crop rotation-specific soil-borne 
pathogens, the modulation of plant-microbiota inter-
action through breeding might also offer a promising 
approach [9].

Crop pathogens pose a major threat to global food 
security and their negative effects are expected to be 
further amplified by climate change [10, 11]. Patho-
gen suppression by plant-associated microbiota poses a 
promising, new approach to manage crop diseases sus-
tainably [12, 13]. It is known that the composition of the 
resident microbiota determines, together with the plant’s 
innate immune system, whether a certain microbe acts as 
a pathogen, commensal, or even beneficial [14–16]. It has 
been shown that plants can enrich specific taxa from the 
surrounding soil microbiome around their roots, thereby 
reducing pathogen aggressiveness and promoting plant 
growth [17, 18]. Banana plants, for example, can enrich 
beneficial fungi through specific plant exudates that con-
fer resistance against the pathogen Foc TR4 [18]. Such 
microbe-mediated disease resistance can be triggered 
by direct antagonisms like antimicrobial molecules and 
niche competition [19–22], or indirectly through the 
activation of the host immune system [23, 24]. Further, 
the endophytic root microbiota can confer induced resis-
tance upon pathogen attack [25]. While it is established 
that the microbiota can mediate pathogen suppression 
of plants, the frequency of this phenomenon across dif-
ferent plants and the relative contribution of this mecha-
nism in comparison to direct plant defense remains to be 
elucidated [13, 26].

Pea (Pisum sativum, L.) belongs to the most frequently 
cultivated legumes worldwide [27]. Their symbiosis with 
nitrogen-fixing rhizobia can increase soil fertility, provid-
ing a benefit for themselves and subsequently cultivated 
crops and the peas also serve as high-quality, protein-rich 
food and feed [27, 28]. Along with other legumes, pea 
production is highly constrained by soil-borne patho-
gens, which build up upon repeated legume cropping and 

cause severe wilt and root rot, also known as soil fatigue, 
which can lead to considerable yield losses [29, 30]. Sev-
eral pathogenic fungi and oomycetes can be part of the 
root rot complex, with the most reported causal agents 
being Aphanomyces euteiches, Didymella pinodes, Didy-
mella pinodella, Fusarium avenaceum, Fusarium oxyspo-
rum, Fusarium redolens, Fusarium solani, Pythium sp., 
and Rhizoctonia solani [29–34]. First evidence suggests 
that the synergistic effect of these pathogens increases 
their aggressiveness, and thus, makes resistance breed-
ing even more challenging [35–37]. Plant breeding for 
microbiota-dependent disease resistance could assist in 
overcoming this challenge [6]. Screening of a pea diver-
sity panel grown in naturally infested soil showed con-
siderable variation in disease resistance across different 
pea lines [38]. An in-depth analysis of eight genotypes 
in four different soils revealed predefined fitness-associ-
ated microbial markers as predictors for root rot resis-
tance, including arbuscular mycorrhizal fungi [39]. While 
microbiota communities of peas grown in healthy and 
infested soils have been compared and shown to dif-
fer [40, 41], it is largely unknown how different pea lines 
interact with their microbiota under root rot.

In this study, we investigate if and how pea lines with 
diverse resistance levels against root rot interact with 
their microbiota. Our key hypothesis was that pea plants 
modulate their root microbiota under root rot stress 
in a genotype-specific manner and that this relates to a 
genotype’s resistance - two prerequisites for microbiome-
assisted resistance breeding. We examined the fungal 
and bacterial microbiota of a diverse panel of 252 pea 
genotypes, consisting of gene bank accessions, breeding 
lines, and registered cultivars grown in a climate cham-
ber under root rot stress. Associations of pea resistance 
with alpha diversity, microbial community composition, 
and individual taxa were investigated. Furthermore, we 
determined the proportion of variation in OTU abun-
dance and microbiota diversity explained by host geno-
type (hereafter heritability or H2) and performed network 
analyses. We found associations between microbial 
diversity measures and resistance levels, as well as taxa 
associated with resistance, which were also shown to be 
heritable and connected within the root microbiota. This 
illustrates the potential of microbiota-mediated resis-
tance breeding against legume root rots.

Materials and methods
Plant material
We capitalized on root samples collected from a previ-
ous study [38]. A diverse set of 261 pea genotypes was 
grown under root rot stress. To eliminate confounding 
effects due to seed age and origin, the pea seeds were 
multiplied in a common environment (Sativa Rheinau 
AG, Switzerland) prior to the experiment. In this study, 
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we investigated the root microbiota of a subset of 252 
pea genotypes originating from three seed sources: 173 
gene bank accessions of the USDA pea core collection, 33 
registered European cultivars, and 46 advanced breeding 
lines from a Swiss plant breeder (Getreidezüchtung Peter 
Kunz). Two European cultivars were selected as reference 
lines based on their known partial resistance (EFB.33: 
“C1”) and susceptibility (Respect: “C2”) to root rot.

