T5.4 Using genomics to track the evolution of heterogeneous (organic) material

Module 5 -Organic heterogeneous material (OHM) design and development

Training courses in Organic Breeding

07.03.2025 Michael Schneider, FiBL

Funded by the European Union, the Swiss State Secretariat for Education, Research and Innovation (SERI) and UK Research and Innovation (UKRI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or REA, nor SERI or UKRI.

Training in organic breeding

Module 4: Organic heterogeneous material (OHM) design and development

Unit 5.4: Using genomics to track the evolution of heterogeneous (organic) material

Michael Schneider, FiBL

Co-funded by

the European Union

Funded by the European Union, the Swiss State Secretariat for Education, Research and Innovation (SERI) and UK Research and Innovation (UKRI).

Training in organic breeding organized in 5 Modules

- 1. Module 1 Plant Genetic Resources (PGRs): collection, conservation and exchange to support the increase of agrobiodiversity in farming systems
- 2. Module 2 Phenomics: approaches and tools for genetic resources and breeding material characterisation - FEBRUARY 3rd 2025, 9:00 to 17:30 CET
- Module 3 Breeding methods fundamentals FEBRUARY 13th 2025, 9:00 to 18:00 CET
- 4. Module 4 Development and application of molecular methods in organic breeding MARCH 4th 2025, 9:00 to 18:00 CET
- 5. Module 5 Organic heterogeneous material (OHM) design and development - MARCH 7th 2025, 9:00 to 18:00 CET *LiveSeeding*

Planned for today

Give full walk through

Questions are welcome anytime

- Sampling populations
- Isolation of genomic DNA/RNA
- Genotyping approaches
- Analysis pipelines to transform bare DNA into knowledge
 - Simple Settings (e.g. Parents known, biparental cross)
 - Complex Settings (e.g. Multiple parents, no reference information)
- Results and assumptions to draw (by examples)
- Time for discussion & a small Quiz

Creating organic heterogenous material

Organic heterogenious material 3 parents crossed, 2 wild relatives P2 P1 P3 P1 A || X || || X ||

Bulk and send to field

Modified figure from Lowry & Wills 2021; doi.org/10.1371/journal.pbio.1000500

D

Е

Experimental evolution – natural adaptation to farming systems

Crop wild relative x elite variety \rightarrow

(conventional = Environment) + 26 generations - artificial selection = ???

We want to know..

What is happening in these populations?

How are they adapting?

How does the environment impact the pop.? (Climate, soil, farming practice,..)

Sampling populations / OHM

get the DNA from the population

1. Step

How to?

Money is a limited factor, so we are going to construct a pooled sample

- 1. Selecting x-hundred seeds as a representative sample for the entire population
- 2. Grinding the seeds to flour (medium fine)
 - No greenhouse required (+)
 - Low labour costs (++)
 - Liquid nitrogen required for oil rich seeds (-)
 - Grinding slow or requires special mill insets (-)
 - DNA extraction challenging (--)
 - or
- 2. Collecting equally sized leaf discs for each genotype to test
 - Greenhouse required (-)
 - 14 days delay until sample collection (-/+)
 - High labour demand due to leaf sampling (equal size) (--)
 - Liquid nitrogen requiered (-)
 - Collection in 5 ml Eppendorf tubes possible parallelized grinding in a swing mill possible (+)
 - DNA extraction simple (++)

3. Extracting DNA (RNA) – for example with the Seed mini kit (Zymo)

- Starting material
 - Flour :
 - min. 7.5 ml falcon tubes and 1g Flour starting material
 - Additional purification steps required to remove secondary compounds (starch, oil)
 - Over night eluation in Water necessary to increase yield
 - Leaf discs
 - Grinding of disks to very fine powder ensures equal contribution of each genotype
 - Standard DNA / RNA extraction procedure

https://www.retsch.de/de/produkte/zerkleinern/ kugelmuehlen/schwingmuehle-mm-400/

Ref: https://www.aatbio.com/resources/assaywise/2022-11-1/overview-of-dna-extraction-method

9

Keep in mind – the grinding step will effect your DNA fragment size and overall output

