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Training in organic breeding organized in 5 Modules

1. Module 1 - Plant Genetic Resources (PGRs): collection,
conservation and exchange to support the increase of
agrobiodiversity in farming systems

2. Module 2 - Phenomics: approaches and tools for genetic
resources and breeding material characterisation - FEBRUARY 3rd
2025, 9:00 to 17:30 CET

3. Module 3 - Breeding methods fundamentals - FEBRUARY 13th
2025, 9:00 to 18:00 CET

4. Module 4 - Development and application of molecular methods
in organic breeding - MARCH 4th 2025, 9:00 to 18:00 CET

5. Module 5 - Organic heterogeneous material (OHM) design and
N evelopment - MARCH 7th 2025, 9:00 to 18:00 CET
s Lrveﬂ:ecﬁnf




Planned for today

= Genomic prediction — what for?
» Introduction — what is the use?
= Mathematical background
= Model fit and validations

= Get into the code - applied programming
= Checking out different R packages

= Recap

= Exercise - completion important for the CERTIFICATE

HlLive



Aim of breeders and scientists

Making predictions of a phenotype or trait, prior trait measurement

= Examples
= Milk quantity of cattle
= Plant health status in a new environment

= Seed yield
= . (these are called complex traits, because multiple genes contribute to the phenotype)

How can you gain this information (without knowledge of the genotype)?
» By calculating «<BLUP’s» (Best linear unbiased prediction)

HlLive

Using additional information of relatness of genotypes (Pedigree)
Testing (many) related genotypes in multiple environments / replications
This is summarized in the EBV (estimated breeding value)

= value can be defined as its genetic merit for each trait



Including genomic data can improve those predictions

Limitations of EBV

Using only pedigree information..
= is not necessarily correct for all loci (recombination)

= High variants of parents lead to high prediction error

Predict phenotype from DNA

= Predicted individual must be related to known founders

= Requires a lot of phenotyping

* Adding genomic data => GEBV / MBV EEE) ..

—e—
| 1 1 1 | | I
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

GBLUP ’: —e
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https://www.europeanpharmaceuticalreview.com/news/75744/web-tool-predicts-phenotypes/

Complex traits - the genetic background

Phenotype = Genotype + Environment

variance of phenotype traits are
determined by multiple genetic loc,
described by different effect sizes

1. Few genes have big effects
2. Many genes have no effect

3. Many genes have very small
effects

» can be infinitely small

HlLive

crwnl
crwni crwnl crwnl crwn2
crwnt crwn2 wild type crwn2 crwn3 crwn4 crwn4

\
\ 4
3 B 4

5

crwn3 crwnd crwn2 crwn2 crwn3 crwni
crwn3 crwn4 crwn4 crwn3

crwn4
10.1186/1471-2229-13-200

GWAS — genome wide association study
find few loci with big effects

10.1186/512864-017-4320-3



http://dx.doi.org/10.1186/1471-2229-13-200
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-4320-3

Using these QTLs for marker assisted selection (MAS)

PEDIGREE METHOD

Phenotypic
screening

Plants space-
planted in rows for
individual plant
selection

Families grown in
praogeny rows for
selection.

Preliminary yield
trials. Selectsingle
plants.

Further vield
trials

Multi-location testing, licensing, seed increase
F8—-F12 and cultivar release

” LiveSeeding

EARLY GENERATION SELECTION
MARKER ASSISTED SELECTION

£ MAS

Qnly desirable F3
lines plantedin
field

F3
\

Families grown in
progeny rows for
*x *x selection.

I Pedigree selection

F5 based on local
v

giiiginl

F7

F4

needs
v x + 4

Multi-location testing, licensing, seed increase
F8 — F12 and cultivar release

http://dx.doi.org/10.19080/ARTOAJ.2018.14.555914




GWAS - find few loci with big effects
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Check it out in detail Wood et al. 2014



https://www.nature.com/articles/ng.3097

What is the take?

