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A B S T R A C T

Lablab bean (Lablab purpureus L.) is a multipurpose crop, commonly used for food, feed, and fodder, and its 
potential as a plant-based meat alternative. Its nutritional diversity, including high protein, starch, and phenolic 
content, makes it a suitable candidate for nutritional profiling, which is essential for developing nutritionally 
enhanced varieties. Traditional methods for analyzing its nutritional parameters are labor-intensive, time- 
consuming, and expensive. This study employs Near-Infrared Reflectance Spectroscopy (NIRS) as a rapid, non- 
destructive alternative to evaluate 112 Lablab bean genotypes. We developed prediction models for starch, 
amylose, protein, fat, and phenols using a Modified Partial Least Squares (MPLS) approach, with spectral pre- 
processing using Standard Normal Variate (SNV) to remove scatter effects and Detrending (DT) to reduce 
baseline shifts and noise. The models were optimized for derivatives, gap selection, and smoothing, and eval
uated using independent test data and key performance metrics including coefficient of determination (R²), bias, 
and Residual Prediction Deviation (RPD). The best-performing models were: starch (R² = 0.959, RPD = 4.57), 
amylose (R² = 0.737, RPD = 1.76), protein (R² = 0.911, RPD = 3.09), fat (R² = 0.894, RPD = 2.92), and phenols 
(R² = 0.816, RPD = 2.36). Statistical tests, including paired t-tests, correlation, and reliability analysis, confirmed 
the robustness of these models. This study presents a first report offering rapid, multi-trait assessment method for 
evaluating Lablab bean germplasm, demonstrating high predictive accuracy for pre-breeding practices. It has 
broad applications in developing nutritionally enhanced varieties, supporting plant-based protein alternatives, 
and optimizing food production processes to meet the growing demand for healthier, sustainable foods.

1. Introduction

The mainstreaming of plant-based meat alternatives is essential in 
addressing the growing environmental and ethical concerns associated 
with animal meat production. With the livestock industry contributing 
significantly to greenhouse gas emissions, deforestation, and water 
consumption, the shift towards plant-based proteins offers a sustainable 
solution to reduce the ecological footprint of meat production (Andreani 
et al., 2023; Jang and Lee, 2024). In countries like India, where nearly 
35% of the population adheres to a vegetarian diet, the importance of 
plant-based meat alternatives is even more pronounced. These alterna
tives can cater to the dietary preferences of a large segment of the 
population while supporting global efforts to mitigate climate change 

and promote sustainable food systems.
Legumes, particularly those that are underutilized but possess sig

nificant potential, can play a key role in this transition. Among these, 
Lablab purpureus L., commonly known as the lablab bean, hyacinth bean 
or Indian bean, emerges as a valuable crop. Lablab bean is traditionally 
grown and utilized in many regions for its multipurpose uses in food, 
feed, and fodder. While it has significant potential, it has not yet been 
widely commercialized or fully integrated into mainstream agriculture. 
It is an excellent source of protein and carbohydrates including starch, 
and is rich in antioxidants such as phenolic compounds, thus positioning 
itself as a future smart food (Kumari et al., 2022; Pandey et al., 2023). 
The nutritional profile of the lablab bean makes it an ideal candidate for 
developing plant-based meat products that are not only nutritious but 
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also appealing to health-conscious consumers. Its adaptability to diverse 
climates and underutilized potential makes it an ideal candidate for 
addressing global nutritional needs while promoting sustainable agri
culture (Letting et al., 2021; Vishnu and Radhamany, 2022). The 
increasing interest in plant-based protein sources, along with the bean’s 
nutritional potential, makes it a strong candidate for further research to 
enhance its commercial value by rapidly selecting genotypes which are 
nutritionally superior and can meet the growing demand for sustainable, 
protein-rich foods.

North Eastern Hill (NEH) region of India is a biodiversity hotspot, 
harboring a vast array of germplasm (Kaur et al., 2024a) with significant 
variability in key quality traits of lablab bean. The key quality traits 
including starch, amylose, protein, phenols, and fat are highly signifi
cant due to their important roles in defining the nutritional quality and 
functional properties essential for plant-based meat alternatives. Addi
tionally, they can be effectively measured by advanced 
spectroscopy-based methods due to the specific wavebands associated 
with these traits which enables the development of accurate, robust 
predictive models with high practical applicability. However, to utilize 
these genotypes in breeding programs and for mainstreaming purposes, 
it is necessary to assess their quality traits comprehensively Traditional 
methods for assessing these nutritional traits, such as the Kjeldahl 
method for protein, enzyme-based kit methods for starch and amylose, 
Soxhlet extraction for fat, and the Folin-Ciocalteu method for phenols, 
are widely used for their accuracy. However, these techniques are often 
expensive, time-consuming, and require specialized equipment and 
technical expertise, making them less suitable for rapid or large-scale 
germplasm screening (Kaur et al., 2024b; Padhi et al., 2022). This em
phasizes the need for better analytical alternatives, such as Near Infrared 
Reflectance Spectroscopy (NIRS), which offers a rapid and 
non-destructive approach to evaluating the chemical composition of 
plant materials. NIRS works by detecting the absorption of light at 
specific wavelengths corresponding to C–H, N–H, and O–H bonds, 
making it a robust tool for analyzing the nutritional content of crops 
(Bagchi et al., 2016; Bartwal et al., 2023; John et al., 2022). There are 
several approaches for developing NIRS-based prediction models for key 
quality traits, with Modified Partial Least Squares (MPLS) being one of 
the most established methods. MPLS is highly preferred for developing 
NIRS-based predictive models due to its ability to handle collinearity in 
spectral data, which is common in NIR spectra (Kaur et al., 2024d; 
Kondal et al., 2024). It also enhances model accuracy by focusing on the 
most relevant spectral features, making it robust for small sample sizes 
and noisy datasets. Furthermore, it efficiently captures the complex re
lationships between spectral data and nutritional traits, resulting in 
reliable predictions across diverse germplasm. In addition, spectral 
preprocessing is important for improving the accuracy and robustness of 
predictive models by minimizing noise, baseline variations, and scat
tering effects inherent in raw spectral data. These variations can obscure 
important spectral features and lead to inaccurate predictions, particu
larly when working with complex biological samples. By applying 
techniques like Standard Normal Variate (SNV) and Detrending (DT), we 
can correct for scatter and baseline shifts, ensuring that the predictive 
models focus on the relevant chemical information in the spectra (John 
et al., 2023; Tomar et al., 2021b). Numerous studies have effectively 
developed NIRS-based predictive models utilizing the spectral 
pre-processing methods such as SNV and DT along with the MPLS 
approach for key nutritional traits (John et al., 2023; Kaur et al., 2024b; 
Padhi et al., 2022; Tomar et al., 2021b).

