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A B S T R A C T

Perilla seeds contain a rich array of essential minerals, thus having the potential to address multiple micro-
nutrient deficiencies at a time. However, traditional methods of mineral estimation are complex, time- 
consuming, expensive, and require technical expertise. This study includes the development of Near-Infrared 
Reflectance Spectroscopy (NIRS)-based prediction models for predicting five important minerals (Calcium, 
Copper, Magnesium, Manganese, and Phosphorus) using machine learning and deep learning techniques. Four 
models, including 1D Convolutional Neural Networks (1D CNNs), Artificial Neural Networks (ANNs), Random 
Forests (RFs), and Support Vector Regression (SVR), were developed and evaluated. The developed 1D CNN 
model outperformed other considered models in predicting calcium, magnesium, and phosphorus content with 
RPD (Residual Prediction Deviation) values of 1.75, 1.83, and 2.96, respectively. Whereas, SVR performed best in 
predicting copper and manganese with an RPD of 1.82 and 2.2, respectively. The 1D CNN model demonstrated 
R2 (Coefficient of determination) values above 0.65 for all minerals, with a maximum of 0.88 for phosphorus. In 
addition, the developed models performed superior as compared to the Partial Least Square Regression method 
(R2= 0.32). The developed models provide efficient tools for rapidly screening perilla germplasm available in 
global repositories, thus aiding in the selection of mineral-rich genotypes to mitigate micronutrient deficiencies.

1. Introduction

Orphan or underutilized crops are increasingly recognized as 
important components of global food and nutritional security strategies 
due to their inherent nutritional richness and adaptability to diverse 
ecological conditions (Mabhaudhi et al., 2019; Talabi et al., 2022). The 
North Eastern Hill (NEH) region of India is a treasure trove of biodi-
versity and a unique ecosystem in the world, encompassing a diverse 
array of germplasm and an extensive collection of potentially underu-
tilized crops. Perilla frutescence L. is one such potential herbaceous plant 
that belongs to the mint family Lamiaceae and is native to East Asia, 
including China, Japan, Korea, and India. Perilla seeds are highly 
nutritious, containing 35.0–45.0 % polyunsaturated fatty acids (PUFAs) 

and protein levels ranging from 15.7 % to 23.9 %, making them superior 
to conventional oil sources in terms of both fatty acid composition and 
protein content (Longvah and Deosthale, 1998; Longvah et al., 2000). 
Beyond their nutritional value, perilla seeds and oil have significant 
industrial and therapeutic potential. Industrially, perilla oil is used in 
the production of varnishes, paints, and inks due to its quick-drying 
properties. Therapeutically, perilla oil is rich in omega-3 fatty acids, 
which have been linked to anti-inflammatory, antioxidant, and cardio-
vascular health benefits. The plant is also used in traditional medicine to 
treat respiratory ailments, allergies, and other inflammatory conditions, 
further highlighting its wide-ranging applications ((Dhyani et al., 2019; 
Kaur et al., 2024; Wu et al., 2023).

However, the nutritional significance of perilla encompasses not only 
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its fatty acid and protein content but also includes a diverse array of 
essential minerals crucial for human health, including calcium, copper, 
magnesium, manganese, phosphorus, and zinc. These minerals are 
important for various physiological and metabolic processes in both 
humans and animals (An et al., 2022; González-Montaña et al., 2020; 
Long and Romani, 2014; Tang et al., 2023). Despite its mineral-rich 
potential, utilization of perilla remains underexplored, primarily due 
to the predominant focus on its oil content, leading to the discarding of 
the defatted seed meal (Kim et al., 2019; Kim and Yoon, 2020). How-
ever, several studies have explained the potential of perilla seeds as 
natural antioxidants and as valuable additions to animal diets, 
contributing to health improvement and enhanced production (Arjin 
et al., 2020; Kim et al., 2019; Ruamrungsri et al., 2016). The significant 
mineral content of perilla seeds and their potential to enhance food and 
feed quality necessitate the accurate estimation of their mineral content. 
This requires screening large germplasm to assess mineral levels pre-
cisely. Traditional methods such as Atomic Absorption Spectroscopy 
(AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP 
OES), and spectrophotometry have been used for this purpose (Khan 
et al., 2022; Yeung et al., 2017). However, generally, these methods 
involve complex pretreatment procedures, time-consuming, significant 
financial investments, and specialized technical expertise (Baianu and 
Guo, 2011).

In contrast, Near-Infrared Reflectance Spectroscopy (NIRS) offers a 
promising alternative, providing a non-destructive, cost-effective, and 
sustainable solution for rapid nutritional profiling of diverse crop 
germplasm (Cozzolino, 2015; Fassio and Cozzolino, 2004). NIRS facili-
tates the development of calibration models by correlating spectral at-
tributes with desired parameters, enabling real-time, non-destructive 
analysis, and streamlining crop nutrition assessment and breeding pro-
grams. Previous studies have successfully utilized NIRS-based prediction 
modeling for the biochemical assessment of various food items; for 
example, Fassio and Cozzolino (2004) effectively used NIRS to predict 
the biochemical composition of sunflower seeds through MPLS, while 
Wang et al. (2014) analyzed the nutritional composition of faba bean 
seeds using NIRS through PLS regression. Additionally, Gohain et al. 
(2021) developed an NIRS model using Modified Partial Least Square 
(MPLS) regression for Brassica oilseed. However, recent advances in 
machine learning (ML) algorithms have further enhanced the predictive 
accuracy of NIRS models, resulting in better performance compared to 
traditional methods. For instance, Posom and Maraphum (2023) pre-
dicted starch content in cassava using NIRS and ML algorithms, while Ye 
et al. (2022) reported that ML algorithms can be effectively utilized for 
the quality inspection of grapes. Bai et al. (2022) used ML learning to 
predict quality-related parameters of tea. Additionally, Folli et al. (2022)
found that SVM provided better results than PLS in analyzing food 
composition.