Characterization of root rot resistance
To study the root microbiota of the pea panel under root 
rot stress, a resistance assay was performed under con-
trolled conditions as described by Wille et al. (2020). A 
pH neutral loam soil naturally infested by pea root rot 
pathogens was collected on a field under certified organic 
production in Kirchlindach, Switzerland (47°00′14.5″N 
7°24′37.7″E). To determine the growth potential of the 
genotypes in pathogen-free soil and evaluate the perfor-
mance-reduction through soil infestation, a subset of the 
collected soil was X-Ray sterilized (30–100 kGy for 4 h, 
Synergy Health Däniken AG, Switzerland). This steriliza-
tion method has also proven effective in other studies to 
determine the effect of soil microbiota on plant vigor [7, 
39]. Infested and sterilized soils were mixed with auto-
claved quartz sand in a 2:1 (v: v) ratio and filled into plas-
tic pots (200  ml) to improve soil structure. Four seeds 
per pot were surface sterilized with ethanol and bleach 
and soaked in water before sowing. Each pea genotype 
was grown in four pots (replicates) in either infested or 
sterilized soil in a randomized block design. Plants were 
grown in a walk-in climate chamber at 20  °C, 85% rela-
tive humidity, and 16 h of light per day. The soil was kept 
moist by flooding the pots 4  cm high with water every 
72 h for 30 min, as determined by prior optimization tri-
als. The total number of emerged seedlings was recorded 
14 days after sowing. Plants were harvested and pheno-
typed at 21 days. Shoot dry biomass was determined, and 
relative shoot dry weight was calculated by dividing the 
mean weight per plant in the infested soil by the mean 
weight in the sterilized soil (SDWRel). In addition, relative 
total shoot biomass per pot (tSDWRel) was calculated as 
described before but considering the biomass of all ger-
minated plants within one pot. To evaluate belowground 
disease levels, plants were removed from the pots and 
cleaned with tap water. The root rot index (RRI: 1 = no 
symptoms, 3 = light brown discoloration and moder-
ate disintegration of the root system, 6 = completely dis-
integrated root system) was determined as previously 
described [38], and median values per pot were used for 
analysis. For microbiota analysis, the previously phe-
notyped roots of the plants grown in infested soils were 
pooled per pot and sampled as described in Lundberg et 
al. (2012). Briefly, soil was removed by shaking the roots 
with sterile gloves, followed by a washing step in 25  ml 

of sterile water in a 50 ml tube by vortexing vigorously. 
Clean roots were stored at -20  °C until lyophilization 
with an Alpha 1–4 LSC freeze dryer (Christ, Osterode 
am Harz, Germany) before they were milled to fine pow-
der in a steel jar with one 20 mm steel ball utilizing a ball 
mill (Retsch, Haan, Germany) at 25 Hz for 20 s.

Microbiota profiling
DNA extraction and amplicon sequencing
For all plants grown in infested soils, DNA extraction 
was carried out with 15  mg of dry root powder using 
the Mag-Bind Plant DNA DS 96 Kit (Omega Bio-Tek, 
Norcross, United States) following the manufacturer’s 
instructions. Integrity and concentration of the extracted 
DNA were checked using gel electrophoresis and Qubit 
4 (Thermo Fischer Scientific, Waltham, Massachusetts, 
US) before dilution to 10 ng/ul and shipped along with 
negative controls to the Genome Quebec Innovation 
Center (Montreal, Canada) for library preparation and 
sequencing.

At the Genome Quebec Innovation Center, librar-
ies were prepared and sequenced for the entire internal 
transcribed spacer (ITS) region (fungi, see below) and the 
V3 and V4 hypervariable regions of the 16 S rRNA gene 
(bacteria, see below), including positive and negative 
amplification controls. Controls were visualized together 
with samples by gel electrophoresis to confirm that the 
amplification was successful and rule out contamination. 
They performed as expected and were not sequenced. 
For DNA extraction, shipment, library preparation, and 
sequencing, samples were distributed randomly across 
plates and libraries.

For the fungal libraries, the amplicon libraries were 
prepared in a 2-step PCR process following the Pacific 
Biosciences Barcoded Universal Primers for Multiplexing 
Amplicons Template Preparation and Sequencing pro-
tocol to sequence the entire ITS region. In the first PCR 
step, the target region was amplified with the ITS1F [42] 
and ITS4 [43] primers coupled to CS1 and CS2 linker 
using the HotStarTaq DNA Polymerase (Qiagen, Hilden, 
Germany). The PCR reaction contained 1x PCR buffer 
with 1.5 mM MgCl2, 5% DMSO (Roche, Basel, Switzer-
land), 0.2 mM dNTP mix (NEB, Ipswich, Massachusetts, 
US), 0.02 U/ul HotStarTaq DNA Polymerase (Qiagen), 
0.6 μm of each primer and 10 ng DNA in a reaction vol-
ume of 25 ul. The PCR conditions included an initial step 
at 96 °C for 15 min, 33 cycles of 96 °C for 30 s, 52 °C for 
30 s and 72  °C for 60 s, ending with a final extension at 
72  °C for 10  min. For the second PCR reaction (multi-
plexing PCR), barcoded primers were utilized and bound 
to the amplicons of the first PCR via the linker sequences 
CS1 and CS2 using the FastStart High Fidelity PCR Sys-
tem (Roche). The PCR reaction contained 1x PCR buf-
fer without MgCl2, 1.8 mM MgCl2 (Roche), 5% DMSO 
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(Roche), 0.2 mM dNTP mix (NEB), 0.025 U/ul FastStart 
High Fidelity DNA Polymerase (Roche), 0.1  μm of each 
barcoding primer and 1 ul of DNA from PCR 1 previ-
ously diluted 1:50 in a reaction volume of 20 ul. The PCR 
conditions included an initial step at 95 °C for 10 min, 15 
cycles of 95 °C for 15 s, 60 °C for 30 s and 72 °C for 60 s, 
ending with a final extension at 72 °C for 3 min. For the 
library construction no DNA shearing was performed 
since the samples were amplicons, and 1,000 ng of puri-
fied amplicons were used. The DNA Damage repair, End 
repair, and SMRT bell ligation steps were performed as 
described in the template preparation protocol with the 
SMRTbell Template Prep Kit 2.0 reagents (Pacific Biosci-
ences, Menlo Park, CA, US). The sequencing primer was 
annealed with sequencing primer v4 at a final concentra-
tion of 1 nM, and the Sequel II 2.1 polymerase was bound 
at 0.5 nM. The libraries went through an AMPure bead 
cleanup (following the SMRTlink calculator procedure) 
before being sequenced in four runs on a PacBio Sequel 
II instrument at a loading concentration between 120 pM 
and 200 pM using the diffusion loading protocol, Sequel 
II Sequencing kit 2.0, SMRT Cell 8  M and 10  h movies 
with no pre-extension.