Though NIRS-based prediction models using MPLS have been 
developed for important crops such as rice (John et al., 2022), pearl 
millet (Tomar et al., 2021b), cowpea (Padhi et al., 2022), perilla (Kaur 
et al., 2024b), mungebean (Bartwal et al., 2023), buckwheat and 
amaranthus (Shruti et al., 2023), and rice bean (Kaur et al., 2024c), no 
studies have yet focused on developing NIRS-driven technology for the 
rapid assessment of key nutritional quality traits in lablab bean. 
Therefore, the present study focuses on protein, starch, amylose, fat, and 

total phenols because these components exhibit distinct absorption 
features in the near-infrared region, associated with molecular vibra
tions, such as C–H, O–H, and N–H stretching and bending. These 
vibrations generate overtones and combinations that NIRS can effec
tively capture, enabling non-destructive, rapid prediction. While other 
components like dietary fiber or minerals are relevant, their indirect 
interaction with NIR spectra makes them less suitable for precise pre
diction using this technique. Therefore, the present study aims to 
develop NIRS-based prediction models for these five essential nutri
tional traits using the Modified Partial Least Squares (MPLS) approach. 
These models were compared using global metrics and their perfor
mance was validated with independent data. The developed models can 
significantly accelerate pre-breeding practices and facilitate the rapid 
assessment of the extensive germplasm available in national and inter
national repositories. Ultimately, this research paves the way for 
advancing the integration of plant-based meat alternatives into the 
mainstream, thus contributing to a more sustainable and nutritious food 
system.

2. Materials and methods

2.1. Experimental conditions and sample collection

Experiments were conducted using 112 lablab bean seed genotypes, 
which included local collections, landraces, and accessions from various 
regions of North Eastern India, specifically Assam, Manipur, Mizoram, 
Nagaland, Tripura, and Meghalaya. The field experiment was carried 
out during the 2023–24 growing season (July to February) at the Hor
ticulture Experimental Farm, ICAR-Research Complex for NEH Region, 
Umiam, Meghalaya, India (Latitude: 25.6506◦ N, Longitude: 91.8853◦

E). The plants were arranged in a randomized block design to reduce 
experimental error and ensure statistical validity. They were grown 
under terrace conditions, with a plot size of 3.0 × 2.0 m and a spacing of 
90.0 × 60.0 cm. Standard agronomic practices including plant protec
tion measures were followed to support optimal plant growth. Seeds 
were harvested at physiological maturity, sun-dried, hand-cleaned, and 
further dried in an oven before storage. Approximately 15 g of the dried 
seeds were ground, homogenized, and sieved through a 1 mm sieve 
using the Foss Cyclotec™ 1093 Sample Mill (FOSS Analytical, Denmark) 
to obtain a fine flour, which was then subjected to nutritional analysis. 
All parameters were analyzed in triplicate, and the mean values were 
used for model calibration and validation. The overall methodology of 
the present study is provided in Fig. 1.

2.2. Nutritional parameters estimation

2.2.1. Sample preparation for starch and phenols estimation
Homogenized samples (100 ± 5 mg) were vortexed with 5 mL of 

80% ethanol and heated at 80 ◦C for 30 min. After cooling, samples were 
mounted on a rotator for 60 min, centrifuged (Model: PR-23; Remi 
elektrotechnik limited, Vasai-401,208, India) at 16,000 g for 15 min, 
and the supernatant was extracted two more times using the same 
method. The final volume of the supernatant was adjusted to 10 mL for 
total phenols estimation while the pellet was used for starch 
quantification.

