

Research Institute of Organic Agriculture FiBL info.suisse@fibl.org | www.fibl.org

The Research Institute of Organic Agriculture FiBL

Climate Change and Carbon Sequestration

02.05.2024, Webinar. Lin Bautze (lin.bautze@fibl.org)

FiBL group

- FiBL Switzerland
 Founded 1973
 290 employees
- FiBL Germany
 Founded 2000

65 employees

FiBL AustriaFounded 200436 employees

- ÖMKI Hungary
 Founded 2011
 22 employees
- FiBL FranceFounded 20167 employees
- FiBL EuropeFounded 20177 employees

FiBL Switzerland with sites in Frick & Lausanne

- Founded in 1973
- 290 employees
- Research, consulting, continuing education and development cooperation
- Research in modern infrastructure at the Frick site and on over 150
 Swiss organic farms

Departments of FiBL Switzerland

- Soil Sciences
- Crop Sciences
- Livestock Sciences
- Food System Sciences

- International Cooperation
- Extension, Training & Communication
- Suisse Romande
- Finances, Resources & Administration

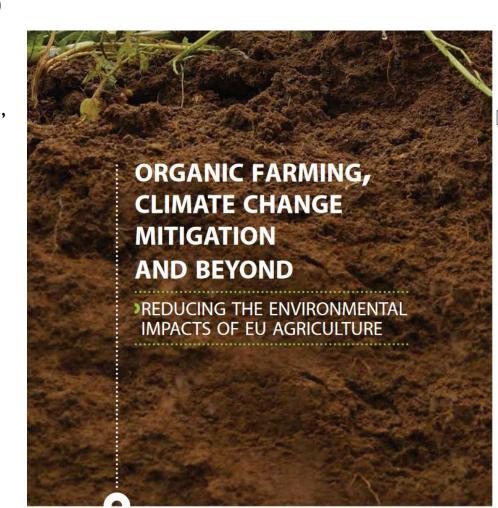
Department of Soil Sciences

Main areas of work

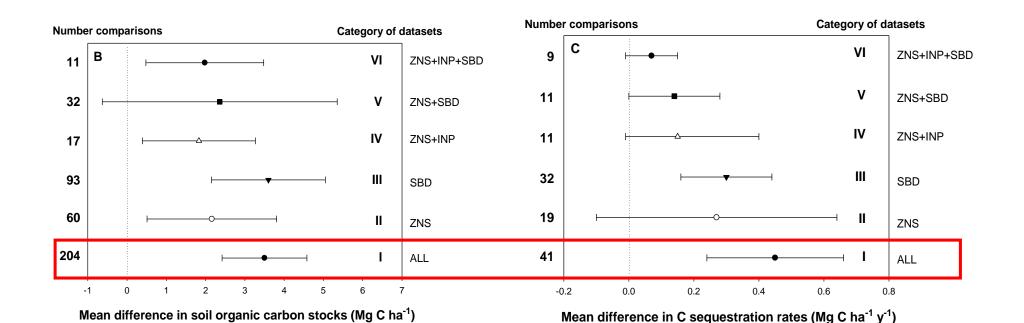
- Soil fertility & climate
- Nutrient management & symbioses
- Cultivation techniques in arable farming
- Long-term trials such as the DOK trial in Therwil

DOK trial (long-term trial since 1978)

biodynamic (D), organic-biological (O) and conventional (K) cultivation of arable crops