For the bacterial libraries, the amplicon libraries 
were prepared in a 2-step PCR process to the V3 and 
V4 hypervariable regions of the 16 S rRNA gene. In the 
first PCR step, the target region was amplified with the 
V3F [44] and 799R [45] primers coupled to CS1 and 
CS2 linker using the Q5 High-Fidelity DNA Polymerase 
(NEB). The PCR reaction contained 1x reaction buffer, 
5% DMSO (Roche), 0.2 mM dNTP mix (NEB), 0.02 U/
ul Q5 High-Fidelity DNA Polymerase (NEB), 0.6  μm of 
each primer and 10 ng DNA in a reaction volume of 25 
ul. The PCR conditions included an initial step at 98  °C 
for 0.5  min, 26 cycles of 98  °C for 10  s, 58  °C for 15  s 
and 72 °C for 30 s, ending with a final extension at 72 °C 
for 2  min. For the second PCR reaction (multiplexing 
PCR), barcoded primers were utilized and bound to the 
amplicons of the first PCR via the linker sequences CS1 
and CS2 using the FastStart High Fidelity PCR System 
(Roche). The PCR reaction contained 1x PCR buffer with-
out MgCl2, 1.8 mM MgCl2 (Roche, Basel, Switzerland), 
5% DMSO (Roche), 0.2 mM dNTP mix (NEB), 0.025 U/ul 
FastStart High Fidelity DNA Polymerase (Roche), 0.1 μm 
of each barcoding primer and 1 ul of DNA from PCR 1 
previously diluted 1:100 in a reaction volume of 20 ul. 
The PCR conditions included an initial step at 95 °C for 
10 min, 15 cycles of 95 °C for 15 s, 60 °C for 30 s and 72 °C 
for 60 s, ending with a final extension at 72 °C for 3 min. 
The barcoded libraries were first normalized to 2 nM, 
then pooled and denatured in 0.05  N NaOH. The pool 
was diluted to 9 pM using HT1 buffer and was loaded on 
a MiSeq and sequenced in three runs for 2 × 300 cycles 
according to the manufacturer’s instructions. A phiX 

library was used as a control and mixed with libraries at 
12% level. The MiSeq Control Software (MCS) version 
was 2.5.0.5, and RTA version was 1.18.54. The program 
bcl2fastq v1.8.4 was then used to demultiplex samples 
and generate fastq reads. The demultiplexed sequences 
have been deposited in the European Nucleotide Archive 
(ENA) under the accession code PRJEB83630.

Sequence data processing
For the fungal PacBio sequences, the bioinformatic 
analysis was performed at the Genetic Diversity Centre 
at ETH Zurich (Switzerland). In short, raw high-quality 
CCS reads were quality-filtered (min length: 400 bp, max 
Ns: 0, max low-complexity: 30%) using UPARSE [46], 
and error-corrected to obtain zero radius operational 
taxonomic units (zOTUs) using UNOISE [47]. zOTUs 
are conceptually equivalent to ASVs generated through 
DADA2 [48]. The zOTUs were further clustered into 
fungal OTUs (fOTUs) of 97% nucleotide similarity with 
UPARSE [46], to avoid splitting one microorganism into 
several zOTUs (or ASVs) due to intragenomic heteroge-
neity known for the ITS region and the 16 S rRNA gene 
[49–52]. For each OTU, the most abundant sequence 
(zOTU) was selected as representative. Taxonomic asso-
ciations were predicted using the SINTAX classifier [53] 
with the UNITE (v8.3, released May 10, 2021; [54]) ITS 
reference database. For bacterial Illumina sequences, 
bioinformatics was performed in QIIME2 (version 
qiime2-2021.4) [55] as previously described [56]. Briefly, 
after importing the demultiplexed sequences, primers 
were removed using cutadapt (v1.16 implemented in 
QIIME2). Utilizing the DADA2 pipeline (v1.18 [48]), the 
raw reads were quality filtered (maxEE: 2; maxN: 0), trun-
cated at positions 219 (forward) and 221 (reverse), based 
on visual inspection of quality plots, and shorter and 
low-quality reads (truncQ = 2) were discarded. Trimmed 
reads were denoised, and exact amplicon sequences 
(ASVs) were inferred. ASVs were then clustered into bac-
terial OTUs (bOTUs) of 97% nucleotide similarity using 
vsearch (v2.7.0 [57]). For each OTU, the most abundant 
sequence (ASV) was selected as representative. Tax-
onomy was assigned using the SILVA database (v138, 
released December 16, 2019; [58]) and the naive Bayesian 
classifier method implemented in QIIME2 [59].

Statistical analysis
All statistical analyses were conducted using the open-
source software R v.4.3.0 [60]. Data wrangling and visu-
alization were facilitated with the tidyverse package 
collection [61], as well as ggbeeswarm and cowplot for 
visualization [62, 63]. The phyloseq R package facilitated 
microbiota analysis [64]. After importing bacterial and 
fungal count and taxonomy tables, unwanted samples 
or OTUs were filtered out before microbiota analysis. 
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First, two fOTUs belonging to host DNA and the King-
dom Rhizaria according to the UNITE database and 61 
bOTUs unassigned at the Kingdom level or assigned 
to eukaryotes, mitochondria, or chloroplasts accord-
ing to the SILVA database were removed. To remove 
low-quality samples, five samples with less than 1,000 
fungal sequences and one sample with less than 11,000 
bacterial sequences were excluded. Further, 54 previ-
ously identified pea lines [38] with heterogeneous seed 
or flower appearance were also excluded because they 
were assumed to be genetically heterozygous. Lastly, low-
abundance OTUs were removed, if not present with at 
least four sequences in at least four samples. Data filter-
ing, transformation, and analysis are summarized in Fig-
ure S1.

