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Host location by arthropod vectors: are microorganisms 
in control? 
Mitchel E Bourne1,*, Dani Lucas-Barbosa1,2,# and  
Niels O Verhulst1,$   

Vector-borne microorganisms are dependent on their arthropod 
vector for their transmission to and from vertebrates. The ‘parasite 
manipulation hypothesis’ states that microorganisms are likely to 
evolve manipulations of such interactions for their own selective 
benefit. Recent breakthroughs uncovered novel ecological 
interactions initiated by vector-borne microorganisms, which are 
linked to different stages of the host location by their arthropod 
vectors. Therefore, we give an actualised overview of the various 
means through which vector-borne microorganisms impact their 
vertebrate and arthropod hosts to ultimately benefit their own 
transmission. Harnessing the directionality and underlying 
mechanisms of these interactions driven by vector-borne 
microorganisms may provide tools to reduce the spread of 
pathogenic vector-borne microorganisms. 
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Introduction 
Microorganisms are considered an important part of the 
extended phenotype [1]. Indeed, the holobiont concept 
has been proven to extend to the health and behaviour 
of organisms across the tree of life [2,3]. (Micro) 

organisms inherently have a selfish nature, driven by the 
fundamental urge to ensure the spread and transmission 
of their genes [4]. Not all (micro)organisms can ensure 
this by themselves, and many depend on environmental 
factors or interactions with other organisms, often across 
different kingdoms. For instance, pollinators are instru
mental in the evolutionary success of many plants by 
spreading their pollen, enabling plant reproduction [5]. 
Also, arthropod-vectored viruses, bacteria, protozoa and 
parasites (from now on referred to as vector-borne mi
croorganisms) are dependent on arthropod vectors for 
their survival, spread, transmission and reproduction and 
thereby their evolutionary success [6]. 

At least three principal players, all with different interests, 
are involved in the spread of vector-borne microorganisms: i) 
the vector-borne microorganisms themselves; ii) the ar
thropod vector, which serves as an intermediate host and 
enables spread and transmission of the vector-borne micro
organisms and iii) the vertebrate host where the vector- 
borne microorganisms replicate and/or sustain themselves  
[7,8]. Arthropod vectors are under selection to find a blood 
host to complete their lifecycle, whilst vertebrate hosts are 
under selection to become inconspicuous, acquire defensive 
traits or perform defensive behaviours against arthropod 
vectors due to the pathogenic microorganisms they may 
carry and the subsequent fitness costs these pathogenic 
microorganisms potentially bring [6,9,10]. Because vector- 
borne microorganisms are dependent on the success of their 
arthropod vectors, this increases the evolutionary pressure 
on vector-borne microorganisms to ensure their own spread 
or infectivity. 

According to the ‘parasite manipulation hypothesis’, 
vector-borne microorganisms likely evolved intricate 
ways to manipulate the interactions between their 
arthropod vectors and vertebrate hosts to favour their 
own evolutionary success [11,12]. Indeed, vector- 
borne microorganisms are known to affect the phy
siology of their vertebrate host to favour the host 
preference of subsequent arthropod vectors [13]. In 
addition, arthropod vectors are subjected to altera
tions in their own physiology and homeostasis after 
infection by vector-borne microorganisms [8], which 
are known to extend to behavioural alterations [14]. 
These alterations may modify the vectorial capacity 
of the arthropod hosts, to the benefit of the vectored 
microorganisms [6,11,12]. 
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Here, we delve into the various means through which 
vector-borne microorganisms impact their vertebrate and 
arthropod hosts to ultimately benefit their own trans
mission. Both the cues emitted by vertebrates, as well as 
several behavioural parameters of the arthropod vector 
potentially play a key role. We focus on the interactions 
involving pathogenic vector-borne microorganisms due 
to their role in the epidemiology of various emerging and 
established diseases globally [7,15]. Nevertheless, in
vertebrates and plants may also be similar victims of 
vector-borne diseases, with vector-borne microorganisms 
altering the homeostasis and behaviour of hosts and/or 
vectors [6,16]. Finally, we discuss current knowledge 
gaps and uncover innovative ways to harness the direc
tionality of these interactions driven by vector-borne 
microorganisms, to ultimately reduce the spread of pa
thogenic vector-borne microorganisms [17]. 