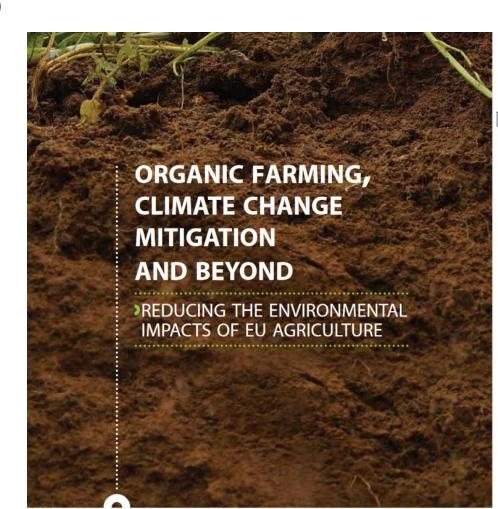


Recording the climate impact of the use of recycled fertilisers


Organic Agriculture and Climate Change

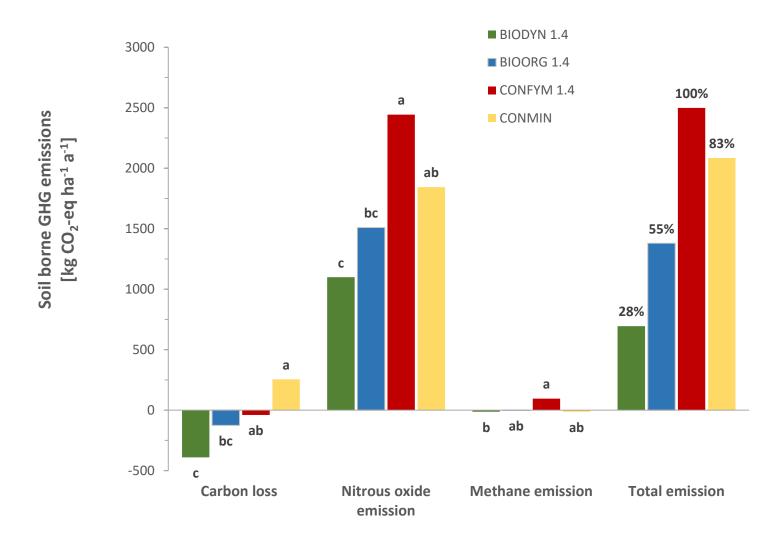
- no synthetic fertilizers (production, spreading..)
- reduced emissions of livestock feed
- higher C-sequestration potential (Gattinger et al., 2012),

Global Meta-Analysis: C-sequestration organic vs. conventional


Higher C-storage (3.50±1.08 Mg C ha⁻¹) in top soils (0-20 cm) under organic management.

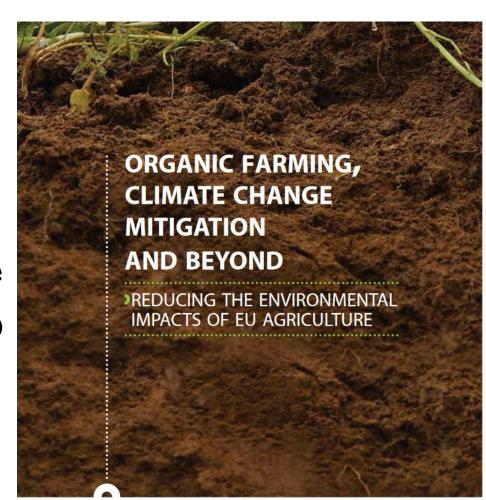
Net-sequestration of 450 kg C ha⁻¹ y⁻¹ across all organic soils. Lower potential for "zero net input systems" (\leq 1.0 GVE ha⁻¹): 70 – 270 kg C ha⁻¹ y⁻¹.

Gattinger, A., Müller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mäder, P., Stolze, M., Smith, P., El-Hage Scialabba, N., Niggli, U. (2012) Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences - PNAS, 109 (44), pp. 18226-18231.


Organic Agriculture and Climate Change

- no synthetic fertilizers (production, spreading..)
- reduced emissions of livestock feed
- higher C-sequestration potential (Gattinger et al., 2012)
- lower area N2O emissions (Skinner et al., 2014)

DOK-trial: Synthesis climate effect of organic agriculture



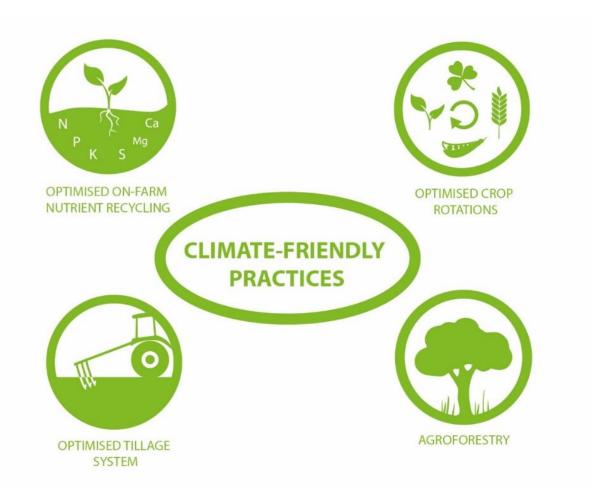
Organic Agriculture and Climate Change

- no synthetic fertilizers (production, spreading..)
- reduced emissions of livestock feed
- higher C-sequestration potential (Gattinger et al., 2012)
- lower area N2O emissions (Skinner et al., 2014)