2. Step performing the genotyping

Selecting the relevant genotyping approach

		illumina sequencing		
Genome coverage (cost for 17 GB genome size)	Whole genome sequencing (WGS)	RNAseq ²	Genotyping by sequencing (GBS) ³	Oxford Nanopore / PacBio HiFi
Base precision	99.999%	99.999%	99.999%	99-99.99%
Biggest Advantage	Entire genome	Higher coverage	Higher coverage	Haplotype calling
Biggest Disadvantage	Short fragments	Expression bias	PCR duplication	Early stage tech
Costs	2	3	1	4
Usefulness	high	medium	low	best

² - not all genes are expressed, expression bias

³ - few, targeted loci sequenced. Duplications not removable

The more related the parents are, less SNPs can be found => requires higher sequencing depth

Technical requirements for poolseq

Knowledge of parental haplotypes

- Parental lines need to be genotyped
- (Only necessary for short read sequencing)

High quality Sequencing

Reference genome Optional for improved results – SNP database LiveSeeding

3. Step

Genotype cost efficient

How can we estimate the accurate frequency (for low costs)?

The simple answer – from:

low coverage sequencing + bioinformatics + reference infromation

- 1. Knowledge about haplotypes which SNPs allele are linked in the parental lines
- 2. Linkage disequillibrium SNP variants are linked on the same genomic fragment

<u>__</u>C **SNPs** С С G G 4 \mathbf{v} $\mathbf{\nabla}$

> Plant Methods. 2022 Mar 21;18(1):34. doi: 10.1186/s13007-022-00852-8.

High-throughput estimation of allele frequencies using combined pooled-population sequencing and haplotype-based data processing

Michael Schneider ¹², Asis Shrestha ¹², Agim Ballvora ¹, Jens Léon ³

16

20

21

How does the theory convert into practice?

 Str.
 -

Comparing

288 genotypes, single and pool sequenced

KASP markers to pool sequencing

Using curated SNP databases to filter SNPs can improve the haplotype estimation accuracy

- Aggregating reads on the same recombination block can result in massive cost reductions compared to commonly nesseary sequencing depth (100-500x – cost reduction of 80-90%)
- The system works well if we have two parents which act as reference, so that the reads can be assigned to the respective parent

But how do we handle more complex systems?

Organic heterogenious material 4 parents crossed, 2 wild relatives P4 P1 P1 P3 P1 P2 A X X X X X XXX X В X X X С D Е Modified figure from Lowry & Wills 2021: doi.org/10.1371/iournal.pbio.1000500

Bulk and send to field

LiveSeeding

We got a problem..

What can we do to overcome this dilemma?

Phasing of haplotypes

With a combination of SNP (haplotypes), we can differentiate the parents

 \rightarrow ATA \rightarrow P1, ATG \rightarrow P2, CCG \rightarrow P3

We can achieve this with a long-molecule sequencing approach – PacBio or ONT

Advantages of long-read sequencing apporaches

Phasing of haplotypes

veSeedina

 \succ With a combination of SNP (haplotypes), we can differentiate the parents

2. Methylation information

short-term adaptation patterns related to the environment

Microbe identification on long fragments 3.

> Shotgun approach with long fragment might allow better classification and quantification (compared to 16S and ITS)

We cannot only get the genetic information, but also describe short-term adaptations (methylation) & the Mulitplication environment – describe the population as a result of the holobiont

How does the phasing to haplotypes work?