Vertebrate skin bacteria guide the host 
preference of arthropod vectors 
Arthropod vectors have evolved sophisticated sensory 
systems and foraging strategies to navigate their en
vironment in search of blood hosts. When foraging, they 
use a layered foraging strategy in which they subse
quently navigate from habitat to host, using the most 
reliable cues depending on their proximity to potential 
blood hosts [14,18]. At short range, body odours play a 
large role in the host preference of arthropod vectors, 
which are largely produced by microorganisms resident 
on the vertebrate skin [19]. Anthropophilic mosquitoes 
are often more attracted to blood hosts with bacterial 
communities that have a low(er) diversity and a high(er) 
bacterial density [20–22]. In addition, the presence of 

several specific bacterial species or strains may increase 
or decrease mosquito preference strongly (Figure 1)  
[21,23,24]. 

Similar patterns have been shown for interactions be
tween different vertebrates, like mice and primates, and 
mosquitoes [25–27]. Triatomine bugs, which may vector 
the causal parasite of Chagas disease, are also attracted 
by odours produced by similar bacteria (Staphylococcus 
spp.) isolated from the human skin [28]. In addition, 
biting midges are attracted to volatiles produced by skin 
bacteria isolated from their sheep host, and again a 
Staphylococcus species was identified as attractive [29]. 
Regarding other arthropod vectors such as ticks, tsetse 
flies and lice, knowledge on the link between vertebrate 
host microbiome and arthropod vector preference is 
limited (but see Ref. [30]). More studies are needed to 
confirm whether similar effects of bacterial abundance 
and diversity also influence host location and host se
lection by other arthropod vectors. 

Vertebrates infected by vector-borne microorganisms 
have an increased attractivity for arthropod vectors 
Because of the important role of skin microorganisms, 
vector-borne microorganisms affecting the vertebrate 
skin microbiome can have a substantial impact on the 
interaction between vertebrates and their arthropod 
vectors. It is well-established that infected vertebrates 
become more attractive to arthropod vectors compared 
to their uninfected conspecifics [13,27]. Indeed, this is 
attributed to changes in microbial communities affecting 
vertebrate body odour profiles. For example, mice in
fected with Leishmania parasites have an altered skin 

Figure 1  
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Skin microorganisms impact the host preference of uninfected arthropod vectors. The composition of the skin microbiome and the presence of 
specific bacterial species or strains impact the preference of arthropod vectors, affecting the attractiveness of uninfected vertebrate hosts. 
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microbiome, also linked to dysbiosis [31]. The micro
biome of Leishmania-infected individuals has character
istics of more attractive individuals (as mentioned in 
section 2; Figure 1). This results in a higher attractive
ness for the sandfly vector, increasing the uptake and 
subsequent spread of the parasite [32]. In addition, in
dividuals infected with Plasmodium falciparum, the causal 
agent of malaria, are known to be more attractive to 
mosquitoes due to alterations in their body and blood 
odour [25,33–37], and ticks prefer the odours of Borrelia 
afzelii–infected voles over uninfected voles [38]. Tick 
bites alter the (local) skin microbiome, which may play a 
role in the pathogen transmission [39]. However, studies 
linking arthropod vector preference to the dermal mi
crobiome of pathogen-infected vertebrate hosts are 
scarce. A direct link between the increased attraction 
after Borrelia and Plasmodium infection to alterations of 
the dermal microbiome is currently still missing and 
should be the focus of future research. 