Alpha diversity was analyzed for fungi and bacte-
ria separately by first rarefying the data to 1,000 fungal 
sequences and 11,000 bacterial sequences using the 
vegan package [65] and then calculating the OTU rich-
ness and Shannon diversity index in each sample based 
on the mean of 1,000 iterations. To test the effects of pea 
genotype and seed source (gene bank accessions, breed-
ing material, registered cultivars) on alpha diversity, an 
Analysis of Variance (ANOVA) was performed. Statistical 
assumptions, i.e., normal distribution and homoscedas-
ticity of error variance, were visually checked. Differ-
ences among Estimated Marginal Means (EMMs) of seed 
sources were tested using the emmeans package [66], tak-
ing the Tukey method for P value adjustment for multiple 
testing and using compact letter display using the mult-
comp package for visualization [67]. We further checked 
for correlations of alpha diversity with resistance-asso-
ciated traits: Spearman correlations were calculated for 
ordinal data and Pearson correlations were performed for 
continuous variables.

We further examined how the microbial commu-
nity composition (beta diversity) of fungal and bacte-
rial communities relates to pea genotype, seed source, 
and resistance traits. Effects were visualized by Princi-
pal Coordinates Analysis (PCoA) ordination using Bray-
Curtis dissimilarity matrices and tested by Permutational 
Multivariate Analysis of Variance (PERMANOVA) using 
the adonis2 function from the vegan package [65]. Mul-
tivariate homogeneity of dispersion (variance) between 
the seed sources was tested using the betadisper func-
tion from the vegan package [65]. The combination of 
PERMANOVA and betadisper allows us to distinguish 
between location and dispersion effects in beta diver-
sity analysis [68]. We also tested whether the associa-
tion between the resistance trait and the beta diversity 
depends on the seed source by including the interaction 
term of the two variables in the fitted model (model: 
beta diversity ~ resistance trait * seed source). To test 
how the average phenotype of each genotype influences 

the community compositions, PCoA and PERMAN-
VOA were also performed on mean values per genotype. 
Another PERMANVOA was performed to estimate the 
variation explained (R2) by the experimental replicates 
(blocks).

To evaluate the proportion of variation in root micro-
biota diversity indices and of the relative abundance of 
individual OTUs that is explained by the host genotype, 
we calculated the broad-sense heritability (H2). The 
count tables were first normalized by centered log-ratio 
(clr) transformation with the aldex.clr function imple-
mented in the R package ALDEx2 [69], as relative abun-
dance matrices can lead to misinterpretation of OTU 
heritability [70]. H2 was calculated as the proportion of 
variance explained by the random intercept effect (here, 
pea genotype) as described before [71]. To accomplish 
this, we fitted a linear mixed-effects model (y ~ 1|’pea 
genotype’) using the lme function from the lme4 R pack-
age [72] for alpha diversity (OTU richness and Shannon 
diversity index), beta diversity (PCo axis 1) and clr-trans-
formed abundance of OTUs. To account for within-gen-
otype variation, the replicate identity was included in the 
model as a fixed factor. Bootstrap confidence intervals 
(95%) were computed using the bootMer function from 
the lme4 R package [72] using 999 bootstraps. Differ-
ences between the median heritability of fungal and bac-
terial OTUs were tested by a two-sided Wilcoxon rank 
sum test. To assess whether there are more fungal OTUs 
within the 58 most heritable OTUs (H2 > 20%), we per-
formed a binomial test using the binom.test function.

To identify OTUs that are associated with root rot 
resistance, we performed differential abundance analy-
sis for individual OTUs. The R package ALDEx2 [69] 
was chosen for the analysis as it has been shown to pro-
duce consistent results across studies [73]. Count tables 
were clr-transformed with the aldex.clr function before 
a Spearman correlation was performed using the aldex.
corr function. A specific OTU was considered associated 
with resistance when P < 0.05 after Benjamini-Hochberg 
correction for multiple testing [74]. To visualize the 
number of OTUs that associate with individual or mul-
tiple resistance traits, an UpSet plot showing all observed 
intersections was generated using the scale_x_upset from 
the ggupset package [75]. OTUs that significantly corre-
lated with all resistance traits were further visualized in 
a heat map using the plot_heatmap from the phyloseq 
package [64].

To identify highly connected (hub) OTUs, we made 
use of network inference. Bacterial and fungal count 
tables were combined before running the ‘SParse InversE 
Covariance Estimation for Ecological ASsociation Infer-
ence’ (SPIEC-EASI) pipeline [76]. This pipeline has been 
demonstrated to perform robust cross-domain network 
analyses, exhibiting higher connectivity and increased 
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network stability compared to single-domain networks 
[71, 77]. SPIEC-EASI was executed using the neighbor-
hood selection method to compute the network. Net-
work analyses were facilitated by the R package igraph 
[78]. Betweenness centrality and degree were taken 
as measures for connectedness; the two measures are 
defined as the number of shortest paths going through a 
node (betweenness) and the number of its adjacent edges 
(degree). OTUs belonging to the top 10% of betweenness 
or the top 10% of degree were considered as hub OTUs.

To summarize the OTUs of most interest, we selected 
highly heritable (top 10%) hub OTUs that were also asso-
ciated with root rot resistance (top 10% in correlations 
with at least one resistance-associated trait) and showed 
a relative abundance above 1%. These OTUs were further 
taxonomically investigated. Besides the above-mentioned 
taxonomic assignment, we further investigated the tax-
onomy by performing a standard nucleotide blast to the 
NCBI database using the representative OTU sequences. 
If more than one taxonomic entry showed the maximum 
percentage identity at the maximum query coverage, the 
next higher taxonomic level was indicated. The same pro-
cedure was performed for OTUs belonging to taxonomic 
groups that are expected to be involved in root rot and 
resistance to it [39].