Phasing pipeline

Read	FLAG	Chr	Start	Jual	CIGAR	Seq	Qid	END	SNPs	lignRead	alignQual	Haplotype
String	Int64	String	Int64	Int64	String	String	String	Int64	Int64	tring	String	String
3444051c-0064-4193-a1bc-76f187c1		chr1H	200008715	60	32512/105/40504/10635/10176/1502/	TATGTCCTCTACTCGTTCAGTTACGTATTGCT	%%%'(&''\$\$\$\$%'(+89@?::9;>@@AEFDD	20001447	3	AAGGTTGTTTG-AAGGATACAAAGGAA	ECCJFSSKJIHB9EC65/9999-,,++,4BJP.	GGA
4481e85b-49d5-4164-918c-53721cfc	1	chr1H	200012548	60	125300M2D114M1I222M1I847M1D585M1	GAATGTATTGCTTGTGCTTTAGCTTCCCCCTC	%)++9;CB????HFBCDCCISISKPJIGGLJ	20002320	5	IGTGCTTTAGCTTCCCCCTCAGGGCTTCGTAC	?HFBCDCCISISKPJIGGLJFKJMLGGJSSSH.	GAG
7924e052-c353-4b0f-b29b-b230d873		chr1H	200012629	60	33580M3D82M11575M2D197M1D2M2I462	GTTATGTTGGCTCCCTTCGTAGGTTGGTCTTG	%&*************************************	20001596	5	TGGATACCCAGAGGAGCAAGTAGGTGAAGCCG	(((*35433339888A;;;< <flqrhsfssiis< td=""><td>TGGGA</td></flqrhsfssiis<>	TGGGA
b620c372-ad83-4433-b5af-bd1ffa5f	e	chr1H	200013001	60	33S663M1D461M3I218M1I2M1D297M1I2	ATGTTGTGCCTGTTGCTCGTAGGTTGGTCTTG	\$\$\$&&&&&&`&%\$%\$#####\$%`````	200015898	4	GGATTTAGTGCTCAATCTAGTTGGAGTTGTG	9999@Fecdhggsnsmsnsjghqhkhssfhhh	TGA
946b52d0-ced3-4da9-835b-3377c6be	1(chr1H	200013700	60	55312M1D681M2I11M1D243M1D94M1D61	CAATGTATTGCTACTTTCACAGAGAGAGAGATA	*011CDKISJSKJGSLOJKJSJCIJJFSGDDJ	200018360	4	ATTGCTACTTTCACAGAGAGAGAGATAGGTCG	DKISJSKJGSLOJKJSJCIJJFSGDDJGFHHI	TGGA
e290a3e9-9463-45f9-8220-27f89644		chr1H	200029155	60	405285M1I3M2D18M1D52M2D552M1I364	TTGTGTCTGCTTGTACTTCGTTCAGTTACGTA	%*'''(%%\$\$###\$(**+**-11<><::9663	200035419	4	ATCACAAATACAGGCCACATACTACAGGATG	%%%*,+@@@AAFKJSNHHHB<96666=8	CAA
b14bbf2f-956d-4029-b7f1-ca7b0708		chr1H	200031226	60	39527M1I78M1I17M1I129M1I15M1I176	TTATGTTATGTGCCTGTACTTCGTTCAGTTAC	\$%&(())&&()&'''%&\$%%('(+11221113	20003584	5	TATGTATCTGAATTAGGGAAGGATATCTTTCC	444++***12BA>>=;?@AKSSLPSPFD?4*;	GAAC
d68109a3-d964-48db-b8b4-b1bd7297	1	chr1H	200033046	60	226M1D506M1D258M1D6M1D208M2T3M1D	TTGGATTGAGATGAAACTTGGAAATATGATCA	(+34<;:;;;CDDEMCD213222136,((((20004011	8	TTGGATTGAGATGAAACTTGGAAATATGATCA	(+34<;:;;;CDDEMCD213222136,((((CGTTCAAC
c1913875-04b8-4dc4-adea-5c680115	é	chr1H	200033589	60	33541M118M1D3M1D1M1D66M1I103M2D1	TTGTTATGCTACTTGGTTACATTTAAGTATTG	#\$\$\$%%%%\$###%%\$\$\$%%%%%%#\$&()*++	20003756	8	TAAGGATGTTAGTTGGAGAATAGCAAGAATCA	8::<90489ANIFLHIJGSEGE?>?	AATCGTCG