Zhang et al. pioneered a study linking changes in the 
dermal microbiome upon infection with dengue virus 
(DENV) and Zika virus (ZIKV) with body odours [27]. 
This study demonstrated that arthropod-borne viruses 
(arboviruses) alter the skin microbiome of a mammalian 
host to increase their attractivity to mosquitoes in favour 
of their own transmission. Bacteria increasing the ver
tebrate host attractivity are enriched after arbovirus in
fection, leading to increased production of the volatile 
compound acetophenone, which is shown to be attrac
tive to mosquitoes. This study highlights the mechanism 
behind this alteration. Arboviruses can downregulate an 
antimicrobial peptide, favouring the acetophenone-pro
ducing bacteria over bacteria in dermal microbiome [27]. 
In addition, cytokines have been identified to possess 
antimicrobial properties [40] and play a key role in the 
antimicrobial defences of vertebrates by regulating im
munological processes including those of the skin  
[41,42]. Cytokines and antimicrobial peptides impact 
each other bi-directionally [43], and the presence of 
viruses and/or mosquito saliva modulates the presence of 
(anti-)inflammatory cytokines [44,45]. Hence, this pre
sents a route through which vector-borne microorgan
isms may manipulate the composition of the vertebrate 
skin microbiome for their own benefit (Figure 2b). 

Such targeted alterations of the vertebrate host micro
biome increase the uptake of vector-borne microorgan
isms (Figure 2a). We propose that the increased 
attractiveness of infected vertebrates is not merely a by- 
product of infection and immunity but results from se
lection on traits of vector-borne microorganisms fa
vouring host manipulations. Future research should 
delve into the consistency of microbiome alterations 
between different vector–host combinations. We pro
pose studies to characterise the dermal microbiome of 
individuals in vertebrate populations with endemic 

vector-borne diseases such as malaria, ZIKV, or yellow 
fever. Identifying the core microbiome of infected in
dividuals will open new avenues for vector control stra
tegies, for example, by selectively targeting enriched 
bacteria or by inhibiting the production of their attrac
tive cues. A mechanistic understanding of these inter
actions may also open doors for novel solutions. In the 
case of DENV/ZIKV manipulations, a supplementation 
of vitamin A was demonstrated to be a direct solution to 
compensate for the arbovirus-induced inhibition of the 
antimicrobial peptide [27]. Future studies should pay 
special attention to antimicrobial peptides and cytokines 
of vertebrates, as these are promising targets for vector- 
borne microorganisms to manipulate the attractiveness 
of infected vertebrate hosts towards subsequent vectors 
(Figure 2b). 

Infected vectors are modulated to favour the 
transmission of vector-borne microorganisms 
When vector-borne microorganisms are ingested by their 
arthropod vector(s), they must overcome immunity, 
disseminate themselves throughout the arthropod vector 
and become resident in the salivary glands (or gut) to 
initiate their spread [15,46]. Evolutionary pressure likely 
drives vector-borne microorganisms to improve their 
transmission to vertebrate hosts, where they can propa
gate themselves most efficiently. Indeed, numerous 
studies have shown that infected arthropod vectors ex
hibit physiological and behavioural changes in a vector- 
borne microorganism–specific way [47]. Physiological 
alterations cause changes in resource allocation to in
crease the longevity of arthropod vector, in benefit of the 
timeframe length during which vector-borne micro
organisms can be spread [12]. Behavioural alterations 
mainly occur at the host selection and feeding stage of 
arthropod vector host location and can affect the trans
mission of vector-borne microorganisms strongly [47]. 
Below, we discuss the behavioural changes of arthropod 
vectors driven by vector-borne microorganisms and the 
impact on the transmission of vector-borne micro
organisms. 

Vector-borne microorganisms alter the host-encounter 
rate of arthropod vectors, but not their host preference 
Vector-borne microorganisms benefit most when they 
can manipulate infected arthropod vectors to have i) an 
increased contact with suitable hosts and ii) a preference 
for individuals who do not harbour the vector-borne 
microorganism yet [6,10]. A plethora of arthropod vectors 
have altered activity patterns after infection by vector- 
borne microorganisms, leading to increased host contacts 
(Figure 2a) [36,48,49]. For example, infection by Borrelia 
burgdorferi or tick-borne encephalitis virus increases the 
activity, mobility and aggressiveness of ticks that pro
mote the transmission of vector-borne microorganisms  
[50,51]. Similarly, triatomine bugs infected by parasitic 
protists of Trypanosoma spp. were shown to take 
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increased risks during predation, facilitating increased 
parasite transmission to mammal hosts [52,53]. Ar
thropod vectors infected by vector-borne microorgan
isms are known to have an increased sensitivity to host 
odours compared to uninfected vectors [14,54–56], 
though the opposite has been shown as well [57,58]. 
Changes in arthropod vector behaviour are likely de
pendent on the type, life stage and localisation of the 
vector-borne microorganism within the arthropod vector  

[47,49,59] and thus may be less obvious at certain 
timepoints. For example, the dissemination of DENV 
into the salivary glands is known to coincide with the 
invasion of the head and antennae, which are required 
for the perception of olfactory cues [54]. Thus, manip
ulations of arthropod vectors may not always be evident 
at every timepoint after dissemination, and observing 
manipulations requires attention for the sensory biology 
of the arthropod vectors. 