2.2.2. Starch
Total starch was determined using a Megazyme assay kit (TOTAL 

STARCH (100A) K-TSTA-100A, Megazyme) following AACC 76–13.01 
and AOAC 996.11 with slight modifications. The obtained pellet was 
treated with 200 μL of 80% ethanol and heated in a boiling water bath 
for 5 min, followed by hydrolysis with α-amylase and amyloglucosidase, 
converting starch to d-glucose. Glucose was detected at 510 nm using 
GOPOD reagent, and starch content was calculated as g/100 g DWB 
using the formula:

Starch %=ΔA×F×EV×D/W × 0.90
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Where: 

• ΔA: Sample absorbance
• F: Factor (GOPOD absorbance for 100 μg glucose)
• EV: Extraction volume (100 mL)
• D: Dilution factor
• W: Sample weight (mg)

2.2.3. Amylose
Amylose content was determined using an improved iodometric 

method (Perez and Juliano, 1978). Briefly, 50 mg of homogenized flour 
was mixed with 500 μL ethanol in triplicate, vortexed, and heated in a 
boiling water bath for 20 min. The mixture was then transferred to a 50 
mL volumetric flask and diluted with double-distilled water. From this, 
500 μL was taken into amber tubes, followed by the addition of 100 μL 
glacial acetic acid (Qualigens, Q21057, 99.5%) and 200 μL iodine so
lution. The volume was adjusted to 10 mL with double-distilled water, 
incubated at room temperature for 20 min, and the absorbance was 
measured at 620 nm. Amylose content was expressed as g/100 g DWB, 
using a standard potato amylose (Sigma, 1,002,922,486) curve for 
quantification.

2.2.4. Protein
The Kjeldahl method (AOAC 984.13) was used to estimate the total 

nitrogen content in the samples. This process involves digesting the 
sample in sulfuric acid (Avantor, S0530, 98.08%) with a catalyst, 
distilling the released ammonia into a boric acid solution (Sisco 
Research Laboratories Pvt. Ltd., 80,266, 99.5%), and titrating it with 
standard acid to determine the nitrogen content, which is then used to 
calculate the total protein. The nitrogen (%N) was then converted to 
percent protein using a conversion factor of 6.25.

2.2.5. Fat
The fat content of lablab bean seed flour was estimated using Soxhlet 

extraction with petroleum ether (Petroleum ether 40–60 ◦C extra pure 
AR, Sisco Research Laboratories Pvt. Ltd., 26,440) as the solvent. Three 
grams of dried seed flour (in triplicates) were placed in thimbles, and the 
initial weight (W1) was recorded. After oil extraction using the Soxhlet 
apparatus, the samples were dried until a constant weight (W2) was 
achieved. The fat content was calculated as ((W2 - W1)/W) *100, where 
W is the sample weight.

2.2.6. Total phenols
Total phenols were determined using a modified method (Tian et al., 

2021). A 500 μL extract was evaporated in a water bath at 100 ◦C, then 
reconstituted with 3 mL double-distilled water and vortexed. A blank 
was prepared similarly. Gallic acid standards (0.01–0.05 mg) (Fisher 
Scientific, 410,862,500,98%) were prepared separately. To each sample, 
blank, and standard, 500 μL of Folin-Ciocalteu reagent (Folin & Cio
calteus Phenol Reagent AR 2.0N, Sisco Research Laboratories Pvt. Ltd., 
39,520) and 2 mL of 20% Na2CO3 (Glasil, GSI/GSE258877082020, 
99.9%) were added, followed by a 1-hour incubation at room temper
ature. Absorbance was measured at 650 nm against the blank. Total 
phenolic content was expressed as GAE g/100 g, using a gallic acid 
standard curve for quantification.

3. NIR-spectra acquisition

For the acquisition of NIR spectra, homogenized samples of lablab 
bean seed flour were prepared to ensure standardized conditions. The 
samples were dried and equilibrated at room temperature (25 ◦C) for a 
period of 6 h to standardize temperature and moisture levels, both of 
which are critical factors that can influence the absorbance and reflec
tance of NIR waves. To ensure precise and reliable measurements, the 
NIR spectrometer was calibrated at 20-minute intervals using a refer
ence sample to ensure consistent accuracy throughout the scanning 
process. Approximately 5.0 gs of the homogenized flour were carefully 
loaded into a circular ring cup fitted with a quartz window, measuring 
3.8 cm in diameter and 1.0 cm in thickness. To achieve uniform packing 
without any air pockets, a circular cardboard backing was gently pressed 
onto the samples. The spectral data were collected using a FOSS NIRS 
DS3 spectrometer (FOSS Nils Foss Alle 1, DK-3400, Hilleroed, Denmark), 
covering a wavelength range of 400 to 2490 nm. Each spectrum repre
sented the average of 32 scans recorded at 2 nm intervals and was 
expressed as log (1/R), where R denotes relative reflectance. Following 
the acquisition, the spectra were extracted using Win ISI Project Man
ager Software version 1.61 for subsequent analysis.

4. Calibration of NIRS-based predictive models

After obtaining the spectral and reference data for all samples, the 
reference data was integrated into the NIR file. The dataset was then 
divided into two subsets based on diversity and homogeneity: a cali
bration set (75% of the samples), referred to as the "cal" file, and a 
validation set (25% of the samples), referred to as the "val" file. In the 
calibration file, Modified Partial Least Squares (MPLS) regression with 
cross-validation was applied. Preprocessing techniques such as Standard 
Normal Variate (SNV) and Detrending (DT) were used to correct scatter 