Despite the extensive application of NIRS-based prediction modeling 
in estimating various biochemical constituents across different crops, to 
the best of our knowledge, mineral content prediction models for Perilla 
have not been reported so far. One of the challenges in developing such 
models lies in the poor absorption of energy by minerals in the NIR re-
gion, as minerals are often bound (rather than in a free form) to organic 
molecules. Despite this, accurately predicting mineral content is 
important for selecting genotypes with high nutritional value. Such 
predictions can facilitate the development of industrial applications and 
food products, helping to address micronutrient deficiencies and 
improve human health through nutritionally superior perilla-based 
foods., To address this gap, the current study focuses on developing 
predictive models of the mineral content of perilla seeds by utilizing 88 
perilla germplasm samples collected from the NEH region of India. This 
study used ICP-OES for reference data generation and NIR spectroscopy 
for spectral acquisition. Utilizing 1D Convolutional Neural Networks 
(1D CNNs), Artificial Neural Networks (ANNs), Random Forests 
Regression (RFR), and Support Vector Regression (SVR) algorithms, 
regression models were developed for profiling the mineral content 

including calcium, copper, magnesium, manganese, and phosphorus of 
perilla seeds. The assessment of the developed models was conducted 
using independent test data. This study is the first report of the inte-
gration of NIR spectroscopy with ML and DL models to determine 
essential minerals in perilla seeds. By developing mineral-specific 
models, our research aims to provide a novel approach for accurately 
assessing mineral content, thus, advancing analytical methodologies in 
agricultural science and nutritional research.

2. Materials and methods

2.1. Overall framework of the present study

The workflow followed in the present study for predicting mineral 
composition in perilla seeds involved several key steps, as depicted in 
Fig. 1. Initially, perilla seed samples were collected and loaded into a 
Near Infrared Spectrometer (NIRS) for spectral analysis. The internal 
components of the NIRS instrument facilitated the detection of NIR 
signals emitted from the dried seed samples. These signals were then 
used to generate a typical NIRS spectrum, indicating peaks corre-
sponding to different sample characteristics. Mineral content estimation 
for calcium, copper, magnesium, manganese, and phosphorus was 
conducted for the 88 samples using Inductively Coupled Plasma - Op-
tical Emission Spectroscopy (ICP-OES). Subsequently, the data obtained 
from ICP-OES analysis was input into the NIRS calibration file. NIRS- 
based models were then developed using machine learning algorithms, 
including ANN, RFR, and SVR. Additionally, the 1D CNN technique was 
used to develop NIRS-based models. Finally, the developed models were 
validated and their performance was assessed using test data.

2.2. Plant materials and sample preparation

A total of 88 diverse perilla germplasm, collected from five different 
locations of North Eastern Hill (NEH) region states including Arunachal 
Pradesh, Manipur, Meghalaya, Nagaland, and Sikkim of India, were 
considered in the present study. These genotypes were cultivated using 
an augmented design with seven blocks and three checks, thereby 
ensuring robust error degrees of freedom. The perilla seeds were grown 
at the experimental farm of the Division of Crop Science, ICAR-Research 
Complex for North Eastern Hill Region, Umiam, Meghalaya, India, 
(Latitude: 25.66◦ N; Longitude: 91.83◦ E) during Kharif season (June to 
October) of the year 2023. The plants were grown under upland con-
ditions, with each plot having an area of 3.5 × 3.0 m and a defined plant 
spacing (50.0 × 35.0 cm). Standard agronomic practices were followed 
throughout the crop season to maintain the crop. The seeds were har-
vested at the physiological maturity stage and dried in a hot air oven at 
approx. 60ºC for 12 hours. The dried seeds were cleaned and then stored 
in an air-tight plastic container for further laboratory analyses.

2.3. Minerals analysis using ICP-OES

Mineral content analysis, including calcium, copper, magnesium, 
manganese, and phosphorus was conducted using 0.5 g of dried perilla 
seed samples. Using a microwave digestor, the samples were subjected 
to digestion with HNO3 (10 mL) and 2 mL of H2O2. Following digestion, 
the resulting extract was adjusted to a final volume of 50 mL and filtered 
through the Whatman No. 42 filter paper (pore size of ~2.5 microns) 
(Tomar et al., 2021a). The samples were then analyzed using an 
inductively coupled plasma optical emission spectrometer (ICP-OES) 
(Agilent Technologies, Model 5110 ICP-OES, Santa Clara, CA, USA) 
calibrated with standard solutions. The concentration of all the minerals 
was recorded in parts per million (ppm).

2.4. NIR-spectra acquisition

The perilla seed samples were kept at room temperature (25 ◦C) for 
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6 hours to standardize temperature and moisture levels, as these factors 
can impact the absorbance and reflectance of NIR waves. Before scan-
ning and every 30.0 minutes thereafter, the NIR spectrometer was 
calibrated by scanning a check sample P/N 60053128, S/N 83924. 
Approximately 5.0 g of the seed samples were scanned using the FOSS 
NIRS DS3 spectrometer (FOSS Nils Foss Alle 1, DK-3400, Hilleroed, 
Denmark). To obtain the spectra, samples were loaded into a circular 
ring cup with a quartz window (3.8 cm in diameter and 1.0 cm in 
thickness). A circular cardboard backing was gently pressed onto the 
samples to ensure uniform packing without air pockets. Each spectrum 
represented an average of 32 scans across the range of 400–2500 nm and 
was recorded as log (1/R) (where R is relative reflectance) at 0.5 nm 
intervals. A comprehensive evaluation of the entire perilla germplasm, 
comprising both landraces and accessions from various regions of the 
NEH region of India, was conducted to estimate the mineral content 
using ICP-OES. The collective near-infrared (NIR) spectra spanning the 
wavelength range of 400–2500 nm for seeds sourced from a diverse 
perilla germplasm collection in the NEH region of India are presented in 
Fig. 2.

2.5. Development of NIRS-based predictive models

For the development of NIRS-based predictive models for mineral 
prediction in perilla seeds, two ML-based algorithms (Random Forest 
Regressor (RFR) and Support Vector Regressor (SVR)) and two DL-based 
algorithms (Artificial Neural Network (ANN) and 1D Convolutional 
Neural Networks (1D CNN) were considered in the present study.

2.5.1. Random forest regressor
The random forest algorithm (Breiman, 2001), a popular ML tech-

nique based on decision trees, is widely applied for its robustness and 
accuracy (Fawagreh et al., 2014). It works by constructing a multitude of 
decision trees, each trained on a bootstrapped subset of the data and a 
random selection of features. These decision trees act like individual 
models, predicting the target variable based on the input features (Biau 

and Scornet, 2016). In the present study, to optimize the performance of 
the random forest model, hyperparameter tuning via grid search was 
conducted. This technique involved testing a range of hyperparameter 
values to identify the optimal configuration. In the present study, grid 
search used various values for key hyperparameters, including the 
number of trees (n_estimators: 50, 100, or 200), maximum number of 
features (max _features: ’auto’ or ’sqrt’), maximum depth of each tree 
(max _depth: 2, 5, 7), minimum number of samples required to split a 
node (min _samples_split: 2, 5, or 10), and minimum number of samples 
required at each leaf node (min _samples_leaf: 1, 2, or 4).

Upon completion of the grid search, a combination of 100 estimators, 
’auto’ for max _features, 2 for max _depth, 2 for min _samples_split, and 1 
for min _samples_leaf was found to be best-performer as hyperparameters. 
Thus, the RFR model was trained with these hyperparameters to maxi-
mize the predictive performance of the model.