Figure 2  
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Infection by vector-borne microorganisms impacts the characteristics of arthropod vectors and the vertebrate skin microbiome. (a) A wide range of 
arthropod vectors show altered behavioural patterns after infection by vector-borne microorganisms, resulting in increased interactions with potential 
hosts. After a successful infection by vector-borne microorganisms, vertebrate hosts become more attractive to uninfected arthropod vectors, 
increasing the spread of vector-borne microorganisms. Lightning bolts indicate the occurrence of host alterations by vector-borne microorganisms to 
increase their transmission or uptake. (b) Putative mechanisms through which vector-borne microorganisms can alter the skin microbiome of 
vertebrates after infection. Vector-borne microorganisms can alter the presence of antimicrobial peptides and cytokines, which both (in-)directly affect 
the composition of the skin microbiome.   
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Besides host affinity, the host selection of arthropod 
vectors also has a large impact on the transmission rate of 
vector-borne microorganisms [6]. When vector-borne 
microorganisms are in control of this part of the tripartite 
interaction, infected arthropod vectors are expected to 
prefer uninfected hosts [6], as demonstrated in a plant- 
insect-virus pathosystem [60]. However, the outcome of 
several studies makes it seem unlikely that this manip
ulation exists for vertebrate pathogens. For example, 
mosquitoes prefer birds infected with the avian malaria 
parasite Plasmodium relictum, regardless of whether the 
mosquitoes themselves are infected [61]. Similarly, 
mosquitoes infected with West Nile Virus and La Crosse 
Virus are not altered in their host preference to favour 
virus transmission [57,62]. A recent field study found 
that mosquitoes infected with Plasmodium falciparum are 
even more likely to bite humans who are also infected  
[63], negatively impacting the transmission rate of P. 
falciparum [6]. Further research is needed to determine 
if this pattern holds for the interaction between other 
arthropod vectors and their vector-borne microorgan
isms. We suggest full-factorial studies involving both 
infected and uninfected arthropod vectors and their 
vertebrate hosts, as done by Cornet et al. [61]. 

Vector-borne microorganisms increase the 
transmission rate of their arthropod hosts 
In concert with host selection, the blood-feeding stage 
presents a critical window where the influence of vector- 
borne microorganisms on their arthropod vectors becomes 
most apparent. The blood-feeding behaviour of infected 
arthropod vectors most directly affects the transmission rate 
of vector-borne microorganisms and is thus a high-priority 
target to be manipulated. While vector-borne microorgan
isms do not seem to alter the host preference of arthropod 
vectors, their impact is most evident during the critical 
blood-feeding stage. A wide range of arthropod vectors, in
cluding fleas, tsetse flies, sand flies and mosquitoes, have a 
disrupted blood uptake mechanism after infection by 
vector-borne microorganisms [11–13]. Tsetse flies infected 
by T. brucei have a modulated composition of their saliva, 
hampering their blood-feeding performance. This alteration 
increases the duration of blood-feeding and thus the like
lihood of parasite transmission [64]. Mosquitoes are more 
persistent in their feeding attempts [59] and have an altered 
duration and size of bloodmeals after infection by vector- 
borne microorganisms [65–67]. Such alterations in the blood- 
feeding stage cause an increased biting and vector compe
tence of arthropod vectors, facilitating an increased trans
mission of vector-borne microorganisms [12,46,67]. 