→ 17% of EU agriculture emissions could be avoided by organic agriculture (Muller et al. 2016)

Expanding Boundaries

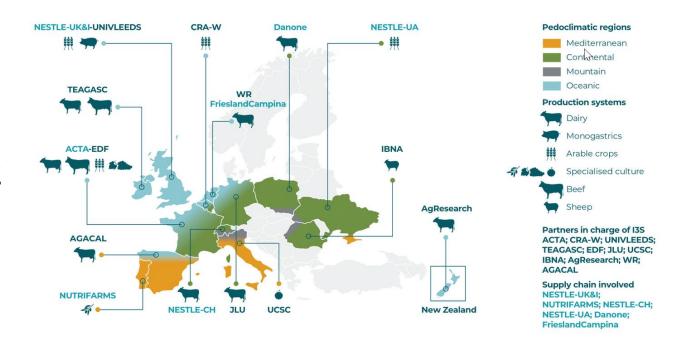
Direct vs. Indirect emissions in agriculture:


- land use change (LUC)
- livestock feed and embedded deforestation
- production of agrochemicals / inputs
- transport, storage of products
- food waste

Reducing Emissions in Organic Agriculture

SOLMACC Projekt (2013-2018) https://solmacc.eu/

- 3 countries, 12 farms, 48 measures
- successful collaboration between farmers, advisors and researchers



ClieNFarms (2022-2025)

https://clienfarms.eu/

Demonstrate, evaluate and improve technical, organisational and financial solutions at the farm level that will contribute to achieving climate-neutrality of European agriculture by 2050.

- Life cycle assessments
- Soil data with satelite images
- Demonstration of practices

Climate Farm Demo

2022-2029

https://climatefarmdemo.eu/

A European-wide Network of **Pilot** Farmers implementing and demonstrating Climate Smart Solutions for a carbon neutral Europe.

- More than 80 partners
- More than 1'500 farms
- More than 4'500 demo events
- → Goal of 20% organic farms