0469dad8-f5be-4295-a988-874ec1dd	16	chr1H	200033589	60	1355M2I185M2D89M1I1M2I141M2D7M1I	GGCCACCATTTGCTAAGGATATGTTAGTTGGA	'))+00,)'&&*)),-+)**LGHSCHBBCBDI	200037561	8	AAGGATGTTAGTTGGAGAATAGCAAGAATCA),-+)LGHSCHBBCBDISHNGSSFMSKFPEHD	GATCCTA
6bb0b2da-29d3-4dfd-a653-9b43941b	e	chr1H	200051940	60	34577M1I442M1I3M1D623M5D22M1I347	ATGTTGCACATTTATTCGTTCAGTTACGTATT	''',(%\$####\$%'''()2ACEFDD?BABACB	200056469		GGAACAAACGCAAAAGAAACACAAAAAAACAC	CIDDSMKSSQGSIEHSSSDKHNS@@AHLSSHK	AGAAA
ffedff3c-13c6-45c7-b457-8a131763	- (chr1H	200052809	60	3656M1D343M2D6M1D37M2I3M1D70M2D3	ACTTTTATGTACTTACTCGTTCAGTTACGTAT	#\$%%&(('&&%\$\$\$\$'99<>88420001	200056941		ATCTC-TAAAGAGATTAGTAAGTGGATGAGG	CCHJHD9B'''CGNHFQ>====SHLKJLIIS	AAGAA
5d55f6c0-122d-4808-a6f8-f3bf15aa	1	chr1H	200066199	60	125113M2D1M1D5M1D2M1D387M2I234M3	CTATGTATTGCTTGAAGAATGGCTCTTCCTTG	(+68BEJLSSHHJNMSGJJHSIISLMJGSFMI	200073215	6	GAAGAATGGCTCTTCCTTGTCTTCATCTTT	JNMSGJJHSIISLMJGSFMIHSISLSIKSLJM	TATTCA
a75f404b-f62e-52ea-aafd-1a660075		chr1H	200069800	60	355102M1D163M1I531M1I3M2I89M1I45	TATGTGCATCTTACTTCGTTCAGTTACGTATT	\$%%``\$\$\$%%%&``+07766220002?	200076304	13	GGGCCCTTTTAAAAATCAGAACTAAAAGGGGC	==>ASSDFA:4?ACKGIIEJJIJGEJEICEDA	CTTAACTAGTTTAT
79d25f5b-e687-458b-b264-64a25811	1	chr1H	200069824	60	31544M1I226M1I17M1I5M1I98M1I235M	ACATCACCATTGTGGCCTCGGAAACCAGATGA	\$%%%&``**))(),*`&&%%%%\$\$%(*+,*)0	200076304	13	AAAGGGGCGATCAATGAATTGACCACGTGTAA	0623:<;99999BA?>99<;<< <gfsisssi< td=""><td>ATTCCATTTAT</td></gfsisssi<>	ATTCCATTTAT
a519e272-6857-4252-9a6a-30781b03	- 1	chr1H	200070897	60	295348M2D177M1I231M1D5M2D10M1D5M	TTTGTCTGCTTGACTAGTTACGTATTGCTGAA	\$%%%\$\$##%'&&'''&'(()3>>@IEGJGPS	20007444	11	GAAACTAGTGTTCGATGGCCCAACAAATCCTA	GPSGIHKGFIGH22EGKSLSSSHKSPPOJHJS	GCTACTTATTA
bafeb1b6-d9bd-461d-829c-530a3be6		chr1H	200072049	60	34514M1D14M1D40M1D20M1D10M1D80M2	ATGTGCCTGTTACTTGGTTCAGTTAGGTATTG	\$\$\$%''++,-*))**,0/./2444335)	20007503	11	TATACCTCAGCTTG-TCGATTGAGCCGAT-CC)))>ACA:9889:697,++,//-9-*	A-CGTTCA
19c51eec-ef59-4f2c-9706-a73708f4	1	chr1H	200072362	60	17518M4D65M1D12M1I10M1I5M4D4M1I1	CATTGCCATGTATTGCTAGCAAATAAAATGAA	'''&%&&**68DDFEHFII=@@A?@DCCCBEE	20007543	11	AGCAAATAAAATGAAAAGCTCTCTCGAA	II=@@A?@DCCCBEECDE9999D;6+*+.(GTCCACTAT
19c4c767-3d81-4623-bc57-6e3124af		chr1H	200072562	60	40594M1D113M1I86M1I199M1D1M1D261	GTTGTGTAGCATCTGTCTTCAGACTCAGGTTG	%'*+++*&%%%%%%&''')'&&%%%%&('(*	20007981	19	ACAGTGGATGTGCAGGAGCAAGCGCTGATGCT	2222269>B??;;655;;;;=>@@DJDIOSML.	TGCATTTTCAAACTATTT
									:			