Linking biting behaviour to the infectivity of arthropod 
vectors is often a difficult task. A key study by Wei 
Xiang et al. harnessed a close-up video recording setup 
to analyse the final stages in the host location of DENV- 
infected mosquitoes [14]. Their findings confirm that 
DENV-infected mosquitoes have a higher affinity to the 

vertebrate host but an increased number of probes be
fore blood ingestion and a higher number of un
successful bites. Using immunocompromised mice, this 
study demonstrated that short successive probes already 
led to transmission of the pathogen, which remains ef
fective after consecutively probing up to three different 
mice [14]. Sequential (uninfected) bloodmeals also in
crease the vector competence of arthropod vectors  
[67,68]. Thus, behavioural alterations induced by vector- 
borne microorganisms go hand in hand with an increase 
in the transmission towards their vertebrate hosts. 

Beyond visible feeding parameters, the feeding beha
viour of arthropod vectors after penetrating the skin has 
the potential to play an equally large role in the trans
mission of vector-borne microorganisms [69]. Parameters 
like salivation time, time to find a blood vessel and blood 
ingestion time affect the transmission of vector-borne 
microorganisms [13,46] but are often not directly mea
sured due to their limited visibility. We propose elec
tropenetrography (EPG), often used in plant–insect 
interactions, as an approach to investigate this currently 
unknown interface [70]. Using this method, it was al
ready demonstrated that infected arthropod vectors of 
plant viruses have an altered feeding behaviour to in
crease viral transmission [71]. 

Conclusion/discussion: are vector-borne 
microorganisms in control? 
Because of the exploitative nature of the relationship with 
their hosts, vector-borne microorganisms are bound to alter 
their host in some way and cause adaptive changes (by- 
products of physiological activities) [11,12]. When vector- 
borne microorganisms are in control of the interaction with 
their host(s), we expect true manipulations to be more 
evident than adaptive changes. True manipulations differ
entiate themselves from adaptive manipulations by having i) 
a clear cause and effect (e.g. targeted products that manip
ulate host pathways) and ii) strictly must increase the 
transmission of vector-borne microorganisms [12,72]. We 
identified various means through which vector-borne mi
croorganisms ultimately benefit their own transmission. To 
further disentangle whether vector-borne microorganisms 
are in control of the tripartite interaction, future studies 
should aim to identify parasite-produced products that ma
nipulate host pathways. This has been demonstrated for P. 
falciparum, which produces a metabolite (HMBPP), indu
cing red blood cells to release CO2 and other attractive vo
latile compounds, increasing the attractivity of the 
vertebrate blood [37]. This has the potential to increase the 
attractivity of the vertebrate host, but it is currently un
known how vertebrate (skin) volatiles and mosquito attrac
tion are impacted by such changes. Similarly, we speculate 
that products of various vector-borne microorganisms target 
(the production of) antimicrobial peptides and/or cytokines 
to increase the attractiveness of their vertebrate host [27]. 
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Understanding the interactions driven by vector-borne 
microorganisms can open new avenues for vector control. 
The characteristics of poorly attractive microbiomes may 
be used as blueprint to decrease the attractiveness of 
vertebrate hosts to arthropod vectors, for example, by 
using pre- or probiotics to steer the microbiota [73]. 
Odour-based traps are shown to be an effective inter
vention to reduce malaria incidence [74]. Traps in
cluding characteristic skin microorganisms present on 
attractive hosts, or the attractive volatile compounds 
they produce, may enhance the efficacy and continuity 
of such interventions. In addition, we propose innovative 
vector control strategies that target these skin micro
organisms on vertebrates. For example, bacteriophage- 
derived endolysins can provide us with new tools due to 
their specificity, allowing selective removal of attractive 
bacterial species from a skin bacterial community [75]. 

Recent developments in vector biology increasingly take 
vector-borne microorganisms and their manipulations into 
account. Vector-borne microorganisms impact the host-lo
cation process of their arthropod hosts, by impacting the 
cues emitted by vertebrates, as well as by triggering several 
behavioural alterations of the arthropod vector. We argue 
that the vector-borne microorganisms appear to steer the 
host preference of arthropod vectors in such ways that they 
(vector-borne microorganisms) are, indeed, in control of the 
tripartite interaction. Future efforts will teach us only more 
about the exciting mechanisms through which these ma
nipulations occur. 
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