Fig. 1. Overall methodology of the present study.
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effects, aiming to reduce particle size and light path variability. Spectral 
derivatives were calculated to correct for overlapping absorption bands 
and baseline shifts to improve the accuracy of the analysis. NIRS cali
brations were developed for the spectral range between 400 and 2490 
nm through an iterative process that applied various mathematical 
treatments. These treatments included combinations of derivatives, 
gaps, and smoothing parameters. For example, in the configuration 
"2,4,6,2″, "2″ indicates the second derivative, which helps correct over
lapping bands and baseline shifts, while "4″ specifies the gap, denoting 
four data points used in the second derivative calculation. The "6″ and "2″ 
represent the number of data points for the first and second smoothing 
steps, respectively. Cross-validation was employed under the scatter 
correction methods SNV and DT to prevent overfitting and ensure the 
robustness of the models. Key statistical parameters, including range, 
standard deviation (SD), standard error for cross-validation (SEC), and 
the coefficient of determination for internal validation (RSQ internal), 
were evaluated using Win ISI Project Manager Software version 1.61. 
Models with lower SEC and higher RSQ values were considered superior. 
Additionally, the standard error of cross-validation (SEC(V)) and the 1 
minus variance ratio (1-VR) were calculated to assess error and cross- 
validation performance. The mathematical preprocessing treatments 
were refined iteratively through trial and error, aiming to reduce SEC(V) 
and increase 1-VR during cross-validation, thereby enhancing the ac
curacy and reliability of the final predictive models.

5. Validation of the developed models

A range of performance metrics was used to evaluate the predictive 
accuracy of the models using an independent dataset (val file). The 
Coefficient of Determination (R² or RSQ) quantified how well the model 
explained the variance in protein content, with values closer to 1.0 
indicating better model fit (Eq. (1)). Bias measured systematic errors by 
calculating the mean difference between reference and predicted values, 
with lower values reflecting higher accuracy (Eq. (2)). The Corrected 
Standard Error of Prediction (SEP(C)) assessed prediction precision, 
with lower values indicating improved accuracy after accounting for 
bias (Eq. (3)). Lastly, the Residual Prediction Deviation (RPD) evaluated 
model robustness, where higher values suggested stronger predictive 
performance (Eq. (4)). 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1) 

Bias =
1
n
∑n

i=1
|yi − ŷi| (2) 

SEP(C) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi − bias)2

n

√

(3) 

RPD =
StandardDeviation(SD) of Observed Values

SEP (C)
(4) 

6. Quality control

In this study, a completely randomized design was used to ensure 
that the spectral acquisition and estimation of nutritional traits were 
evenly and randomly distributed across the 112 sample units. These 
samples represented a broad spectrum of nutritional trait levels, from 
the lowest to the highest, covering the complete diversity. Prior to 
estimating the nutritional content of the entire germplasm, we stan
dardized our protocols through a pilot study involving 4 randomly 
selected samples, which allowed us to refine our procedures before 
proceeding with the full set of samples. Each sample was scanned twice 
on NIR to identify and correct any potential spectral anomalies, with the 
average spectrum from these scans being utilized in the subsequent data 

analyses. Nutritional traits were measured in triplicate to enhance both 
accuracy and reproducibility, with mean values being used for both the 
calibration and validation datasets. To ensure the robustness of the 
developed models, equal representation of samples with low, median, 
and high nutritional trait levels was maintained in both the calibration 
and validation sets. This strategy was important to avoid any bias that 
could lead to underestimation or overestimation of nutritional content 
across the diverse sample range.

7. Statistical analysis

A paired sample t-test was conducted to compare the reference and 
predicted values at a 95% confidence interval using IBM SPSS version 
17.3. Additionally, strict parallel analysis was employed to assess the 
reliability of the developed models. The reliability score between the 
predicted values and laboratory-validated samples was also calculated 
using the same software. Furthermore, correlation analysis was per
formed to evaluate the relationship between the predicted and reference 
values, thus providing further insight into the predictive accuracy of the 
model and alignment with the actual measured data.

8. Results and discussion

8.1. Nutritional composition analysis

Table 1 presents the descriptive statistics for five nutritional traits; 
starch, amylose, protein, fat, and phenols in 112 lablab bean samples. 
We observed considerable variability across these traits (presented in a 
g/100 g dry basis); for instance, starch content ranged from 22.416 to 
35.879, with a mean of 31.466, while amylose varied between 13.140 
and 16.118, with an average of 14.813. Protein content showed a wide 
range from 20.987 to 27.145, with a mean value of 24.464. Fat content 
also exhibited significant variation, ranging from 1.328 to 3.751, with a 
mean of 2.138. Phenols, though present in smaller quantities, ranged 
from 0.091 to 0.470, with an average of 0.242. This variability indicates 
a rich diversity within the germplasm, offering the potential for selecting 
genotypes with favorable nutritional profiles. This variability can be 
attributed to several factors, primarily genotype-environment in
teractions, where different genotypes respond uniquely to environ
mental conditions. Additionally, inherent genetic diversity within the 
germplasm, variations in seed maturity at harvest, post-harvest 
handling, soil nutrient availability, water stress, and other agronomic 
practices may contribute (Baye et al., 2011; Boye et al., 2024; Kaur et al., 
2024b).