We further investigated how best to model disease 
resistance using measures of OTU abundance and beta 
diversity. Seedling emergence and RRI were modeled 
through four models: (i) A stepwise regression on the 
20 most abundant OTUs and the two first PCo axes 
(beta diversity) of both domains (bacteria and fungi), 
performed with the stepAIC function from the MASS 
package [79] using backward selection direction; (ii) 
A stepwise regression on these (40) OTUs only; (iii) A 
simple linear model with the PCo axis showing the high-
est correlation; (iv) A simple linear model with the OTU 
showing the highest correlation. The models were com-
pared based on Akaike’s information criterion (AIC), 
adjusted R2 and the corresponding P value.

Results
Microbial diversity is affected by pea genotype under root 
rot stress
Amplicon sequencing provided 6,726 ± 4,294 (mean ± SD) 
fungal and 26,471 ± 6,781 bacterial sequences per sample, 
with variable coverage across sequencing runs calling for 
data normalization prior to downstream analysis (Figure 
S1, Figure S2). A first inspection of the most abundant 
taxa in our data revealed that the most abundant phyla 
were Ascomycota in the fungal Kingdom and Proteobac-
teria in the bacterial domain (Figure S3). We found a few 
genera that contributed to a large fraction of the micro-
biota. For Fungi, 19% of the reads were assigned to the 
genus Dactylonectria and 12% to Fusarium. For Bacteria, 

49% of the reads were assigned to possibly nodule-inhab-
iting Rhizobium spp. (SILVA databank genus taxonomy: 
“Allorhizobium-Neorhizobium-Pararhizobium-Rhizo-
bium”), 15% to Flavobacterium spp. and 9% to Pseudomo-
nas spp.

To examine the variation within our data set, we first 
compared alpha diversity indices among pea genotypes 
and seed sources, where the seed source reflects different 
levels of breeding intensity. The plant genotype explained 
16% and 25% of the variation in fungal and bacterial 
Shannon diversity, respectively, whereas the seed source 
explained only 1–2% of the variation (Fig. 1). Similar pat-
terns were observed for OTU richness (Figure S4). The 
most consistent difference in alpha diversity among the 
seed sources was found between the gene bank material 
and the breeding material, where Shannon diversity and 
OTU richness were reduced in the genotypes originating 
from the gene bank.

Similar to alpha diversity, the plant genotype explained 
a large fraction of the microbial beta diversity (45–51%), 
whereas the influence of the seed source was relatively 
small (1–4%) (Fig.  2), as revealed by PERMANOVA. 
Visualization of the first two axes of a Principal Coordi-
nates Analysis (PCoA) confirmed the spatial separation 
of the two reference genotypes (EFB.33 and Respect) and 
the absence of a strong seed source effect. For fungi, gene 
bank accessions also showed an enhanced multivariate 
dispersion compared to the other seed sources (Figure 
S5). For unbalanced designs where the larger group has a 
greater dispersion, as in this case, the test might be overly 
conservative [68].

Variation in microbial diversity is associated with root rot 
resistance
The analyzed pea genotypes have been shown to differ 
strongly in their resistance to root rot ( [38] and Fig. 3). 
To evaluate the interplay between disease resistance 
and root microbial diversity, we tested for associations 
between alpha diversity indices and root rot phenotypes 
(emergence and RRI). For bacteria, an increase in Shan-
non diversity and OTU richness was associated with 
reduced seedling emergence and higher RRI, which 
was most pronounced for Shannon diversity and RRI 
(R2 = 9.4%, Figure S6, Figure S7). In contrast, less striking 
and inconsistent associations were found for fungi.

PERMANOVA and visualization of PCoA revealed a 
significant link between all resistance-associated traits 
and beta diversity in both domains (Fig.  3a, b). For 
fungi, traits with the strongest association were found 
to be emergence (R2 = 9.3%) and relative total shoot dry 
weight per pot (tSDWRel, R2 = 9.4%; Fig. 3a). In contrast, 
for bacterial communities, the strongest association was 
found for RRI (R2 = 8.6%, Fig.  3b). When calculated on 
mean values per genotype, the explained variation for 
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microbial community composition increased approxi-
mately two-fold for fungi (R2

emergence = 19%, Fig.  3c) and 
bacteria (R2

RRI = 14%, Figure S8), demonstrating that 
there was considerable within-genotype variation (repli-
cate and stochastic effects) in our study system. Another 
PERMANOVA revealed that the experimental replicate 
only showed a minor but statistically significant effect 
on the community composition (fungi: R2

replicate = 0.97%; 
bacteria: R2

replicate = 1.9%). Interestingly, we found that 
the association between emergence and fungal commu-
nity composition depended on the seed source, as shown 
by a statistically significant interaction term between the 

two variables in PERMANOVA (R2
emergence x ‘seed source’ 

= 2.2%, Fig. 3a, c). No such dependence on seed source 
was found for bacterial communities (Figure S8). To fur-
ther disentangle the interdependency of resistance and 
seed source in fungal beta diversity, we performed an 
ANOVA followed by individual correlation analyses for 
each seed source between community composition (PCo 
axis 1) and emergence (Fig. 3d). Again, we observed that 
beta diversity is associated with seed source, emergence, 
and their interaction. Correlating community composi-
tion and emergence within each seed source separately, 
we found a statistically significant link for the gene bank 

Fig. 1 Influence of plant genotype (a, c) and seed source (b, d) on root fungal (a, b) and bacterial (c, d) alpha diversity. All plots show individual data-
points, means ± SE, and the ANOVA results with the explained variance (adjusted R2) and the corresponding P value. In (b) and (d) boxplots are also 
shown. Letters indicate significant differences among seed sources (analysis of variance followed by pairwise comparison of estimated marginal means, 
Padj < 0.05)
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Fig. 3 Association of root fungal (a, c, d) and bacterial (b) beta diversity with root rot resistance assessed by Principal Coordinates Analysis (PCoA) ordina-
tion. (a, b, c) PERMANOVA results with the explained variances (R2) and the corresponding P values for different root rot resistance-associated traits (top) 
and the interaction with seed source (bottom) are included. (c) PCoA and PERMANOVA results on means per genotype. (d) Correlation of emergence and 
fungal PCo axis 1 for each seed source. ANOVA table, as well as R2 and P values of correlations for all seed sources are shown. The numbers of samples 
per emergence level and seed source are also indicated (n). SDWRel: Relative shoot dry weight per plant, tSDWRel: Relative total shoot dry weight per pot

 

Fig. 2 Influence of plant genotype and seed source on root microbial beta diversity assessed by Principal Coordinates Analysis (PCoA) ordination of fun-
gal and bacterial communities. Individual datapoints and means ± SE for two reference pea genotypes (EFB.33, Respect) are shown. PERMANOVA results 
with the explained variance (R2) and the corresponding P value are included in both plots
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material (R2 = 3.6%) and cultivars (R2 = 3.4%) but not for 
the breeding population.