« Although there were few applications in (cattle) breeding, MAS based on
a few markers was not contributing appreciably to livestock improvement
simply because most of the traits of interest are quantitative and

complex, meaning phenotypes are determined by thousands of genes
with small effects and influenced by environmental factors.

« only a few genes that contribute more than 1% of the genetic variation
for any given polygenic trait

” LiveSeeding
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Approaches to link genomic information to a trait
GWAS / QTL mapping * Genomic prediction

. o . = All loci have an effect on the phenotype
* Find few loci with big effects

= all the variation is covered when

» most of the variation is not using all markers
considered

= Many more markers are needed

> Needs few markers to make
predictions

raLG4 chr5LG3
oooooooooo -11 -



Key message

Genomic prediction can be an (alternative)
approach to boost marker-assisted selelction
and with that, improve the breeding success

” LiveSeeding

~12 -



Biological background:
Need and use:
So, how does the genomic prediction works?

In the reference population:

Get markers’ genotypes (Z,)
Get phenotypes (y)

<

Estimate markers effects a from
y=1u+ Z,a + e, possibly
with a Bayesian model

-

In the candidates :

Get markers’ genotypes (Z.)
Take estimates @ from above
Estimate breeding values as

HlLive u =z.4a




Backbone of genomic prediction — the maths

y=Xb+Za+e
Breeding value =u = Za
(00110 2 0)

Za=19 o 0 0 * 1 1|9
\O0 1 0 1 : 0 2/

N
H LiveSeeding LI

Marker effect 14 -



Excurse to the maths part of the problem..

We have many SNPs (predictors) and few phenotypes (measurements), which causes a problem

o That’s because in three dimensions,
which is what we get when we add
@ another axis to our graph for Age, we
Size - have to fit a plane to the data instead of
just a line...
i 0 ' Age
B

” LiveSeeding

- 15 -



With S|m|gle linear regression, we cannot

solve the missing terms in the equation

£~

...or this plane.

Age

” LiveSeeding

- 16 -



With more y values than x (& z axis), we could

—___'%@m_&__—

Trait= n + Marker 1 Marker 2 Marker XYZ

Size = 0.9 + 0.1 x Weight + 0.2 xAge
P ...we can solve for
Size L ° these parameters.
A But..
- - . 9e we have much more markers than
L phenotypic observations
-
| |
4|/| I l_
For example:
i . d, 220 genotypes scored for plant height
L’Vesee ’”9 each genotype has 4,000 markers

-17 -



= More predictors than target values available
» Problem in solving the equations

» asimple linear model

= with fixed effects does not work

But we do not have.

= We can solve this problem by

HlLive

= Considering all SNPs as random effects
= this way, all effects can be jointly estimated

= An alternative idea is to calculate the genetic
distance between genotypes from markers

» Use this information as predictor for the

phenotypes (called GBLUP)

Fixed Effects o Mixed Effects
Simple Linear Regression ! Random Intercept, Fixed Slope
. a‘Z ° .
. " o i N
. . L B L] . B
Mixed Effects o3 Random Effects
Fixed Intercept, Random Slope Random Intercept, Random Slope
. . et .
~ . .. . . Bl " .. . .
. - — . . a2 ™ . NG . . . B3
—. B2 et B
] B3 . B2
https://bookdown.org/steve_midway/DAR/random-effects.html
—c—

GBLUP
- BLUP —e—

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
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Solving it with priors (bayesean) or shrinkage

Lastly, even when there isn’t enough data
& to find the Least Squares parameter

estimates, Ridge Regression can still find
@ a solution with Cross Validation and the
Ridge Regression Penalty.

l

the sum of the squared residuals

+
i ' l i A x Slope2

Weight

Size -

” LiveSeeding

For more information, check out: https://www.youtube.com/watch?v=Q81RR3yKn30

-19 -



3 approaches exist to shrink the regression -

» Ridge regression
= Sum of squared residuals + A * slope?