2.5.2. Support vector regressor
Support Vector Regressor (SVR) (Cortes and Vapnik, 1995) was 

applied in the present study for the prediction of minerals in perilla 
seeds. It is a widely used ML algorithm and is known for its effectiveness 
in finding optimal hyperplanes for class separation (Gualtieri and 
Chettri, 2000). Using the scikit-learn library (Pedregosa et al., 2011) in 
Python, an SVR model was constructed. To maximize the performance of 
the SVR model, hyperparameter tuning through grid search was con-
ducted (Duan et al., 2003). This process involved evaluating various 
combinations of hyperparameters to identify the optimal configuration. 
In the present study, the optimized value of the regularization parameter 
(C), kernel type, and kernel coefficient (gamma) were determined.

The grid search spanned a range of C (regularization parameter) 
values, including 0.1, 1.0, 10.0, and 100.0, to explore different levels of 
regularization. Additionally, multiple kernel types, including linear, 
radial basis function (RBF), and polynomial, were considered to capture 
different decision boundary shapes. Furthermore, the gamma values 
were varied, including ’scale’ and ’auto’, to adjust the influence of in-
dividual training samples on the decision boundary. Model performance 

Fig. 1. Illustration of workflow employed in the present study for assessing mineral composition in perilla seeds using Near-Infrared Spectroscopy (NIRS) combined 
with machine learning (ML) and deep learning (DL) techniques. (A) Collection of perilla seed samples; (B) Loading of samples into a Near Infrared Spectrometer 
(NIRS); (C) Internal components of a typical NIRS, with spectra obtained from dried seed samples loaded in a circular ring cup with a quartz window (3.8 cm in 
diameter and 1 cm in thickness), and NIR signals detected by the detector; (D) Illustration of a typical NIRS spectrum indicating peaks for one sample; (E) Pre-
sentation of the average combined reflectance spectrum of 88 perilla samples; (F) Estimation of mineral content (Calcium, Copper, Magnesium, Manganese, and 
Phosphorus) for 88 samples using Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES); (G) Input of data into the NIRS calibration file; (H) 
Development of NIRS-based models using ML and DL algorithms; here we shown Artificial Neural Networks (ANN) and 1D Convolutional Neural Network (CNN)- 
models; (I) Validation and inter-performance assessment of the developed models using test data, depicted by accuracy through scatter plots between the reference 
and predicted values.

Fig. 2. A combined plot of the reflectance spectrum of the entire perilla germplasm (88 samples).
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was evaluated using cross-validation techniques to ensure robustness 
and reliability (Sweet et al., 2023). Following the grid search process, 
the best-performing hyperparameters for the SVR model were deter-
mined. The optimal configuration of the regressor included a regulari-
zation parameter of C=1.0, employing a ’rbf’ kernel, and setting gamma 
to ’scale’.

2.5.3. Artificial neural network
Artificial neural network (ANN) models can effectively capture the 

complex non-linear relationships present in the input and target data 
(Hornik et al., 1989); thus, the ANN model was used for predicting the 
mineral content in perilla. The architecture of the ANN model for the 
prediction of mineral composition comprised two hidden layers, with 
the first layer consisting of 20 neurons and the second layer comprising 
10 neurons. The rectified linear unit (ReLU) activation function (Nair 
and Hinton, 2010) can effectively handle nonlinearities in the data, the 
ReLU activation function was used for both hidden layers. To mitigate 
the risk of overfitting during the training of the model, a dropout layer 
was incorporated after the first hidden layer. Dropout is a regularization 
technique that randomly drops a fraction of neurons during training, 
preventing the network from becoming dependent on specific neurons 
(Srivastava et al., 2014). In this ANN model, a dropout rate of 20.0 % 
was applied after the first hidden layer, ensuring that the network re-
mains robust and generalizes well to unseen data. For the output layer of 
the ANN model, a linear activation function was used (Rumelhart et al., 
1986). This activation function is suitable for regression tasks, as it al-
lows the model to output continuous values without imposing any 
constraints on the predicted mineral content. Fig. 3 shows the archi-
tecture of the ANN model designed for predicting mineral content in 
perilla seeds.

2.5.4. 1D convolutional neural networks
In the present study, in addition to the SVR, RFR, and ANN model, 1D 

Convolutional Neural Networks (1D CNNs) were also utilized for min-
eral predictions. 1D CNNs can effectively capture complex patterns 
within spectral data, thus, enabling accurate predictions (Sang et al., 
2022; Shen and Viscarra Rossel, 2021). Fig. 4 shows the architecture of 
the 1D CNN model designed for predicting mineral content in perilla 
seeds. As shown in Fig. 4, the architecture of the 1D CNN model is 
composed of six convolutional blocks followed by a prediction head. 
Each convolutional block comprises a 1D convolutional layer, a batch 
normalization layer (Ioffe and Szegedy, 2015), and a 1D max-pooling 
layer. This sequential arrangement facilitates feature extraction from 
spectral data while reducing feature size for computational efficiency as 
model depth increases (Gholamalinezhad and Khosravi, 2020).

To enhance the ability of the model to capture local patterns and 
mitigate potential noises in the spectral data, an inception module into 
the architecture was integrated into the architecture (Mishra et al., 
2022; Zhang et al., 2021). This inception module (Fig. 4(a)) was con-
structed with two parallel 1D convolutional layers with different filter 
sizes (1×3 and 1×5) to capture both local and global features. The 
outputs of these parallel layers were concatenated to form a compre-
hensive feature representation and the non-linearity function (Nair and 
Hinton, 2010) was subsequently introduced using the ReLU activation 
function. This module was placed at the input of the model, prior to the 
first convolutional block, ensuring early integration of local and global 
information into the extracted features. At the end of the model, the 
prediction head was placed to predict the concentrations of various 
minerals. This head transforms the features extracted by the final con-
volutional block into a 1D tensor using a flattened layer, followed by two 
dense layers with 100 and 50 neurons, respectively. To prevent over-
fitting, a dropout layer with a 20.0 % dropout rate was inserted between 
these two dense layers. Throughout the model, the ReLU activation 
function was used to introduce the non-linearity. However, for the 
output layer, containing five neurons to predict mineral content, a linear 
activation function was utilized, as the regression task does not require 
additional non-linearity in mapping model predictions to continuous 
mineral content values (Rumelhart et al., 1986).