Make Changes and Benefits Visible

1	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X
1	QUALITATIVE COMPARISON	Cool Farm Tool	DECIDE	Agrosfâr	FARM CARBON CALCULATOR	KLIR	FaST-Navigator	Cap2er (Level 2)	ANCA	CONVIS	Biocode	Spanish Carbon Footprint Tool	CARBON F&L	AGNAV	SANDY	GES&VIT	BOVID CO2 / ARDICARBON	CAP'ZER Grandes	EkonMod	Klimrek	Agrecalc	GEEP	ES GREEN TOOL	TEKLA
2	Methodology available ?	3	2	3	3	2	3	3	3	2	1	2	0	1	2	0	0	2	0	?	1	2	2	2
3	Upfront level of transparency of emission factor data	3	3	3	3	3	3	3	3	3	2	3	0	2	2	/	0	3	?	3	1	3	3	3
4	Does the tool include CH4 emissions from enteric fermentation?	2	2	3	1.5	2	2	3	3	2	2	/	/	2.5	2	/	1	/	2	1.5	2	1	1.5	1.5
	Does the tool include CH4 emissions from other sources (manure management, rice)?	1.5	2	2	2	2	2	2	2	2	2	0	/	2	2	/	2	/	2	2	2	2	1	2
	Does the tool include N2O emissions from effluent managment ?	1.5	2	1	2	2	2	2	2	1.5	2	/	/	2	2	/	2	/	2	1.5	2	2	1	2
7	Does the tool include N2O emissions from soil ?	1	2	1	2	1	3	2	1	1.5	2	1	2	2	3	1	1	2	0	1.5	2	/	1	?
8	Does the tool include indirect N2O emissions ?	1.5	2	1.5	2	2	1	1	1	1.5	2	2	1	0	2	1	1	2	0	1.5	1	/	1	?
9	Does the tool include direct CO2 emissions - electricity	3	3	3	3	2.5	3	3	3	1	3	3	3	3	2	3	3	3	0	2	3	3	2.5	3
10	Does the tool include direct CO2 emissions - fuel consumption	3	3	3	3	0	3	3	3	2	3	3	3	2	2	2	3	3	0	1	3	2	3	3
11	Does the tool include indirect(external) CO2 emissions	3	3	3	3	1	2	2	2	/	3	0	3	3	/	3	3	3	0	/	3	3	3	3
12	Are GHGs of external manure processing calculated?	?	0	0	3	- 0	0	0	3	0	0	/	/	- 0	1	/	?	/	0	0	0	0	0	0
13	Are GHGs of external fertiliser production calculated?	3	3	3	3	1	3	3	3	3	2	0	3	2	2	3	?	3	0	1	3	/	2	3
14	Are GHGs of food/feed exported calculated?	?	2	3	3	0	0	0	0	0	0	/	/	0	1	/	?	/	0	0	0	/	3	0
15	Are GHGs of feed&bedding imported calculated?	3	2	3	3	2	3	3	3	3	3	/	/	2	2	/	?	/	0	2	3	3	3	3
	Is uncertainty addressed? Is there a publication in which uncertainty of the tool is studied?	2	n	1	3	n	2	0	0	1	1	0	0	1	0	0	0	1	o	n	0	0	2	2
	Does the tool include land use change? For loss of carbon storage Tier from IPCC?	1	1	1	1	0	1	1	2	1	n	n	0	0	3	0	?	3	0	0	1	/	1	1
	Does the tool include carbon sequestration in soils?	1	1.5	0	3	0	1	1	3	2	1	0	1	1	2.5	3	?	3	0	0	1	/	1.5	1.5
	Does the tool include carbon sequestration in biomass? (Production with trees)	1	1	0	2.5	0	1	0	0	0	0	1	1.5	0	3	0	?	0	0	0	1	/	0	0
	Does the tool include an organic matter balance? (like Nitrogen Balance not only the		-		2.10		_						210			-				-		,		
	sequestration).	0	0	0	0	0	0	0	3	0	0	0	0	0	0		?	2	0	?	?	/	?	?
	Does the tool include land use change? For N2O emissions after destroying																							
	grassland/perrenial crop	?	0	1	0	0	0	1	2	2	0	0	0	0	3		?	3	0	0	?	/	?	1
	Is fuel consumption calculated based on farm activities?	3	1	3	3	0	3	1.5	2	2	3	3	/	1	3	2.5	?	3	0		3	/	1	1
	GWP (Global Warming Potential) (how they count N2O/CH4/CO2 as CO2 eq)	3	2	3	2	3	?	3	0	?	3	2	2	3	3	2	3	2	0	2	3	3	1	1
	, , , , , , , , , , , , , , , , , , , ,											_												

Make Changes and Benefits Visible

1 2	Practice No.	Measure	Level	Category Sub-category	Is the practice suitable for organic farming?	Mitigation and Adaptation	For adaptation levers, adaptation to which risk
165 2	246	Establish agroforestry (20% fruit trees) (ha/yr)	Plot/crops	Production/system and land use change	Organic	AM	Drought
166	247	Establish agroforestry (20% nut trees trees) (ha/yr)	Plot/crops	Production/system and land use change	Organic	AM	Drought
167	248	Recycling of silage film: for silage bales (per bale)	Plot/crops	Production/system and land use change	Organic	M	
168 2	249	Recycling of silage film: for silo / silo sausage (per kg)	Plot/crops	Production/system and land use change	Organic	M	
169 2	250	Adapting plot size and shape	Plot/crops	Soil management	Organic	Α	Excessive water
170 2	251	Adapting soil tillage to the slope	Plot/crops	Soil management	Organic	Α	Excessive water
171 2	252	Choosing substrate which improve total soil water availability (horti	Plot/crops	Soil management	Organic	Α	Drought
172 2	253	Maintaining a seeded or spontaneous grass cover (perennial crops)	Plot/crops	Soil management	Organic	Α	Heat
173 2	254	Maintaining or creating embankments	Plot/crops	Soil management	Organic	Α	Excessive water
174 2	255	Mulching (mulch film /kg)	Plot/crops	Soil management	Organic	Α	Drought
175 2	256	Mulching (plant residues / kg)	Plot/crops	Soil management	Organic	Α	Drought
176	257	Mulching (wood chips and bark mulch / kg)	Plot/crops	Soil management	Organic	Α	Drought
177 2	258	Planting exported cover crops	Plot/crops	Soil management	Organic	Α	Excessive water
178 2	259	Planting non-exported cover crops	Plot/crops	Soil management	Organic	Α	Excessive water
179 2	260	Adding organic matter to the soil	Plot/crops	Soil management	Organic	AM	Excessive water
180 2	261	Implanting a permanent cover crop (field crops)	Plot/crops	Soil management	Organic	AM	
181 2	262	Incorporate crop residues into the soil	Plot/crops	Soil management	Organic	AM	

