

Forschungsinstitut für biologischen Landbau FiBL info.suisse@fibl.org | www.fibl.org

Organic farming for long-term food security

Evidence from 45 years research in the DOK trial

Andreas Fliessbach - Organic Innovation Days, 23.10.2024, Organic House, Brussels

The DOK field experiment

- Long-term study since 1978
- System comparison "Is organic feasible?"
- Farmer groups as a reality control
- Today the trial serves as a research platform
- Scientific publications

Experimental design

- Haplic luvisol on deep alluvial loess
- 791 mm and 10.9°C MAT
- 8 Treatments 3 subplots 4 replicates
- 96 plots
- Soil tillage and crop rotation identical
- **BIODYN** biodynamisch (demeter)
- **BIOORG** bioorganisch (Bio Suisse)
- **CONFYM** conventional (IP Suisse)
- **CONMIN** conventional, no manure, industrial NPK

Plant protection	mechanical	mechanical, indirect		(thresholds)		
		preparations	copper sulphate	insecticides, fungicides, herbicides		
Fertilization	-	composted manure, slurry	rotted manure, slurry	stacked manure, slurry, industrial	industrial	
	NOFERT	BIODYN I.4	BIOORG 1.4	CONFYM I.4	COMMIN	I.4 DGVE
		BIODYN 0.7	BIOORG 0.7	CONFYM 0.7		0.7 DGVE

Crop rotation changes

- Same 7-year crop rotation in all systems
- Adapted after each crop rotation period (CRP)
- 7. CRP (2020-2026) similar to 6. CRP

Year	1. CRP 1978–1984	2. CRP 1985-1991	3. CRP 1992–1998	4. CRP 1999–2005	5. CRP 2006–2012	6. CRP 2013-2019
1	Potato	ato Potato		Potato Potato		Silage maize
	Green manure	Green manure	Green manure			Green manure
2	Winter wheat 1	Winter wheat 1	Winter wheat 1	Winter wheat 1	Winter wheat 2	Soya
2	Winter forage	Winter forage	Winter forage	Green manure	Green manure	
2	White cabbage	Beetroot	Beetroot	Soya	Soya	Winter wheat 1
3				Green manure	Green manure	Green manure
4	Winter wheat 2	Winter wheat 2	Winter wheat 2	Silage maize	Potato	Potato
5	Barley	Barley	Grass clover 1	Winter wheat 2	Winter wheat 2	Winter wheat 2
6	Grass clover 1	Grass clover 1	Grass clover 2	Grass clover 1	Grass clover 1	Grass clover 1
7	Grass clover 2	Grass clover 2	Grass clover 3	Grass clover 2	Grass clover 2	Grass clover 2

Plant protection

- In kg active substance per hectare as an average over all crops of a CRP
- Reduced pesticide inputs in CONFYM/CONMIN from 3rd CRP, but increasing numbers of applications
- 92 % less pesticides in BIODYN/BIOORG compared to CONFYM/CONMIN

- Yield gap decreased in dependency of crop: potato>wheat>silage maize> grass clover>soybean
- I5% yield gap for organic systems at I.4 LU across all crops
- Yield gap decreased from 20% based on results of the first three crop rotation periods

Crop yield relative to CONFYM 2

Knapp et al. (2023): Field Crops Research

Mean wheat and grass clover yields per crop rotation period (CRP)

Mean potato and silage maize yields per crop rotation period (CRP)

Mean yields per crop rotation period (CRP)

Soil organic carbon (SOC)

SOC-stock (0-20cm)

FiBL

- All system fertilized at 0.7 LU, CONMIN and NOFERT loose SOC
- Mixed farming with 1.4 LU can sustain SOC stocks
- Increased SOC stocks in BIODYN presumably due to input quality

SOC-stock change

Krause et al. (2022): Agronomy for Sustainable Development

Soil organic carbon

- Stratified soil sampling in 2019-2020
- Main differences in soil carbon stock occur in topsoil

Biological soil quality

Species diversity

- Soils of the DOK trial were used in various MSc and PhD studies
 BIOORG and BIODYN showed increased diversity for Bacterial genotypes microflora, macrofauna and weeds
 Fungi genotypes
 - CONMIN BIODYN 2 BIOORG 2 CONFYM 2

Soil microbial diversity

- Amplicon approach targeting 16S rRNA and ITS marker genes
- Stronger influence of the cropping system on fungi
- Stronger influence of organic fertiliser intensity on bacteria

Lori et al. (2023): FEMS Microbiology Ecology

Energy consumption and global warming potential in the DOK trial (1985-1998) from a life cycle assessment

System	Energy use		Global warming potential		
	GJ ha ⁻¹ yr ⁻¹	MJ kg⁻¹ yield DM	kg CO₂-eq ha⁻¹ yr⁻¹	kg CO₂-eq kg⁻¹ yield DM	
BIODYN	13.6 (65 %)	1.6 (80%)	2804 (63%)	0.35 (81 %)	
BIOORG	14.5 (69%)	1.8 (90%)	2920 (65%)	0.36 (84%)	
CONFYM	21.0 (100%)	2.0 (100%)	4474 (100%)	0.43 (100%)	
CONMIN	26.9 (128%)	2.8 (140%)	4121 (92%)	0.44 (102%)	

Nemecek et al. (2011)

- Energy savings: Organic farming does not use synthetic chemical fertilisers and pesticides. Compared to conventional farming, energy consumption is therefore 30 per cent lower.
- This advantage is reduced to 10-20 % per yield unit.

Soil borne greenhouse gas emissions

- C-stock changes assuming constant bulk density for each plot
- N₂O measurement campaign for 571 days (grass clover - maize - cover crop)
- Field site as system boundary
- N₂O emissions drive climate impact
- SOC increases, especially in BIODYN, did not enhance N₂O emissions
- 56 % lower soil borne GHG in BIODYN/BIOORG vs CONFYM/CONMIN

Fib

CO₂-Equivalents

Krause et al. (2022): Agronomy for Sustainable Development

Conclusions drawn from DOK trial results

- Crop yields were 20% lower in organic vs. conventional over the first three CRP but the yield gap went down to 15% over six CRP.
- The two organic systems build on recycling manure and nutrients from livestock.
- The additional yield in conventional systems comes with costs for industrial inputs that reduce the economic outcome and increase the energy use, with negative environmental consequences.
- Organic farming systems show improved soil quality and biological processes compared to conventional.
- Climate impact is reduced.
- More species are found in organic farming systems

Thank you for your attention

TheFiBL department of Soil Sciences