2.6. Pre-processing of data

In the present study, 1D CNN, ANN, RFR, and SVR models were used 
to predict mineral content in perilla using NIRS data. While 1D CNN 
models can directly process the raw spectral data, other models (ANN, 
SVR, and RFR models) require dimensionality reduction of the input 
data. To address this, principal component analysis (PCA) was utilized to 
reduce the dimensionality of the raw spectral data. PCA effectively 
captures the underlying structure and patterns within the data while 
reducing its dimensionality (Beattie and Esmonde-White, 2021). By 
transforming the raw spectral data into a lower-dimensional space 
represented by principal components, a more compact and informative 
representation of the spectral information was achieved in previous 
studies (Beattie and Esmonde-White, 2021; He et al., 2007, 2006; 
Howley et al., 2006). Principal Component Analysis (PCA) was applied 
to reduce the dimensionality of the spectral data, retaining four prin-
cipal components. These components explained over 99.0 % of the cu-
mulative variance, ensuring that the important spectral information 
necessary for accurate mineral prediction was preserved while mini-
mizing overfitting risk in machine learning-based models. The high 
cumulative variance (99.0 % >) indicates that the principal components 
successfully captured the majority of the variability present in the raw 
spectral data.

Fig. 5 illustrates the cumulative variance explained by the derived 
principal components. This plot shows the relative importance of each 
principal component in summarizing the spectral information. These 
four principal components were utilized as input features for the random 
forest, support vector, and ANN models to predict mineral content in 
Perilla seeds.

The output variables have inherent variability across different scales. 
Such disparities in scale among the output features can potentially 
impact the training and predictive capabilities of models (Singh and 
Singh, 2020). To mitigate this issue, pre-processing of output variables 
was performed. To standardize the scale of the output features, the 
MinMax scaler from scikit-learn was used. This scaler transforms each 
feature to a common scale (ranging between 0 and 1 in the present 
study). This step effectively normalizes the output features, bringing 
them onto the same scale and eliminating any potential biases arising 
from differences in scale during the training of models.

Fig. 3. The architecture of the constructed ANN model designed for predicting 
mineral content in perilla seeds.
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Fig. 4. Architecture of the 1D Convolutional Neural Network (1D CNN) for predicting mineral content in Perilla seeds. (a) The inception module featuring two 
parallel 1D convolutional layers with varying filter sizes (1×3 and 1×5) captures both local and global spectral features. (b) 1D convolutional layer, batch 
normalization layer, and max-pooling layer used in architecture of 1d CNN model. (c) The architecture includes multiple convolutional blocks, each consisting of a 
1D convolutional layer, batch normalization layer, and max-pooling layer, which progressively extract important features from the NIR spectra while reducing the 
data dimensionality. The final prediction head, composed of dense layers with ReLU activation and a dropout layer, transforms the extracted features into predicted 
mineral concentrations.

Fig. 5. Plot illustrating the cumulative explained variance by principal components (PCs) alongside the variance explained by each PC.
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2.7. Training of deep-learning models

To train the constructed deep learning-based models (1D CNN and 
ANN models), the dataset was divided into training and testing sets, 
comprising 75.0 % and 25.0 % of the data, respectively. This allocation 
ensured that the testing data remained unseen during the training phase. 
To facilitate effective model training, a robust 5-fold cross-validation 
technique was adopted. This approach involved dividing the training 
dataset into five subsets, with each subset serving as a validation set 
while the model underwent training on the remaining four subsets 
(Sweet et al., 2023). This process was repeated five times, thus allowing 
the comprehensively assess the performance of the model across 
different data subsets and ensuring its generalizability. During the 
training phase, the root mean squared error (RMSE) metric was used as 
the loss function to quantify the disparity between predicted and 
reference values. Additionally, the mean absolute error (MAE) metric 
was utilized to measure the accuracy of the model in predicting mineral 
contents. The Adam optimizer (Kingma and Ba, 2017) with a learning 
rate of 0.0001 was used to update the model weights during training 
over 250 epochs with a batch size of seven instances. K-Fold 
Cross-Validation identified the best-performing model from the five 
folds. This model was then further refined through fine-tuning using the 
entire training dataset. This fine-tuning allowed the model to capture 
more complex patterns present across the entire data, thus, enhancing its 
ability to predict mineral content values with better accuracy.

2.8. Partial Least Squares Regression (PLSR) model

Partial Least Squares Regression (PLSR) provides efficient handling 
of multicollinearity and high-dimensional data while minimizing the 
risk of overfitting, making it suitable for small sample sizes (Farahani 
et al., 2010; Khatri et al., 2021), thus used by numerous researchers for 
predicting quantity through spectral data (Wold et al., 2001). In the 
present study, in addition to ML and DL, the PLSR model was also 
investigated for comprehensive evaluation. The PLSR model was 
implemented using the Scikit-learn library (Pedregosa et al., 2011), and 
a range of numbers of components was tested to determine the optimal 
number of components to be used in PSLR compilation. As depicted in 
Fig. 6 and Fig. 7, the Mean Squared Error (MSE) was observed to be 
lowest and the Residual Prediction Deviation (RPD) highest when using 
five numbers of components. Therefore, the PLSR model was compiled 

with five components while keeping the other hyperparameters at their 
default values.

2.9. Performance evaluation of the developed models

The developed models (1D CNNs, ANN, RFR, and SVR) were 
compared to evaluate their effectiveness in predicting mineral content in 
perilla. A comprehensive set of performance metrics was used to assess 
their predictive accuracy. The coefficient of Determination (R2) metric 
(Eq. (1)) was used to indicate the proportion of variance in predicted 
mineral values explained by the model. A higher R2 value (closer to 1.0) 
signifies a better fit between the actual and predicted data, where 1.0 
represents a perfect fit (Bucchianico, 2007). 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

… (1) 

Where n is the number of samples, yi represents actual mineral values, ȳ 
is the mean of actual mineral values, and ŷi is the predicted mineral 
values.

Additionally, Root Mean Squared Error (RMSE) (Eq. (2)) and Mean 
Absolute Error (MAE) (Eq. (3)) metrics were utilized to assess the per-
formance (Hodson, 2022). RMSE measures the square root of the 
average of the squared differences between the actual and predicted 
values, while MAE quantifies the average absolute difference. Lower 
MSE and MAE values signify superior model performance, indicating 
smaller deviations between predicted and observed mineral values. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

… (2) 

MAE =
1
n
∑n

i=1
|yi − ŷi|… (3) 

Where n is the number of samples, yi represents actual mineral values, 
and ŷi is the predicted mineral values.

The Residual Prediction Deviation (RPD) metric (Eq. (4)) provides a 
robust evaluation of the model by considering both the variability in 

Fig. 6. Line plot illustrating the Mean Squared Error (MSE) values achieved with varying numbers of components in Partial Least Squares Regression (PLSR) model. 
The black circle highlights the minimum MSE value obtained with five components.
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observed data and the prediction error (Viscarra Rossel et al., 2006). 
Thus, developed models were evaluated using the RPD metric as well. 
Higher RPD values indicate better predictive performance by the model. 