Microbial diversity and resistance-associated OTUs are 
heritable
For alpha diversity indices (Shannon and OTU rich-
ness), the heritability (H2; i.e. the proportion of variation 
explained by plant genotype) varied between 11% and 
25%, with similar levels in both domains (Fig. 4a). By con-
trast, H2 of beta diversity, summarized by PCo axis 1 and 
2, was highly domain-specific (Fig.  4a). Whereas H2 of 
bacterial community composition (R2 = 25.5%) was com-
parable to alpha diversity heritability, H2 of the fungal 
PCo axis 1 was strikingly high (R2 = 70%). It is worth not-
ing that these differences between bacterial and fungal 
heritabilities, or other traits, may also be a consequence 
of the different sequencing techniques used.

Fifty-eight OTUs showed an H2 above 20% (Fig.  4b). 
Overall, fungal OTUs were more heritable (median 
H2 = 4.62%) than bacterial OTUs (median H2 = 2.3%; 
P < 0.001). Also, among the most heritable OTUs, there 
were significantly more fungi than bacteria; 48 out of the 
top 58 OTUs were fungi (P < 0.001). With a H2 of 52%, 
fOTU1508 showed the highest H2.

Fungal and bacterial OTUs were screened for their 
association with root rot resistance using the ALDEx2 
differential abundance pipeline. Fifty-one fungal and 34 
bacterial OTUs were found to be associated with all resis-
tance traits (Fig. 5a, b). These core differentially abundant 
OTUs either correlated with plant resistance (fungi: 35, 
bacteria: 13) or plant susceptibility (fungi: 17, bacte-
ria: 21; Fig. 5c, d). Similarly to beta diversity, the highest 
number of resistance-associated OTUs were found for 
the traits emergence and tSDWRel for fungi and RRI for 

Fig. 4 Broad-sense heritability (H2) of root microbial diversity and individual OTUs. (a) H2 of alpha and beta diversity of fungi and bacteria. (b) H2 of the 58 
top heritable OTUs (H2 > 20%), including fungi (grey) and bacteria (black). OTUs positively (green) or negatively (purple) correlated with disease resistance 
are highlighted. (a, b) Bootstrap confidence intervals (95%) for H2 are shown
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Fig. 5 (See legend on next page.)
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bacteria (Figs. 3 and 5a and b). Identical to the heritability 
analysis, fOTU1508 also exhibited the strongest associa-
tion with root rot resistance (R2 = 24.5%).

Given the overlap of highly heritable OTUs and root 
rot-associated OTUs, we tested the hypothesis that H2 
is correlated with the magnitude of root rot resistance-
association. Indeed, we found that an increase in root rot 
resistance-association was correlated with an increase in 
H2 (Figure S9). This was observed to a similar extent for 
resistance- (R2 = 68%) and susceptibility-associated OTUs 
(R2 = 69%).

Network inference using the SPIEC-EASI pipeline 
revealed little overlap between nodes (OTUs) of the two 
domains (Figure S10). Further, most of the highly heri-
table and differentially abundant nodes are co-located 
within the network. Considering OTUs belonging to the 
top 10% (122 OTUs) of either betweenness or degree, we 
identified 172 hub OTUs.

To identify OTUs of potential high relevance, we 
selected hub OTUs that were (i) highly heritable (top 
10%), (ii) highly linked to root rot resistance (top 10% of 
correlations of at least one resistance-associated trait), 
and (iii) abundant (relative abundance > 1%). Based on 
these requirements, we found 11 OTUs, seven fungi, and 
four bacteria (Table  1). Interestingly, all of these OTUs 
also showed a high prevalence, indicating that they were 
detected in most of the samples (ranging from 91.2 to 
100%), while the majority of other OTUs were found to 
be less prevalent (Figure S11). Visualization of the associ-
ation between OTU abundance and disease resistance of 
the selected OTUs further highlights that fungi are more 
associated (higher R2) with emergence, whereas bacteria 
are more associated (higher R2) with RRI (Fig. 5e and Fig-
ure S12).

Resistance- and susceptibility-associated OTUs are 
taxonomically diverse
To get a better understanding of the identified relevant 
resistance- and susceptibility-associated OTUs, we 
further investigated their taxonomic assignment. For 
fungi, the plant resistance-associated OTUs were Dac-
tylonectria spp. (fOTU1508, fOTU1517; r = 0.5 and 0.49, 
P < 0.001) and Olpidium sp. (fOTU22; r = 0.18, P < 0.001; 
Table  1), the disease-associated OTUs were two Fusar-
ium spp. (fOTU860, fOTU1450; r = -0.32 and − 0.29, 
P < 0.001) and an OTU belonging to the Order Helotiales 
(fOTU1557; r = -0.29, P < 0.001). One putative Fusarium 

sp. (fOTU1598; r = -0.09, P = 0.043) was negatively corre-
lated with emergence and RRI, thus associated with sus-
ceptibility (emergence) and resistance (RRI). For bacteria, 
the plant resistance-associated OTUs were a Strepto-
myces sp. (bOTU4; r = 0.3, P < 0.001) and a highly abun-
dant, therefore likely nodule-inhabiting, Rhizobium sp. 
(bOTU1; r = 0.14, P = 0.001), and the disease-associated 
OTUs were another Rhizobium sp. (bOTU15; r = -0.12, 
P = 0.006) and a Pseudomonas sp. (bOTU5; r = -0.12, 
P = 0.007).