8.2. NIR-spectra analysis

Fig. 2 displays the combined NIR spectra of homogenized flour 
samples from 112 diverse genotypes of lablab bean germplasm, 
measured across a wavelength range of 400–2490 nm (corresponding to 
25,000–4016 cm⁻¹). It is challenging to visually distinguish different 
regions within the NIR spectra due to the highly overlapping and broad 
combination bands arising from fundamental vibrational modes 
(Cozzolino, 2015). This difficulty is amplified in biological materials like 
lablab bean, which have a complex structural matrix with hydrogen 
bonding between proteins, starch, amylose, fats, and other bio
molecules. These overlapping absorption peaks correspond to combi
nations and overtones of vibrational modes, particularly N–H, O–H, and 
C–H, which are associated with proteins, fatty acids, and carbohydrates, 
respectively. In the spectral region between 2000 and 2222 nm, the 
peaks are attributed to combinations of C–O and N–H stretching, which 
are linked to protein content (Kaur et al., 2024b; Plans et al., 2013; 
Tomar et al., 2021b). Similarly, this region (2000–2222 nm) is also 
related to O–H groups found in proteins and phenols. A broad peak 
observed around 1428–1471 nm is associated with the first overtone of 
O–H stretching in hydroxyl phenol groups and C–H combinations in 
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aromatic compounds. The absorption peak near 1923 nm is identified 
with the bending/stretching vibrations of O–H in polysaccharides, 
which overlaps with water absorption. Furthermore, peaks around 2083 
nm (4800 cm⁻¹) are related to the third overtone of polysaccharides’ 
asymmetric C–O–O stretching (Zhang et al., 2017). The sharp absorption 
band near 1928 nm (5184 cm⁻¹) is linked to the combination of bending 
and stretching vibrations of O–H in amylose, while the region near 1463 
nm (6835 cm⁻¹) corresponds to the symmetric stretching of O–H in 
amylose. Additionally, peaks around 5800 cm⁻¹ are associated with C–O 
bonds in fats, and the region near 4332 cm⁻¹ is related to the second 
overtone of C–H bending in fats (Kaur et al., 2017; Tomar et al., 2021b). 
Similar peaks, linked to these functional groups, were observed in 
several other crops (Bagchi et al., 2016; Bartwal et al., 2023; Chen et al., 
2013; John et al., 2022, 2023; Padhi et al., 2022; Tomar et al., 2021b; 
Zhang et al., 2017). The overlap between NIR bands associated with 
different traits creates complexities in understanding the relationships 
between a trait and its corresponding wavelength. We also observed that 
the presence of absorption bands across multiple spectral regions for a 
single trait further complicates spectral interpretation, especially for 
biological samples with identical chemical bonds. For example, the 
broad absorption region of O–H bonds near 2100 nm can obscure pro
tein amide bond absorption, making trait-specific prediction challenging 
(Cem Ömer; Kahriman, 2012). These factors may hinder a model’s 
prediction accuracy for traits associated with multiple wavelengths.

8.3. Calibration of models and spectra pre-processing

To develop the robust calibration equations, all samples were first 
ordered by their 4 nutritional trait values to avoid bias in sub-set di
visions. The calibration and validation sets were then selected to cover 
the full range of concentrations and diversity linked to selected traits. 
The samples were split (in a ratio of 2:1) into an internal calibration set 
(N = 74) for model training and an external validation set (N = 38) to 
evaluate the performance of the model. Full-range spectral data were 
used to develop regression models by using techniques like PLS, MPLS, 
and PCR (using WinISI v1.61 software), which are commonly used for 
NIR model development. Though we have tested all three methods, 
MPLS proved to be more stable and accurate than standard PLS. MPLS is 

a robust statistical approach designed to predict dependent variables 
based on independent variables especially useful when the predictors 
are highly collinear or when their number exceeds the observations 
(Kaur et al., 2024c). MPLS extracts orthogonal components that capture 
maximum variance in the independent variables while maintaining a 
strong correlation with the target variable. This dimensionality reduc
tion improves model robustness and accuracy (Khatri et al., 2021). In 
MPLS, the residuals at each wavelength are standardized after each 
factor is calculated to allow for better decomposition of the spectro
scopic data. This process reduces the impact of irrelevant spectral var
iations and enhances the calibration by balancing biochemical and 
spectral information. Thus, MPLS refines the standard PLS approach by 
normalizing the covariance between the spectral data (x) and the target 
variable (y) with the covariance of spectral data with itself (4), 
enhancing the weighting of important wavelengths (Kondal et al., 2024; 
Westerhaus, 2014). This ensures that the most relevant spectral features 
are prioritized to enhance model accuracy and reduce multicollinearity 
(Murphy et al., 2022). Consequently, MPLS was selected as the most 
suitable method for this study due to its superior handling of spectral 
and reference data correlations.