RPD =
StandardDeviation(SD)of Observed Values

Root mean squared error
… (4) 

2.10. Statistical analysis

The prediction accuracy of the developed models was assessed 
through a paired t-test conducted at a 95.0 % confidence interval using 
IBM SPSS Statistics 21.0, and the results were presented in the form of 
the standard error of the mean, standard deviation (SD), t-value, and p- 
values.

3. Results and discussion

3.1. Minerals profiling and NIR-spectra analysis of perilla germplasm

In the present investigation, ICP-OES was used to estimate the con-
centration of the five minerals in diverse perilla germplasm of 88 sam-
ples. As shown in Fig. 8, the mineral composition of perilla seeds showed 
significant variability, suggesting its potential for diverse nutritional and 
agricultural applications. Calcium is vital for bone and teeth formation, 
muscle contraction, nerve transmission, and blood clotting 
(González-Montaña et al., 2020). Significant variability was observed 
for calcium levels ranging from a minimum of 4509 ppm to a maximum 
of 6399 ppm, with a mean concentration of 5416 ppm. Copper acts as a 
cofactor in enzymes such as cytochrome c oxidase, vital for cellular 
respiration, and superoxide dismutase, essential for antioxidant defense 
against free radicals. It also facilitates reactions in enzymes like tyrosi-
nase, involved in melanin production, and lysyl oxidase, vital for con-
nective tissue formation (An et al., 2022; Tang et al., 2023). Copper 
content exhibited variability as well, with concentrations ranging from 
11 ppm to 19 ppm, and a mean of 15 ppm. Magnesium (Mg) participates 
in hundreds of enzymatic reactions, muscle and nerve function, bone 
health, and cardiovascular regulation pressure (Long and Romani, 
2014). Magnesium content showed a wide range from 2252 ppm to 
3243 ppm, with a mean concentration of 2792 ppm. Manganese is 
crucial for metabolic processes as it serves as a cofactor for enzymes 
involved in carbohydrate, amino acid, and cholesterol metabolism, 

supporting energy production and overall cellular function. Manganese 
levels displayed considerable variability, ranging from 38 ppm to 
67 ppm, and a mean concentration of 49 ppm. Phosphorus (P) is integral 
to DNA and RNA formation, energy production, bone health, and cell 
signaling (Serna and Bergwitz, 2020). Phosphorus content exhibited 
significant variability, with minimum, maximum, and mean concen-
trations of 3047 ppm, 7166 ppm, and 6006 ppm, respectively. These 
findings highlight the significant variability in mineral composition in 
perilla germplasm, indicating its potential for various nutritional and 
agricultural applications.

The collective near-infrared (NIR) spectra spanning the wavelength 
range of 400–2500 nm for seeds sourced from a diverse perilla germ-
plasm collection in the NEH region of India are presented in Fig. 2. 
During NIR-spectra acquisition, a completely randomized design was 
used to ensure that the spectral acquisition and evaluation of minerals 
content was randomly assigned to each sample unit, with every sample 
having an equal probability of receiving any treatment. We observed 
that distinguishing NIR regions visually becomes difficult due to the 
prevalence of highly overlapping and broad combination bands arising 
from fundamental vibrations (Cozzolino, 2015). Additionally, under-
standing matrix effects, particularly in biological materials like perilla 
seeds, is crucial for ensuring model applicability across diverse matrices. 
Furthermore, it has been observed that variations in sample composi-
tion, moisture content, and particle size can significantly impact pre-
diction accuracy, requiring a uniform seed sample size. Therefore, each 
sample was scanned twice to ensure the check of the spectral error, if 
any, and the subsequent data analysis utilized the average spectrum of 
each sample.

The rationale behind selecting specific five minerals including Cal-
cium, Copper, Magnesium, Manganese, and Phosphorus, for our study, 
lies in their key roles in human health, their known abundance in perilla 
seeds (Dhyani et al., 2019), and their suitability for accurate and robust 
modeling. As mentioned in the previous paragraph, calcium is vital for 
bone health and various cellular processes, while Magnesium is essential 
for muscle and nerve function, blood sugar control, and bone develop-
ment. Phosphorus is crucial for the formation of bones and teeth and 
plays a role in energy production and storage (Palacios et al., 2021; 
Serna and Bergwitz, 2020). Copper and Manganese, although required 
in smaller amounts, are indispensable trace minerals. Copper is neces-
sary for red blood cell formation, nerve health, and immune function, 
(An et al., 2022), while Manganese is involved in bone formation, 

Fig. 7. Line plot illustrating the Residual Prediction Deviation (RPD) values achieved with varying numbers of components in the Partial Least Squares Regression 
(PLSR) model. The black circle highlights the maximum RPD value obtained with five components.
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metabolism, and antioxidant defense. These minerals are present in 
higher abundance compared to other trace elements in perilla seeds, 
which enhances the accuracy and robustness of our models. Under-
standing the relationships between the calibrated trait and its associated 
wavelength (even indirectly with bound compounds) can become 
complex due to an overlap between the NIR band vibrations associated 
with different traits. The presence of a trait in extremely low concen-
tration can be a limiting factor, as these traits usually display low 
wavelength regression coefficients and NIR absorption band numbers 
(Tomar et al., 2021b). Our results indicate that the prediction accuracy 
of a model is low when a trait is present in lesser amounts. By focusing 
on these five abundant minerals, we developed NIRS-based prediction 
models that are both reliable and efficient, facilitating the rapid 
screening of perilla germplasm to select mineral-rich genotypes and 
mitigate micronutrient deficiencies.

3.2. Performance of the developed models

An independent test dataset, comprising 25.0 % of total data was 
used for the evaluation of developed models. The estimation of the five 
minerals for this set was also conducted using the same method (i.e., 
ICP- OES) as performed in the calibration set. Statistical metrics: Coef-
ficient of Determination (R2), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and Residual Prediction deviation (RPD) were 
used to quantify the performance of the developed models.