HlLive

A * slope?= penalty

will lead to the regression becoming less steep as A becomes bigger

How to determine the best A? By cross validation

The slope attribute contains all parameters despite the intercept (so, all markers)
Not all parameters are shrunk equally

Ridge Regression assumes that effects are a priori normally distributed

» [asso (least absolute shrinkage and selection operator)

= FElastic net

Sum of squared residuals + A * [slope|
Many similar attributes to ridge regression
Differences:

Lasso can shrink the slope all way to O
=> Meaningless variables can be eliminated as terms in the equations.

Lasso can exclude useless variables from the equation

Ridge can only minimize their effect

Lasso assumes that (marker) effects are a priori distributed following a Laplace (double
exponential) distribution

a combination of both lasso and ridge regression

= , A & slope are both estimated using prior information, so that the marker information is utilized as a
conditional probability, which depends on priory gained or assumed knowledge, e.g. a marker should not
have an effect of, one phenotypic standard deviation of the trait

-20 -



Bayes way — using a prior information

1. Bayes’s Theorem

. p(A&B|B) = p(A&B|4) p(A)

p(B)

* Where A is unknown (can be a parameter) and B is known (can be a trait phenotype). Therefore, we want to infer values A by
knowing B.

* p(A&B|B) : posterior probability of unknown A given B is known.
* p(B&A|A) : likelihood function, determined by both A and B.

* p(A): prior probability of unknown A.

* p(B): probability to observe B without having any knowledge of A.

2. Bayesian methods are non-linear and likely to be affected by shrinkage, meaning small effects became even
smaller and big effects even bigger.

3. Bayesian regressions are affected by the prior distribution that we assign to marker effects

= each marker has a priori a different variance

P (ai‘agi) =N ({l Ugi)
HLlive

-21 -



Back to the practial application..

—— Which approaches exist?

1. Genomic relationship-based method (GBLUP)
2. SNP effect-based method (SNP-BLUP)

» RR-BLUP — random/ridge regression-BLUP

= BayesA

= BayesB

= BayesC

= Bayes Lasso

HlLive
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GBLUP method

Based on genomic relationships - identical by state (IBS)

quantifying the number of alleles shared between two individuals

genomic relation ship can be calculated for
= additive ..
= dominance ..
= and epistasis effects

the genomic relationship is given in a nxn matrix, where n denotes the genotypes objected to
study — this matrix is also known as additive relationship matrix

= multiple ways exist to calculate this matrix
instead of SNP effects (u), genomic breeding values (Za) are estimated

GBLUP is a BLUP where the pedigree relationship matrix is replaced by the genomic
relationship matrix G.

= )G contains only information from genotypes individuals.

-23 -



Ridge regression BLUP

*RR-BLUP or SNP-BLUP provides SNP effects, but genomic estimated breeding values (u) can be derived as linear
combinations of the SNP effects:

* u = Za (Z marker matrix, a allele effect)
» marker effect follows a priori a normal distribution with a variance o?_ (variance of marker effects )

e markers are independent one from each other
» the prior assumption of normality precludes few markers of having very large effect

All markers with the same variance

Bayes variance prior

n L!Ve P ((j_i‘ggi) =N (0 Jgi)

0.4

0.3
I

p(a) = N (0.0%)

dnorm(x)
0.2
!

0.1

0.0
I

- 24 -
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Bayesian approaches

0.4

= BayesA
= All SNPS have an effect on the trait 3 A
= Few have a large effect, most have a small effect

= => different variances are assumed

dnorm(x)
0.2

0.1

0.0
I

= BayesB ) ' '
= Not many QTL were effecting the traits => many loci have zero variance
= 1 = proportion of SNP have no effect
* 1- 1 = have a non-zero effect
» When nt = 0, BayesB becomes BayesA

= BayesC
= A combination of SNP-BLUP and BayesB
= Combines a distribution with constant variance (SNP-BLUP) and assumes some
fraction m of SNP have no effect (BayesB)
» Ifnt =0, BayesC = SNP-BLUP