→ Various solutions are available!

Common Discussion points...buisness case soil

Compensate farmers....a good idea, but:

- different soil potential
- additionality
- permanence
- potentially creates new emissions
- leakage effects

Journal of Environmental Management

Volume 330, 15 March 2023, 117142

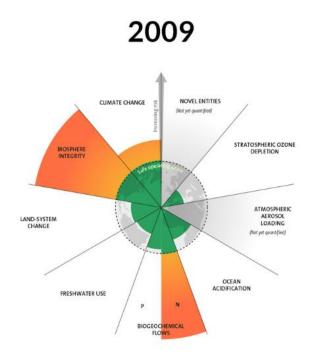
Research article

Carbon farming: Are soil carbon certificates a suitable tool for climate change mitigation?

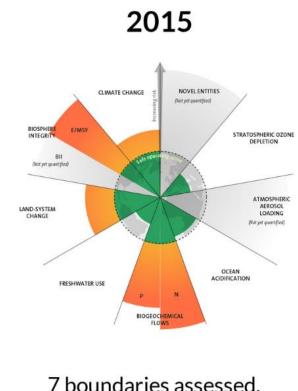
Carsten Paul a Rartosz Bartkowski b, Cenk Dönmez i, Axel Don c, Stefanie Mayer d, Markus Steffens e, Sebastian Weigla, Martin Wiesmeier df, André Wolfg, Katharina Helming dh

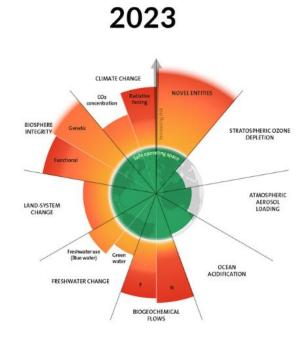
Show more V + Add to Mendeley \ll Share 55 Cite https://doi.org/10.1016/j.jenvman.2022.117142 7

Get rights and content 7


Under a Creative Commons license **→**

Highlights


- · Soil-based carbon certificates are sold as voluntary emission offsets.
- Private certification schemes provide financial incentives for carbon farming.
- However, they are not a suitable tool for climate change mitigation.
- Permanence, additionality and monitoring are not ensured; leakage effects may occur.


Don't forget....

7 boundaries assessed, 3 crossed

7 boundaries assessed, 4 crossed

9 boundaries assessed, 6 crossed

https://www.stockholmresilience.org/research/planetary-boundaries.html

Organic Agriculture and Climate Change

Co-benefits:

- Biodiversity
- Water management
- Animal health
- Income
- Local structures, such as Community Supported Agriculture (CSAs)
- •

Make Changes and Benefits Visible

Challenges that come along with carbon sequestration:

- How to compare results? Between farms and tools?
- How to deal with different system boundaries? No tool covers all!
- How to deal with data gaps and long-term effects (e.g. biochar)?
- How to represent differences from organic farming?

Conclusions and Open Questions

- Reduce emissions by engaging various actors
- Don't forget other sustainability issues
- There are many different solutions, but farmer's need support for contextspecific selection and suitable tools and we need to be aware are we talking policy, business or both
- Communication and finding a common language is key to engage!

FiBL online

www.fibl.org

www.bioaktuell.ch

fiblfilm

@fiblorg

@FiBLaktuell

linkedin.com/company/fibl

Contact

Research Institute of Organic Agriculture FiBL Ackerstrasse 113, Box 219
5070 Frick
Switzerland

Phone +41 62 865 72 72 Fax +41 62 865 72 73

info.suisse@fibl.org www.fibl.org