The performance of different models in predicting mineral content 
varied across all the minerals. For calcium, as shown in Fig. 9, the 1D 
CNN model achieved an R2 value of 0.69, indicating good predictive 
accuracy, while SVR and RFR models had lower R2 values of 0.51 and 
0.50, respectively. The performance of the ANN model lies between 1D 
CNN and SVR models in terms of predictive accuracy, with an R2 value 
of 0.57. In the case of copper (Fig. 10), the SVR model showed the best 
performance with an R2 value of 0.78, followed by 1D CNN and RFR 
models with R2 values of 0.64 each. The ANN model exhibited the lowest 

Fig. 8. Box plot depicting the statistical description of the minerals content (in ppm) in perilla germplasm.
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predictive accuracy for copper, with an R2 value of 0.36. For magne-
sium, as shown in Fig. 11, the 1D CNN model achieved the highest R2 

value of 0.71, followed by SVR (R2 =0.61), RFR (R2 = 0.39), and ANN 
(R2 = 0.53) models. For manganese (Fig. 12), SVR had the highest 
predictive accuracy with an R2 value of 0.85, followed by RFR (R2 =

0.72), 1D CNN (R2 = 0.67), and ANN (R2 = 0.56) models. As shown in 
Fig. 13, for phosphorus, the 1D CNN model demonstrated the highest R2 

value of 0.88, followed closely by the RFR (R2 = 0.86) and SVR (R2 =

0.83) models. The ANN model had a lower R2 value of 0.68 for phos-
phorus prediction. Fig. 14 illustrates a bar plot comparing the Coeffi-
cient of determination (R2) values for the models.

The performance of each developed model was evaluated using 
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 
metrics, as summarized in Table 1. For calcium prediction, the 1D CNN 
model achieved the lowest MAE of 177.09, outperforming SVR (MAE =
219.64) and ANN (MAE = 211.93) models, while RFR had the highest 
MAE (244.27). For copper prediction, SVR exhibited the lowest MAE of 
0.78, closely followed by 1D CNN (MAE = 0.86), while RFR had an MAE 
of 0.92 and ANN showed the highest MAE (1.34). For magnesium, 1D 
CNN had the lowest MAE of 130.21, followed by SVR (MAE = 147.59) 
and ANN (MAE = 159.30), with RFR displaying the highest MAE 
(175.29). In predicting manganese content, SVR showed the lowest MAE 
of 2.94, followed by RFR (MAE = 3.66), 1D CNN (MAE = 3.96), and 
ANN with the highest MAE (4.45). For phosphorus prediction, RFR 
demonstrated the lowest MAE of 259.14, followed by 1D CNN (MAE =
285.60), while SVR had an MAE of 366.20 and ANN exhibited the 
highest MAE (484.96).

In terms of RMSE performance, as shown in Table 1, the 1D CNN 

model shows the lowest RMSE for calcium prediction, with a value of 
232.66, followed by ANN (RMSE = 272.29). RFR exhibited an RMSE of 
290.00, while SVR had the highest RMSE at 283.50. For copper pre-
diction, SVR achieved the lowest RMSE of 0.96, closely followed by 1D 
CNN (RMSE = 1.15). RFR had an RMSE of 1.20, while ANN displayed 
the highest RMSE at 1.60. In terms of magnesium prediction, 1D CNN 
showed the lowest RMSE of 148.74, followed by RFR with an RMSE of 
211.50. SVR had an RMSE of 170.98, while ANN exhibited the highest 
RMSE at 186.26. SVR also demonstrated the lowest RMSE for manga-
nese prediction, with a value of 3.52, followed by RFR at 4.37. The 
RMSE for 1D CNN was 5.01, while ANN had the highest RMSE at 5.77. 
For phosphorus prediction, 1D CNN showed the lowest RMSE of 333.86, 
followed by RFR with an RMSE of 365.46. SVR had an RMSE of 453.42, 
while ANN exhibited the highest RMSE at 554.16.

The evaluation of different models reveals variations in performance 
across the five minerals. The 1D CNN model consistently demonstrates 
superior performance in terms of both R2 values and error metrics such 
as MAE and RMSE for three minerals (Calcium, Magnesium, and Phos-
hphorus). This indicates that the 1D CNN model is more effective in 
capturing the underlying patterns in the spectral data, resulting in more 
accurate predictions compared to other models. However, the SVR 
model outperforms the 1D CNN model for Copper and Manganese pre-
diction. Additionally, the RFR model shows competitive performance for 
phosphorus prediction in terms of both MAE and RMSE.

As shown in Fig. 15, a comparison of model performance using Re-
sidual Prediction Deviation (RPD) revealed variations across different 
minerals. For calcium, the 1D CNN and ANN models showed moderate 
predictive performance with RPD values of 1.75 and 1.50, respectively, 

Fig. 9. Scatter plots of reference and predicted values for calcium content (in ppm) in perilla seeds. Each graph represents a linear equation with the coefficient of 
determination (R2) using NIRS-based (A) 1D CNN (Convolutional neural network); (B) ANN (Artificial Neural Network); (C) RFR: Random Forest Regressor; (D) SVR: 
Support Vector Regressor models.
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while the SVR and RFR models demonstrated slightly lower RPD values 
of 1.44 and 1.41, respectively. In predicting copper content, the SVR 
model performed well with an RPD of 1.82, followed closely by the 1D 
CNN model with an RPD of 1.49. For magnesium, the 1D CNN model 
exhibited the highest RPD value of 1.83, indicating relatively high 
predictive accuracy, while the SVR and ANN models also performed well 
with RPD values of 1.60 and 1.47, respectively. In the case of manga-
nese, the SVR model yielded the highest RPD of 2.20, suggesting rela-
tively high predictive accuracy, followed by the RFR model with an RPD 
of 1.79 and the 1D CNN model with an RPD of 1.58. Finally, for phos-
phorus, the 1D CNN model demonstrated excellent predictive accuracy 
with the highest RPD value of 2.96, followed by the RFR model with an 
RPD of 2.71, and the SVR model with an RPD of 2.18.

These results highlight the superior predictive potential of the 1D 
CNN and SVR models over ANN and RFR for the estimation of the 
mineral composition of perilla seeds. Extracting the complex relation-
ships between mineral composition and their associated wavelengths 
can be challenging, primarily due to the overlap in NIR band vibrations. 
An additional complexity arises when a trait is present in extremely low 
concentrations. These particular traits typically exhibit regression co-
efficients and NIR absorption band numbers at lower wavelengths. Our 
findings suggest that 1D CNN yields superior predictions, demonstrating 
lower MAE and RMSE and higher RPD in predicting the minerals that are 
present in large amounts for instance, Calcium (average = 5416 ppm), 
Magnessium (average = 2792 ppm), and Phosphorus (average =

6006 ppm). While SVR performed better in predicting the minerals that 
are present in lesser amounts including Copper (average = 15 ppm) and 
Manganese (average = 49 ppm).