= BayseanlLasso
= Sets marker values a prior to small values, instead setting some to 0

m~ Thissis very similar to Ba (jlesA in that a prior distribution is postulated for marker variances. The difference is
the.nature of this prior distribution (exponential in Bayesian Lasso and inverted chi-squared in BayesA),

-25 -



How do these differentiate and perform anyway?

traitl trait2
PLS - —a— PLS —e—
BayesSSVsS |- —e— BayesSSVS - —e—

BayesC - —e— BayesC |- ——
BayesBl |- —e—i BayesBl - —_—6—
BayesAl - —e— BayesAl - ——A
Lassol - —e— Lassol - —e—
Lasso2 |- —— Lasso2 - —e—i

Ridge |- —e— Ridge |- —e—

GBLUP - —— GELUF —e—

BLUP [~ —— BLUF - ——i
Average [~ i Average [~ ——

] 1 1 1 1 1 1 ] I 1 1 1 1 1
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

” LiveSeeding
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https://doi.org/10.1534/genetics.112.143313

Why not simply using machine learning to predict

—=w5?—___

GBM was best, while in simpler cases lasso was superior. In the wheat and rice studies the best

two methods were SVM and BLUP. The most robust method in the presence of noise, missing
data, etc. was random forests. The classical statistical genetics method of genomic BLUP was
found to perform well on problems where there was population structure. This suggests that

standard machine learning methods need to be refined to include population structure

information when this is present. We conclude that the application of machine learning
methods to phenotype prediction problems holds great promise, but that determining which

methods is likely to perform well on any given problem is elusive and non-trivial.

Table2 cvR? for the five ML methods and for BLUP across 10 resampling runs applied to the wheat dataset.
The best performance [or each trait is in boldface. The average ranks for computation of the Friedman test are
on the bottom line

Trait/method Lasso Ridge BLUP GBM RF SVM
Yield (drought) 0.023 0.060 0.217 0.051 0.172 0.219
Yield (irrigated) 0.084 0.162 0.253 0.132 0.184 0.258
TKW 0.172 0.240 0.277 0.218 0.242 0.304
N DTH 0.292 0.325 0.381 0.325 0.358 0.394
- Liveseedi”g Average rank 6.00 4.12 2.00 4.88 3.00 1.00

https://doi.org/10.1007/s10994-019-05848-5 -27 -



How is the performance of the prediction
model assessed?

” LiveSeeding
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Complete data

Validation works like.. - mmemmmmm

.
pa
es

= We split the population of individuals in two groups - training and testing

= K-fold cross-validation

In this method, the genotyped population is randomly divided into k subsets, and
phenotypes are removed from one subset a time

Predictivity for each fold is calculated by a Pearson correlation

The final prediction ability across all k-folds is calculated by summing up the
correlation scores and dividing them by the number of k-folds.

partitioning of training and testing populations will affect the accuracy attained
large testing sets will reduce the reference population size and reduce accuracy

when the testing set is too small, assessing differences in accuracy between methods
forsa particular data set may not be possible

29



Why do we need to split in a

—training and testing

o Bias-Variance Trade-off

overfit

3enero\332a‘tion error

o "The two variables to measure the effectiveness of your (Lest)

model are bias and variance.”

varoance. Bl

_vanance

o Bias is the error or difference between points given and
points plotted on the line in your training set.

o (Sums of squares of the points to the regression lines in the
training data set)

o Variance is the error that occurs due to sensitivity to small
changes in the training set

o (Sums of squares of the trained regression to the test-set points)

IncreasingRias
R ——

HlLive
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What means what?

« High variance high bias — chose a different
model to predict

* High bias low variance — the overall variation
in the training set must have been much
smaller than In the testing set, run cross-folds

* Low bias high variance — the variance in the
testing set might be higher than in the
training set — change composition of
test/train sets.