NIR spectroscopy faces significant challenges due to interference 
from factors such as molecular vibrations, light scattering, and path 
length variations, which can lead to complex spectral distortions like 
baseline shifts, curvature, and non-linearities. These variations, caused 
by interactions between light and sample particles result in changes to 
absorption levels, making linear calibration and spectral interpretation 
difficult (Beć et al., 2021; Padhi et al., 2022). Path length variations from 
light scattering generate background signals that fluctuate with wave
length, further complicating spectral analysis. To address these issues, 
pre-processing of spectral data is essential for developing reliable pre
diction models. This enhances the signal-to-noise ratio, increases signal 
variation, and eliminates irrelevant factors unrelated to the property of 
interest. Common empirical methods for pre-processing include de
rivatives, multiplicative scatter correction, standard normal variate 
(SNV), and detrending (DT) (Padhi et al., 2022). SNV normalizes the 
spectra by removing multiplicative scatter effects, centering each spec
trum around its mean and standardizing the values, which is particularly 
effective in correcting for light scattering and particle size variation (Bi 
et al., 2014; Wu et al., 2019). Detrending removes baseline shifts and 
non-linear trends by fitting a polynomial curve to the spectral data and 
subtracting it, thus eliminating background noise and systematic base
line variations (John et al., 2022; Mills, 2011). Therefore, in our study 
we used a combination of SNV and DT in our pre-processing steps to 
develop reliable and robust prediction models (Fig. 3). For the devel
opment of calibration equations, the following mathematical treatments 
(in the sequence of derivative, gap, smoothing 1, and smoothing 2) were 
identified as the best-performing for each parameter: starch (2,6,6,1), 
amylose (2,4,4,1), protein (3,6,6,1), fat (2,4,6,1), and phenols (2,4,8,1). 
For instance, in case of starch (2,6,6,1), ‘2′ indicates the derivative order, 
‘6′ the gap size, ‘6′ the first smoothing, and ‘1′ the second smoothing, 
respectively. These treatments were selected based on a combination of 
the highest values for 1-VR (VR= Variance) and RSQ, along with the 
lowest SEC and SEP(C) values. To eliminate background noise and 
enhance spectral resolution, second and third derivatives were applied. 
These derivatives act as high-pass filters and remove low-frequency 

Table 1 
Descriptive statistics of Lablab bean germplasm collection (N = 112) for 5 nutritional traits.

Trait Starch Amylose Protein Fat Phenols

Mean 31.466 14.813 24.464 2.138 0.242
Min 22.416 13.140 20.987 1.328 0.091
Max 35.879 16.118 27.145 3.751 0.470
Median 31.546 14.825 24.318 2.105 0.243
SD 2.091 0.558 1.106 0.353 0.063
Range 22.416–35.879 13.140–16.118 20.987–27.145 1.328–3.751 0.091–0.470

*All values are presented in g/100 g of dry basis.

Fig. 2. Combined NIR spectra of lablab bean germplasm (N = 112).
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background signals and baseline variations, which often obscure weaker 
spectral features that are critical for analysis. By improving the clarity of 
minor peaks that are not discernible in the original spectrum, the de
rivatives significantly improve calibration performance. Additionally, 
the use of gaps (4, 6) and smoothing techniques (S1–4,6,8, S2–1) was 
used to reduce noise generated by high-frequency disturbances. This 
smoothing process ensured that erratic spectral fluctuations did not 
interfere with the accurate determination of key parameters. Together, 
these mathematical treatments provided a robust foundation for the 
development of precise calibration models for various quality traits.

8.4. Validation of the models using independent test data

To validate the developed models, an entirely independent dataset 
(N = 38) was used. The selection of the best-fit models was based on 
several key criteria, including higher RSQexternal and RPD values, along 
with lower SEP, slope, and bias values. The mean, SD, minimum, 
maximum values, and validation metrics for both reference and pre
dicted data are presented in Table 2 for all 5 traits. The close agreement 
between actual and predicted values, with minimal differences observed 
across these metrics, indicates the reliability of the developed models. 
For instance, in case of starch, the reference mean value was 31.410, 
while the predicted mean value was 31.409, showing an almost perfect 
match between the actual and predicted results. In case of protein, the 
reference mean value was 24.427, compared to the predicted mean of 
24.458, with only a minor difference. This similarity, particularly in 
mean and SD, suggests that the models can accurately predict the key 
parameters without significant deviation from the reference laboratory 
values, further validating their robustness.

RSQ(external), or the coefficient of determination (R2), is a statistical 
measure used to evaluate how well the predicted values from a model 
match the actual values. It ranges from 0 to 1, with values closer to 1 

indicating a stronger correlation between the predicted and actual data, 
meaning the model can explain a larger portion of the variance in the 
data. In the present study, for starch, the RSQ was very high at 0.959, 
indicating an excellent fit between the actual and predicted values. For 
amylose, the RSQ was 0.737, showing a moderate fit but still reasonable 
for practical use. For protein, the RSQ was 0.911, signifying a strong 
correlation and reliable prediction. The model for fat also performed 
well, with an RSQ of 0.894, while in the case of phenols, the RSQ was 
0.816, suggesting good predictive ability for this parameter as well 
(Fig. 4). Bias indicates the systematic difference between the predicted 
and actual values, with an ideal bias being close to zero, meaning no 
consistent over- or under-prediction (Wu et al., 2019). In our study, the 
bias values were nearly negligible: starch (0.001), amylose (− 0.125), 
protein (− 0.030), fat (− 0.002), and phenols (− 0.002). These low bias 
values suggest that the models have minimal systematic error, with 
amylose showing a slightly higher under-prediction bias compared to 
the other parameters, which exhibit almost no bias at all. SEP(C), or 
Standard Error of Prediction corrected for bias, measures the model’s 
predictive accuracy by accounting for both random error and any sys
tematic bias. A lower SEP(C) value indicates better predictive perfor
mance. In our study, the SEP(C) values were: starch (0.494), amylose 
(0.318), protein (0.355), fat (0.136), and phenols (0.030) (Table 2).