3.3. Comparative assessment of developed models

The comparative assessment of 1D CNN, ANN, RFR, and SVR models 
for predicting mineral contents in perilla seeds shows variations in 
performances across minerals. Fig. 14 and Fig. 15 provide a compre-
hensive comparative analysis of the performance of models in terms of 
both R2 and RPD metrics for each mineral. For calcium estimation, the 
1D CNN model was found to be the best performer, yielding the highest 
R2 (0.69), RPD (1.75), and the lowest MAE (177.09) and RMSE (232.66) 
values, indicative of its superior predictive accuracy. Similarly, in the 
case of magnesium and phosphorus, the 1D CNN model consistently 
shows superior performance across all metrics, verifying its robustness 
in predicting mineral content. However, for copper estimation, the SVR 
model displayed the highest R2 (0.78) and RPD (1.82) values, along with 
the lowest MAE (0.78) and RMSE (0.96), suggesting better prediction by 
SVR compared to other models. Similarly, in predicting manganese 
content, the SVR model outperformed other models in terms of R2 (0.85) 
and RPD (2.20), as well as having the lowest MAE (2.94) and RMSE 
(3.52). In summary, while both 1D CNN and SVR models exhibited 
strong predictive capabilities, the 1D CNN performed better in predict-
ing Calcium, Magnesium, and Phosphorus, whereas, for Copper and 
Manganese, the SVR model was found to be more effective, thus, high-
lighting the importance of selecting models based on the specific 
mineral.

The superior performance of the 1D CNN model compared to SVR, 
RFR, and ANN can be attributed to several factors. While SVR, RFR, and 
ANN models were trained on principal components (PCs) extracted from 
the spectral data, the 1D CNN model directly utilized raw spectral data 

Fig. 10. Scatter plots of reference and predicted values for copper content (in ppm) in perilla seeds. Each graph represents a linear equation with the coefficient of 
determination (R2) using NIRS-based (A) 1D CNN (Convolutional neural network); (B) ANN (Artificial Neural Network); (C) RFR: Random Forest Regressor; (D) SVR: 
Support Vector Regressor models.
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as input. This difference in input data is important because the use of PCs 
may lead to information loss (Howley et al., 2006), thereby limiting the 
ability of a model to capture the complexities of the spectral patterns 
associated with mineral content. In contrast, the 1D CNN model can 
effectively extract both local and global information from the raw 
spectra (Kiranyaz et al., 2021), enabling it to capture a more compre-
hensive representation of the spectral data. Additionally, the architec-
ture of the 1D CNN model is suitable for sequential data analysis (Malek 
et al., 2018; Zeng et al., 2021), allowing it to apply convolutional filters 
across the sequential data (spectral data in the present study), thus, 
facilitating the identification and extraction of relevant features related 
to each mineral. This capability of the 1D CNN model is advantageous 
for spectral data analysis which is sequential. In contrast, SVR, RFR, and 
ANN models are not ideally suited for sequential data analysis due to 
their lack of internal memory or inability to process spatial information 
(Kiranyaz et al., 2021; Sherstinsky, 2020). This limitation may lead to 
suboptimal performances by SVR, RFR, and ANN models when used 
with sequential data. Overall, the ability of the 1D CNN model to utilize 
raw spectral data, extract complex features, and effectively analyze 
sequential data contributes to its superior performance compared to 
SVR, RFR, and ANN models in predicting mineral content from spectral 
data.

However, the SVR model predicts Copper and Manganese contents in 
perilla accurately. In present study, as can be observed from Fig. 8, 
Copper and Manganese have significantly lower concentration ranges 
(11–19 ppm for Copper and 38–67 ppm for Manganese) compared to 
Calcium (4509–6399 ppm), Magnesium (2252–3243 ppm), and Phos-
phorus (3047–7166 ppm). Lower concentrations can lead to subtler 

spectral signatures that may require a different modeling approach. SVR 
might be more adept at handling these subtle variations. Moreover, the 
presence of outliers in the copper and manganese data, as illustrated in 
Fig. 8, could have influenced the performance difference between SVR 
and 1D CNN. The ability of SVR in handling outliers effectively may 
have been advantageous in capturing the variability in Copper and 
Manganese levels (Mohammed Rashid et al., 2022; Nishiguchi et al., 
2009; Wang and Li, 2017). Outliers can significantly impact model 
performance (Uzun Ozsahin et al., 2022), and the ability of SVR to 
mitigate their influence may have led to more accurate predictions for 
these minerals.

3.4. Comparison of developed models with PLSR

For comprehensiveness, the performance of developed ML and DL- 
based models was compared with the PLSR model. From Table 2, a 
significant performance gap between the PLSR model and other models 
developed in the present study was observed. For instance, in terms of 
MAE, the PLSR model shows higher values across all minerals compared 
to the 1D CNN, SVR, and RFR models. For calcium, the MAE for PLSR is 
279.85, whereas for 1D CNN, it is significantly lower at 177.09. Simi-
larly, for copper, magnesium, manganese, and phosphorus, the MAE 
values for PLSR were found to be higher compared to other models. A 
similar pattern was observed in RMSE values as well, where PLSR shows 
larger values compared to other models, thus indicating greater pre-
diction errors. For instance, for calcium, the RMSE for PLSR was 359.24, 
while for 1D CNN, it was lower at 232.66. Furthermore, the R2 values for 
PLSR were found to be lower across minerals compared to other models, 

Fig. 11. Scatter plots of reference and predicted values for magnesium content (in ppm) in perilla seeds. Each graph represents a linear equation with the coefficient 
of determination (R2) using NIRS-based (A) 1D CNN (Convolutional neural network); (B) ANN (Artificial Neural Network); (C) RFR: Random Forest Regressor; (D) 
SVR: Support Vector Regressor models.
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indicating weaker correlations between predicted and actual values. 
This performance gap between PLSR and other developed models in the 
present study shows that the PLSR model has limited predictive capa-
bility in estimating mineral content in Perilla seeds.

Although NIR spectroscopy primarily detects molecular vibrations in 
bonds like O-H, N-H, and C-H, minerals indirectly affect the NIR spectra 
through associations with organic matter, hydration states, and matrix 
effects. Advanced ML and DL models can learn complex, non-linear re-
lationships in these spectra, enabling accurate mineral content pre-
dictions. A recent study on rice bean and adzuki bean validated this 
approach using MPLS, demonstrating correlations between NIR spectra 
and the mineral content of iron (R2= 0.26), copper (R2= 0.47), and zinc 
(R2= 0.45), despite the indirect detection (John et al., 2023). In agree-
ment with this study, our results also indicate that while MPLS provides 
low accuracy for mineral prediction, using advanced feature selection 
algorithms like 1D CNN and SVR can significantly improve the accuracy 
and performance evaluation of the models.