We further identified OTUs within our dataset belong-
ing to taxa that are expected to relate to root rot and 
resistance to it [39]. Several of these additional candidate 
taxa were significantly associated with emergence and/
or RRI (Table S1). As potential beneficial microbes, we 
searched for OTUs related to Arbuscular mycorrhizal 
fungi (AMF) and Clonostachys rosea. We found one OTU 
assigned to a Funneliformis sp. (fOTU1020, AMF), which 
was negatively correlated with RRI (r = -0.24, P < 0.001), 
and one putative Clonostachys rosea (fOTU60), which 
was weakly correlated with higher emergence (r = 0.1, 
P = 0.018; Table S1). As potential members of the root 
rot complex, we identified six Fusarium spp. (fOTU419, 
fOTU680, fOTU329, fOTU334, fOTU137, fOTU487) 
besides the ones reported above, one putative Didymella 
pisi (fOTU40; teleomorph of Ascochyta pisi), and four 
OTUs assigned to Rhizoctonia (fOTU831, fOTU578, 
fOTU140) or the synonymous genus Ceratobasidium 
(fOTU335, [80]). One Fusarium sp. (fOTU419; r = -0.14, 
P < 0.001), one Rhizoctonia sp. (fOTU831; r = -0.14, 
P = 0.006), and the putative Ascochyta pisi (fOTU40; r = 
-0.15, P < 0.001) were more abundant in low-emerging 
samples. Another Fusarium sp. (fOTU137, putative 
Fusarium redolens; r = -0.09, P = 0.05) was negatively 
correlated with RRI, and the remaining seven identified 
OTUs did not show any significant correlation.

Improved modeling of plant resistance through a 
combination of multiple OTUs and beta diversity
Comparing univariate models and stepwise regression 
models with OTU abundance and beta diversity revealed 
that 15 and 19 variables best explained (low AIC, high 
R2) the disease resistance phenotypes emergence and 
RRI, respectively (Table S2, Table S3). For emergence, 
the explained variance of the univariate models with 
the most correlated OTU (fOTU1508, R2 = 22.8%) or the 
most correlated PCo axis (fungal PCo axis 1, R2 = 27.5%) 

(See figure on previous page.)
Fig. 5 Association of fungal (a, c, e) and bacterial (b, d, e) OTUs with root rot resistance traits. (a, b). UpSet plots show the number of OTUs that are sig-
nificantly correlated to root rot-associated traits and their intersection, where the first bar shows the OTUs that are significant for all traits. (c, d) Heat maps 
indicating the abundance OTUs significant for all traits, where the significance level is indicated with asterisks. The solid black line represents the transition 
from positive to negative correlation. Genotypes are ordered by increasing (c) emergence and (d) increasing RRI, and OTUs are ordered by their strength 
of correlation with the resistance trait. (e) Correlation of emergence and OTU abundance for OTUs with high relative abundance, connectedness in the 
microbial network, heritability and association with resistance. Explained variance (R2) and P values of correlations are shown. SDWRel: Relative shoot dry 
weight per plant, tSDWRel: Relative total shoot dry weight per pot, RRI: Root rot index. Levels of significance: P < 0.001 ***, P < 0.01 **, P < 0.05 *
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performed slightly worse compared to the stepwise 
regression OTU models without (R2 = 32.7%) and with 
beta diversity (R2 = 36.7%). For the RRI, the explained 
variance of the univariate models was markedly lower 
(bOTU1, R2 = 15%; bacterial PCo axis 1, R2 = 10.6%), 
while the stepwise regression model explained 33.9% (R2) 
of the variance. Adding beta diversity measures did not 
increase model performance for RRI (Table S3).

Discussion
Plants are known to shape their associated microbiota in 
a genotype-specific manner [4, 81], which in turn affect 
plant growth and defense [1, 23]. To what extent micro-
biota attributes are associated with complex plant traits 
such as root rot resistance is largely unknown. The resis-
tance of a given plant genotype against root rot was pro-
posed to be influenced by individual known beneficial 
microbes [9, 39]. However, the extent to which the wider 
microbial community is associated with a genotype resis-
tance is poorly understood. Here, we analyzed the root 
bacterial and fungal microbiota of a diverse set of pea 
genotypes grown under root rot stress and demonstrated 
that, in addition to individual key taxa, community-wide 
microbiota attributes are also associated with root rot 
resistance.

Our study reveals that associations, e.g. between root 
rot resistance and fungal and bacterial community com-
position, are driven by the individual pea genotypes. In 
line with our findings, common bean cultivars resistant 
to an individual fungal root pathogen (Fusarium oxy-
sporum) were shown to harbor a distinct microbiota 
composition that is different from susceptible cultivars 
[82]. Our results expand these findings by investigating 
more than 250 genotypes in a field soil naturally infested 
with several pathogens, allowing us to show the range of 
microbial communities shaped by pea plants grown in 
the same soil. Notably, associations of fungal but not bac-
terial beta diversity were dependent on the seed source, 
with no correlation found for the Swiss breeding mate-
rial (Fig.  3). This seed source dependency highlights 
the importance of screening plant microbiota interac-
tions of large diversity panels. We demonstrate that the 
seed source effects are neglectable (alpha: 1-2.3%, beta: 
1.3–3.8%) relative to the genotype effect (alpha diver-
sity R2: 16–25%, beta diversity R2: 45–51%), even though 
within our panel the genotypic structure and phenotypic 
appearance of the modern European cultivars differ 
substantially from the gene bank accessions that mostly 
consists of landraces from around the world [38, 83]. 
Compared to the literature, the proportion of variance 
in beta diversity explained by the plant genotype was 
exceptionally high in our study [84]; in diversity panels 
of sorghum and maize, for example, the genotype effect 
on root microbiota composition was found to be 7.5% Ta
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and 9.8% [85, 86]. This could be due to stress conditions 
increasing the heritability of the root-associated micro-
biota [86]. Further, we report an increase in multivari-
ate dispersion for gene bank accessions, indicative of a 
more variable set of microbiota communities. Thus, gene 
bank accessions could pose an interesting reservoir for 
microbiome-recruiting/manipulation alleles that are not 
present in breeding material or varieties, thereby sup-
porting the breeding of microbiome-smart cultivars for 
sustainable agriculture [87]. However, given that the ana-
lyzed cultivars cover most of the microbial variation, they 
could also be used as a first source of desired alleles to 
speed up the introgression into elite cultivars due to the 
reduced number of unwanted alleles compared to gene 
bank accessions.