* Low bias low variance — this is what we ideally
want

” LiveSeeding

Low Variance High Variance

High Bias

Low Bias
LL)
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Summary
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Using GP for marker assisted selection (MAS)

PEDIGREE METHOD

P1 )( P2

Phenotypic
screening
Plants space-

planted in rows for
individual plant
selection

Families grown in
praogeny rows for
selection.

Preliminary yield
trials. Selectsingle
plants.

Further vield
trials

Multi-location testing, licensing, seed increase
F8—-F12 and cultivar release

” LiveSeeding

EARLY GENERATION SELECTION
MARKER ASSISTED SELECTION

MAS

Qnly desirable F3
lines plantedin
field

Families grown in
progeny rows for
selection.

Pedigree selection
based on local
needs

Multi-location testing, licensing, seed increase
F8 — F12 and cultivar release
http://dx.doi.org/10.19080/ARTOAJ.2018.14.555914




Additonal - extracting the most useful markers for GP

Many markers explain very little to none of the phenotypes variation
» Reducing the complexitiy and costs by «selecting» markers

Different approaches exist

= Top down

= Using all markers as start set and reduce to a number of markers with an equal prediction
accuracy

= Advantage: no prior QTL knowledge requiered; User defined marker count & models
= Disadvantage: untargeted approach with a lot of noise at the beginning
* Down up
= Starting with a set of QTLs and add markers until a sufficent precision is reached
= GMStool
= Advantages: Picks the absolute best marker combinations; very targeted
= Disadvantages: prior knowledge of QTLs; no marker count threshold selection, models fixed

HlLive
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https://github.com/JaeYoonKim72/GMStool

Additonal - extracting the most useful markers for GP

Many markers explain very little to none of the phenotypes variation
» Reducing the complexitiy and costs by «selecting» markers

Effect size

AETR _ Qia i
e l"‘ o AT
4 @ o,
0.001 &% ot
o (956! 520}
@ %0

chr5LG3

chr4dLG4

-0.25+
chr1LG6 chr2LG1 chr3LG5
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Chromosome
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https://github.com/JaeYoonKim72/GMStool

Additional Information

10.1534/genetics.112.147983
http://genoweb.toulouse.inra.fr/~alegarra/GSIPpdf
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=gs lourenco.pdf
https://www.nature.com/articles/ng.3097
https://www.nature.com/articles/s41598-020-76759-y#Abs1
https://github.com/JaeYoonKim72/GMStool
https.//www.youtube.com/watch?v=UAj4TeAZ-AM
https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw
https://www.nature.com/articles/s41598-020-76759-y#Abs1
https://github.com/JaeYoonKim72/GMStool

HlLive

-36 -


http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=gs_lourenco.pdf
https://www.nature.com/articles/ng.3097
https://www.nature.com/articles/s41598-020-76759-y#Abs1
https://github.com/JaeYoonKim72/GMStool
https://www.youtube.com/watch?v=UAj4TeAZ-AM
https://www.youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw
https://www.nature.com/articles/s41598-020-76759-y#Abs1
https://github.com/JaeYoonKim72/GMStool

p_train - g
p_test = predict(

r(pheno_trai
ot

» round(m

. hena_train)
} Bhena_test

hloroph,
ch y

,» shape - Environm

® 07042021
@ 08042021
@ 08042021
@ 11042021
@ 12042021
@ 13042020
@ 14042021
@ 15042021
@ 1701201
@ 180a20m
@ 30032021
@ 31032021

Time

2. Part

Get into the code - applied programming

Checking out different R packages
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Quiz & Homework

To recieve the participation certificate

1. Please perform the homework

= The tasks & data can be found here:
= https://github.com/mischn-dev/LiveSeeding-Training-T4.2/tree/homework

2. Send your results to michael.schneider@fibl.org

3. Todays documents can be found here:
» https://github.com/mischn-dev/LiveSeeding-Training-T4.2/tree/main

38
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