In the present study, high accuracy was achieved for phosphorus and 
moderate accuracy for four other minerals, although no combined 
model for these minerals has been reported so far. The MPLS method 
gave lower R2 values compared to 1D CNN and SVR models. One reason 
for the challenge in developing calibrations for microelements is the 
poor absorption of energy by minerals in the NIR region, as they are 
often bound to organic molecules rather than in a free form, resulting in 
poor absorption. In the future, robust models can be developed using 
vast datasets and advanced techniques like deep learning and hybrid 
algorithms to enhance the accuracy and reliability of NIR-based mineral 
predictions.

3.5. Statistical analysis of the developed models

To determine the comparability of mean values of a dependent 
variable with both reference and predicted values for estimated 
biochemical parameters, a paired t-test with a 95 % confidence interval 
was executed. The resulting p-value exceeded the significance threshold 
of 0.05, suggesting the robust accuracy and reliability of the models, as 
indicated in Table 2. Specifically, for 1D CNN, the p-values were 0.40, 
0.44, 0.99, 0.14, and 0.77 for Calcium, Copper, Magnesium, Manganese, 
and Phoshphorus, respectively. For SVR, the p-values were 0.51, 0.68, 
0.76, 0.15, and 0.52 for Calcium, Copper, Magnesium, Manganese, and 
Phoshphorus respectively (Table 3). These findings highlight a lack of 
statistically significant differences in means between the NIRS-based 
prediction method and the different algorithms used in the present 
study.

4. Limitations and future scope

The present study presents significant advancements in using NIRS 
coupled with machine learning and deep learning-based models for 
mineral prediction in Perilla seeds. While the results are promising, 
there are opportunities for further enhancement and broader application 
of the developed models. One potential area for future research is the 
exploration of hybrid deep learning models, such as 1D CNNs combined 
with Long Short-Term Memory (LSTM) layers or attention mechanisms, 
which could improve the ability of deep learning-based models to cap-
ture both local and sequential dependencies in the spectral data. Addi-
tionally, using Transformer-based models, which have shown success in 

Fig. 12. Scatter plots of reference and predicted values for manganese content (in ppm) in perilla seeds. Each graph represents a linear equation with the coefficient 
of determination (R2) using NIRS-based (A) 1D CNN (Convolutional neural network); (B) ANN (Artificial Neural Network); (C) RFR: Random Forest Regressor; (D) 
SVR: Support Vector Regressor models.
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other sequential data tasks, could further enhance prediction accuracy 
by focusing on key spectral features. Another promising direction is the 
application of wavelength selection techniques to identify key 

wavelengths that contribute most to the prediction of mineral content. 
This could reduce computational complexity and improve model inter-
pretability while maintaining or even enhancing predictive 

Fig. 13. Scatter plots of reference and predicted values for phosphorus content (in ppm) in perilla seeds. Each graph represents a linear equation with the coefficient 
of determination (R2) using NIRS-based (A) 1D CNN (Convolutional neural network); (B) ANN (Artificial Neural Network); (C) RFR: Random Forest Regressor; (D) 
SVR: Support Vector Regressor models.

Fig. 14. Bar plot comparing the Coefficient of determination (R2) values of 5 minerals among 1D CNN (Convolutional neural network), ANN (Artificial Neural 
Network), RFR: Random Forest Regressor, and SVR: Support Vector Regressor.
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performance. Future work could also explore the use of transfer 
learning, where models trained on one crop can be fine-tuned for 
application to different crops. This would significantly broaden the 
utility of these models and enable rapid screening across diverse agri-
cultural contexts.

5. Conclusions

This study presents a novel application of NIRS-based prediction 
modeling combined with machine learning (ML) and deep learning (DL) 
techniques, offering a fast, reliable, and efficient approach for screening 
large germplasm of perilla to accurately estimate essential minerals. By 
employing 1D CNNs, ANNs, RFR, and SVR, models were developed and 
validated to profile key five minerals (Calcium, Copper, Magnesium, 
Manganese, and Phosphorus) in perilla seeds. The adaptability of ML 
and DL techniques in predicting mineral content from NIR-spectral data 
was demonstrated, with the 1D CNN model outperforming others for 
Calcium, Magnesium, and Phosphorus prediction, achieving RPD values 

of 1.75, 1.83, and 2.96, respectively. Similarly, the SVR model per-
formed better for Copper and Manganese, attaining RPD values of 1.82 
and 2.2. The 1D CNN model also showed high R2 values (>0.65) for all 
minerals, with a maximum of 0.88 for Phosphorus, compared to the 
lower performance of the PLSR model (R2 = 0.32). The superior per-
formance of the 1D CNN model can be attributed to its ability to capture 
complex non-linear relationships within the spectral data, making it a 
powerful tool for rapid, non-destructive screening of perilla germplasm. 
These models streamline the identification of mineral-rich genotypes, 
which are crucial for addressing micronutrient deficiencies in both 
human health and the food industry. Moreover, the models assist in 
eliminating fewer desirable genotypes, enhancing efficiency in germ-
plasm screening. This study highlight the broader applicability of ML 
and DL-based approaches in the food industry, presenting rapid tech-
niques to predict essential mineral compositions, ultimately contrib-
uting to the development of nutrient-rich food products.
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Table 1 
MAE and RMSE metrics of 5 minerals utilizing 1D CNN, ANN, RFR, and SVR models.

Models MAE RMSE

Calcium Copper Magnesium Manganese Phoshphorus Calcium Copper Magnesium Manganese Phoshphorus

1D CNN 177.09 0.86 130.21 3.96 285.60 232.66 1.15 148.74 5.01 333.86
ANN 211.93 1.34 159.30 4.45 484.96 272.29 1.60 186.26 5.77 554.16
RFR 244.27 0.92 175.29 3.66 259.14 290.00 1.20 211.50 4.37 365.46
SVR 219.64 0.78 147.59 2.94 366.20 283.50 0.96 170.98 3.52 453.42

*MAE: Mean Absolute Error; RMSE: Root Mean Squared Error; 1D CNN: Convolutional neural network; ANN: Artificial Neural Network; RFR: Random Forest Re-
gressor; SVR: Support Vector Regressor.

Fig. 15. Bar plot comparing the Residual Prediction Deviation (RPD) values of 5 minerals among 1D CNN (Convolutional neural network), ANN (Artificial Neural 
Network), RFR: Random Forest Regressor, and SVR: Support Vector Regressor.

Table 2 
Evaluation metrics attained for minerals prediction in perilla using Partial Least 
Squares Regression model.

MAE RMSE R2

Calcium 279.85 359.24 0.20
Copper 1.47 1.75 0.23
Magnesium 203.81 251.84 0.13
Manganese 5.77 6.92 0.29
Phosphorus 593.02 804.07 0.32
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