The abundance of individual OTUs can be deter-
mined by host genotype and have an impact on plant 
fitness [71]. In this study, we report multiple fungal and 
to some extent also bacterial OTUs that are associated 
with disease resistance or susceptibility (Fig. 5). The big-
gest portion of them is correlated with all the measured 
resistance phenotypes (root rot index (RRI), emergence, 
relative shoot dry weight per plant/pot), reflecting the 
magnitude of pathogen damage (RRI) as well as sev-
eral plant performance measures. Given that root rot 
in peas is expected to be caused by fungal and oomyce-
tous pathogens [29], the many bacterial OTUs found to 
be positively associated with RRI might have passively 
entered the roots through lesions or assisted as pathogen 
helper bacteria [88]. The higher bacterial alpha diversity 
in roots of diseased plants supports the hypothesis that 
bacteria can enter diseased roots more easily (Figure S6, 
Figure S7). In contrast, the resistance-associated bacterial 
and also fungal OTUs might directly or indirectly pro-
mote the plant health status or merely be spurious. Irre-
spective of a causal link, these key taxa show promise as 
resistance indicators in selection assays. It is striking that 
the OTUs that are correlated the most with resistance 
share several attributes: they generally have a high rela-
tive abundance, are highly interlinked with other OTUs 
(hub taxa), and are highly heritable (Table 1). The herita-
bility of individual OTUs was markedly correlated with 
the degree of positive or negative disease association (Fig. 
S9), which could be explained either by root rot severity-
dependent microbial root colonization [89] or by micro-
biota-mediated resistance to root pathogens [13, 26].

Investigating the taxonomy of the key OTUs (Table 1) 
revealed that the two most resistance-associated OTUs 
(fOTU1508, fOTU1517) belong to the genus of Dac-
tylonectria. Various members of this genus have been 
associated with severe root disease in many annual and 
perennial plants like strawberries and grapevines [90–
92]. Other studies found Dactylonectria spp. in asymp-
tomatic roots of different plant species [3, 93], including 

the legume soybean, where members of this genus were 
shown to be enriched in the root endophytic commu-
nity [94, 95]. To the best of our knowledge, this is the 
first report of Dactylonectria spp. being associated with 
disease resistance, highlighting this and other identified 
taxa as potential microbial markers to screen for root 
rot resistance in peas. The most susceptibility-associated 
OTUs were found to be Fusarium species. This under-
lines the well-investigated role of Fusarium spp. (e.g. F. 
solani, F. oxysporum) among the most prominent patho-
gens that cause pea root rot worldwide [29, 96]. Given 
that the selected primers do not amplify Oomycota, 
which include Aphanomyces euteiches, an important 
member of the pea root rot complex, we were not able 
to evaluate their contribution in our study. We, how-
ever, showed in a previous study [39] that A. euteiches 
was abundant in pea roots grown in infested soils but its 
association with root rot was minor across three diseased 
soils (including the one used in this study) compared to 
other known suspects and therefore not of high impor-
tance in the soil of this study. Several additional taxa 
associated with root rot were identified, suggesting that 
an even broader range of microbes may play a role in trig-
gering root rot. Future experiments in different soils and 
under field conditions will show if the predictive power 
of the identified microbial markers can be translated to 
other environments. This will further evaluate the poten-
tial of microbiota-assisted disease resistance to improve 
agroecosystem sustainability.

Plant resistance is well-known to be heritable [97]. 
In our experimental system, the resistance to pea root 
pathogens was found to be highly heritable for emer-
gence (H2 = 89%), followed by relative shoot dry weight 
(H2 = 51%) and root rot index (H2 = 43%, Wille et al., 
2020). For the root microbiota, we report similar heri-
tability levels of up to 52% for individual resistance-
associated OTUs and 70% for the fungal community 
composition (beta diversity; Fig.  4). The abundance of 
single OTUs explained up to 22.8% (adjusted R2) of the 
disease severity (Table S2). Combining the abundance 
of several OTUs with microbial community composi-
tion (PCoA axes) improved the prediction of root rot 
resistance to 36.7%. Incorporating information about 
the microbiota as decision support in the selection pro-
cess of plant breeding could assist in promoting the ben-
eficial root microbiota as a second line of defense against 
root pathogens. Genome-wide association studies and 
genomic prediction analysis will enable the identifica-
tion of genetic loci associated with the potential recruit-
ment of beneficial microbes and evaluate the joint use of 
microbial and plant markers [6].
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Conclusion
This study provides evidence that plant genotype-specific 
root microbial communities and key taxa are associated 
with resistance to root rot in peas, highlighting their 
potential as microbial markers for plant breeding. This 
may pave the way for microbiome-assisted breeding to 
overcome the challenges currently faced in resistance 
breeding against root rot in legumes. Future research 
across diverse environments will be crucial to confirm 
the applicability of microbiome-assisted selection for 
resilient legume cultivation.
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