Residual Prediction Deviation (RPD), is the ratio of the standard 
deviation of reference data to the SEP(C), and it provides a more robust 
measure of the model’s predictive performance. The ideal RPD value 
should exceed 1. An RPD between 1.5 and 2 suggests the model can 
distinguish between high and low values of the response variable. Values 
ranging from 2 to 2.5 indicate the ability of the model to provide 
approximate quantitative predictions. RPD values of 2.5 or higher 
represent good predictive accuracy, while values of 3 or above signify 
excellent model performance (Williams et al., 2017). In our study, the 
RPD values were: starch (4.57), amylose (1.76), protein (3.09), fat 
(2.92), and phenols (2.36) (Table 2). The high RPD for starch and pro
tein indicates strong predictive accuracy, while the values for fat and 
phenols suggest good models for germplasm screening. Amylose, with 
an RPD of 1.76, indicates a lower performance but may still be useful for 
approximate estimations.

Several other studies have reported robust NIRS-based prediction 
models using the MPLS approach, with their results aligning closely with 
ours in terms of RSQ and RPD values for key traits. For example, in our 
study, the starch prediction model achieved an R² of 0.959 and an RPD 
of 4.57, indicating high accuracy and reliability (Table 2). These values 
surpass those reported by (Tomar et al., 2021b) (R² = 0.915, RPD =
2.71) for pearl millet and as well as (John et al., 2022) (R² = 0.820, RPD 
= 2.12) for rice, but slightly lower than those reported by (Padhi et al., 
2022) (R² = 0.997, RPD = 5.32) for cowpea The differences in RPD 
values could be attributed to varying sample sizes, diversity within the 
germplasm tested, or differences in the spectral ranges used for cali
bration in each study. Additionally, variations in the chemical 

Fig. 3. NIR-spectra (2nd derivative) of Lablab bean germplasm after pre
processing using Standard Normal Variate (SNV) and Detrending 
(DT) techniques.

Table 2 
External validation metrics of the developed models.

Parameters Starch Amylose Protein Fat Phenols

Mean Reference value 31.410 14.819 24.427 2.151 0.240
Predicted value 31.409 14.944 24.458 2.153 0.242

SD
Reference value 2.368 0.607 1.168 0.412 0.061
Predicted value 2.227 0.554 1.085 0.392 0.070

Minimum value
Reference value 22.416 13.140 20.987 1.328 0.091
Predicted value 23.315 13.504 21.729 1.397 0.042

Maximum value Reference value 35.879 16.118 27.145 3.751 0.370
Predicted value 35.497 16.089 27.051 3.894 0.359

Validation metrics

Math treatment 2,6,6,1 2,4,4,1 3,6,6,1 2,4,6,1 2,4,8,1
RSQ 0.959 0.737 0.911 0.894 0.816
Slope 1.041 0.942 1.028 0.993 0.794
Bias 0.001 − 0.125 − 0.030 − 0.002 − 0.002
SEP(C) 0.494 0.318 0.355 0.136 0.030
RPD 4.57 1.76 3.09 2.92 2.36
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Fig. 4. The figure presents scatter plots showing the relationship between reference and predicted values of key nutritional traits for Lablab bean germplasms. The 
traits include A: Starch content, B: Amylose content, C: Protein content, D: Fat content, and E: Total phenols, with all values expressed on a g/100 g dry basis.
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composition of different crops and geographical locations may 
contribute to the superior or inferior model performance across studies. 
For amylose, our model obtained an R² of 0.737 and an RPD of 1.76 
(Table 2), which, although lower than values in some studies, (Bagchi 
et al., 2016; John et al., 2022; Tomar et al., 2021b), still demonstrate the 
model’s ability to capture amylose content variation. The relatively 
lower RPD may be due to the narrower range of amylose content in the 
Lablab bean germplasm compared to other crops. While our RPD is 
lower, it offers a foundation for further model refinement, perhaps by 
increasing sample diversity or improving calibration procedures. The 
protein prediction model in our study performed well, with an R² of 
0.911 and an RPD of 3.09, which is consistent with results reported for 
mung bean (Bartwal et al., 2023) (R² = 0.940, RPD = 3.84), cowpea 
(Padhi et al., 2022) (R² = 0.903, RPD = 2.80), and ricebean (R² = 0.84, 
RPD = 2.25) (Kaur et al., 2024c). The slight discrepancies in perfor
mance might arise from different methods of protein estimation, dif
ferences in the protein content variability within each study’s 
germplasm or due to differences in model calibration techniques used. 
Despite these differences, our model shows strong predictive reliability 
for protein content in Lablab bean. For fat, our model achieved an R² of 
0.894 and an RPD of 2.92, outperforming other legumes such as rice 
bean and adzuki bean (R² = 0.583, RPD = 1.1) (John et al., 2023). The 
better performance of our model could be due to the wider range and 
diversity of fat content in our calibration and validation datasets along 
with superior spectral preprocessing techniques (SNV and DT), which 
helped minimize noise and scatter in the spectra. For phenols, our model 
recorded an R² of 0.816 and an RPD of 2.36, significantly higher than 
those reported in cowpea (R² = 0.706, RPD = 1.78) and rice bean (R² =
0.571, RPD = 1.30) (John et al., 2023; Padhi et al., 2022). This 
discrepancy could stem from the higher phenolic content variability in 
our dataset, enabling better model calibration, or differences in 
extraction methods for phenols, which can impact the NIR spectrum. 
Lastly, it can be deduced that while the RSQ and RPD values for starch, 
protein, fat, and phenols in our study are comparable to or better than 
those reported in similar NIRS-based studies, discrepancies in perfor
mance across studies can largely be attributed to variability in sample 
composition, analysis methods, preprocessing techniques, modelling 
approach, calibration range, and germplasm diversity as these factors 
significantly influence the robustness of the predictive models.