1. Align to reference genome

2. Identify SNPs in read

3. Extract SNPs

Methylation pipeline

(Epigenetic variations)

Haplotyping Pipeline - parents unknown

So finally, what information can be obtained from the genotyping?

(1) Are the populations different? (Statistcally significant)

• Ultra low (short-read) sequencing

(2) What has changed?

- Which regions are different?
- Low low sequencing

(3) Which traits were subject of frequency changes?

- Gene level differences (& Methylation patterns² & microbiome variations²)
- Medium low sequencing

² - only available using the latest Oxford Nanopore Techique

1 - Lowest level - are the populations different?

2- Intermediate level – approximate chromosomal regions under change

Mid

Mid

How does it looks like in a more complex population?

Genotype 1-B-86 Golf ISR42-8 other P41923

BC2F3 (1998)

Mid

Natural adaptation for 25 years

BC2F28 (2023) [organic]

LiveSeeding

<u>Home</u> > <u>Agronomy for Sustainable Development</u> > Article

Deep genotyping reveals specific adaptation footprints of conventional and organic farming in barley populations—an evolutionary plant breeding approach

 Research Article | Open access
 Published: 08 May 2024

 Volume 44, article number 33, (2024)
 Cite this article

3- Highest level – identify candiate genes causing selection

https://doi.org/10.1007/s13593-024-00962-846

Interpreting allele frequencies is uncomfortable -

LiveSeeding

GENETICS

Genetics. 2015 Dec; 201(4): 1555–1579. Published online 2015 Oct 19. doi: <u>10.1534/genetics.115.181453</u> PMCID: PMC4676524 PMID: 26482796

Genome-Wide Scan for Adaptive Divergence and Association with Population-Specific Covariates

Mathieu Gautier¹

Author information
 Article notes
 Copyright and License information
 PMC Disclaimer

Associated Data

Supplementary Materials

Abstract	Go to: 🕨

In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, FLK, and LFMM), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier.inra.fr /CBGP/software/baypass/.

Keywords: genome scan, Bayesian statistics, association studies, linkage disequilibrium, Pool-Seq

Of course, here we go..

LiveSeeding

Summary – What have we seen so far?

- Genotyping an entire population can provide a lot of information for **little costs**
- Changes across generations can be tracked with a high precision
- The changes can also serve to predict changes in the phenotypic characterisitcs
- Appling the latest advances in genotyping methods can also highlight *Epigenetic & Microbial* adaptations

LiveSeeding

So far? Is there more to it?

Yes, of course there is! We have not yet harvested all information from the genotyping

We should take everything we get, when we already spend money on the genotyping!

Recombination detection

Recombination detection

The knowledge on the recombination rate provides also very useful information for the breeding of new variaties or populations

Individual crossing ability of parental genotypes

Final conclusions

- The presented genomic approach can provide deep information on populations, their change across years and support breeding of new variaties or (O)HM
- It helps to understand beneficial adaptations towards niche environments
- And it could serve as..

LiveSeeding

OHM Track alternative – how could the genomics help to track OHM and provide "open access" to a constantly changing material?

How could it be applied in OHM tracking?

OHM genomic-based passport - OHM X - Farm Y - 6th generation

LiveSeeding

Thanks for your attentic

EUCARPIA OFFERENCE

on breeding to meet environmental & societal challenges

26 TO 28 MAY 2025 PORTUGAL Instituto Politécnico de Coimbra - ESAC

cennic sisty mbra

www.LiveSeeding.eu key results, newsletter, upcoming events, policy briefs, videos, training, practice abstract

Link to sister project on organic fruit breeding www.InnOBreed.eu

Funded by the European Union, the Swiss State Secretariat for Education, Research and Innovation (SERI) and UK Research and Innovation (UKRI). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or REA, nor SERI or UKRI.