Compared to conventional methods, our NIRS-based models offer 
significant advantages by being more efficient, eco-friendly, and less 
labor-intensive, allowing for the simultaneous assessment of multiple 
components in a non-destructive manner. This approach minimizes the 
need for costly chemical reagents and reduces processing time, making it 
highly suitable for large-scale applications. The incorporation of spectral 
pre-processing techniques (SNV and DT) and chemometric methods 
(MPLS) enhances the reliability and precision of predictions for key 
nutritional traits. Additionally, these models enable high-throughput 
screening of Lablab bean germplasm, which is invaluable for plant 
breeders and researchers focused on developing nutritionally superior 
varieties. In the food industry, they facilitate rapid assessment of ge
notypes with desired nutritional profiles. For example, protein-rich ge
notypes can support the development of plant-based meat alternatives 
or be used as a high-protein feed for livestock. Starch-rich genotypes are 
ideal for manufacturing energy-dense foods, such as porridges and 
flatbreads. On the other hand, genotypes with high amylose and phenol 
content can be selected for producing low glycemic index foods, catering 
to the growing demand for healthier diets (John et al., 2022; Tomar 
et al., 2021b, 2021a).

Furthermore, the application of this model extends to food 
manufacturing and production optimization, where it can streamline the 
identification of raw materials with specific nutritional traits, reducing 
reliance on time-consuming wet chemistry methods. In addition to 
nutritional profiling, favorable genotypes can be further assessed for 
agro-morphological traits, accelerating their integration into main
stream agriculture. This approach also enhances breeding efficiency by 

enabling the early elimination of less promising genotypes and selection 
of desired chemotypes from diverse backgrounds before further evalu
ation, thereby reducing breeding cycles and associated costs. Thus, the 
developed NIR-based models align with the needs of food manufacturing 
and engineering research by providing a rapid, cost-effective, and sus
tainable solution for screening, breeding, and optimizing production 
processes. This approach supports the development of functional foods 
and nutraceutical products while contributing to the broader goals of 
sustainable agriculture and global food security.

8.5. Statistical analysis between reference and predicted values

A paired sample t-test was performed to evaluate the accuracy of the 
prediction model by comparing the reference values with the predicted 
values for key traits. This test helps to determine whether there is a 
significant difference between the two sets of values, thereby assessing 
the reliability of the model in predicting the selected parameters. Table 3
presents the paired sample t-test results comparing reference (Ref.) and 
predicted (Pred.) values for starch, amylose, protein, fat, and phenols at 
a 95% confidence interval. The mean differences between the reference 
and predicted values are minimal, and all p-values are greater than 0.05, 
indicating no statistically significant differences. The low SD and stan
dard errors of the mean (SEM) further confirm the accuracy and con
sistency of the predicted values across the different traits.

In addition to the paired sample t-test, we performed correlation and 
reliability analysis to further assess the model’s predictive performance 
for biochemical parameters in lablab bean germplasm. Table 4 shows 
high reliability and strong positive correlations between the reference 
and predicted values across all traits. The correlation coefficients range 
from 0.859 to 0.979, indicating a strong linear relationship, while the 
reliability (unbiased) values, ranging from 0.918 to 0.990, confirm the 
consistency and unbiased nature of the predictions. These results 
demonstrate the robustness of the model in accurately predicting the 
biochemical traits.

9. Conclusions

In the present study, we developed Near-Infrared Reflectance Spec
troscopy (NIRS)-based prediction models for starch, amylose, protein, 
fat, and phenols in lablab bean (Lablab purpureus L.) using a Modified 
Partial Least Squares (MPLS) approach. Spectral pre-processing tech
niques such as Standard Normal Variate (SNV) and Detrending (DT) 
were applied to improve model accuracy by removing scatter effects and 
baseline shifts. The models were built on homogenized seed flour and 
validated using independent test datasets. The best-performing models 
were: starch (R² = 0.959, RPD = 4.57), amylose (R² = 0.737, RPD =
1.76), protein (R² = 0.911, RPD = 3.09), fat (R² = 0.894, RPD = 2.92), 
and phenols (R² = 0.816, RPD = 2.36). Statistical analyses, including 
paired sample t-test, correlation, and reliability tests, confirmed the 
robustness of the models. These models provide a rapid and non- 
destructive approach for screening large germplasm collections, avail
able in national and global repositories and have the potential to 
accelerate pre-breeding programs aimed at developing nutritionally 
enriched lablab bean varieties. While this study focused on 

Table 3 
Paired sample t-test at 95% confidence interval.

Pair Mean SD SEM p-value

Starch (Ref. vs Pred.) .00024 .49411 .08015 .998
Amylose (Ref. vs Pred.) − 0.12468 .31757 .05446 .069
Protein (Ref. vs Pred.) − 0.03042 .35520 .05920 .611
Fat (Ref. vs Pred.) − 0.00197 .13582 .02203 .929
Phenols (Ref. vs Pred.) − 0.00146 .03029 .00512 .778

*SD= Standard Deviation, SEM= Standard Error of Mean, Ref.- Reference 
values, Pred.- Predicted values.
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homogenized seed flour, future research can explore the development of 
models using whole grains. Lastly, this study represents the first report 
of using NIRS and MPLS for rapid, multi-trait screening of lablab bean 
germplasm, providing a foundation for future research in developing 
nutritionally enhanced varieties and exploring more advanced modeling 
techniques.
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