Agroecological Screening of Copper Alternatives for the Conservation of Soil Health in Organic Olive Production
Abstract
:1. Introduction
- (a)
- Fertilisers and BCAs on copper pollution in soil;
- (b)
- Fertilisers and BCAs on olive leaf spot disease;
- (c)
- TWSP content in olive fruit as a preventing factor of the olive leaf spot disease, and;
- (d)
- Copper leaf-spray application on olive leaf and fruit copper content.
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Field Management
2.3. Sampling and Measurement
2.4. Statistical Analysis
3. Results
3.1. Copper in Soil, Leaf, and Fruit Samples in the Olive Trial
3.2. Disease Severity and Efficiency Levels of the Treatments and Total Water Soluble Phenol Results
4. Discussion
4.1. Copper Content of Soil, Leaf, and Fruit
4.2. Total Water Soluble Phenol
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EPA. Copper, Public Health Statement. 2021. Available online: https://www.epa.gov/ (accessed on 18 July 2021).
- Schmutz, U.; Conroy, J. Pathways to Phase-Out Contentious Inputs from Organic Agriculture in Europe. Available online: https://organic-plus.net/ (accessed on 2 June 2021).
- Oorts, K. Copper. In Heavy Metals Soils; Springer: Berlin/Heidelberg, Germany, 2012; pp. 367–394. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; pp. 33–347. [Google Scholar]
- Yang, X.-E.; Long, X.-X.; Ni, W.-Z.; Ye, Z.-Q.; He, Z.-L.; Stoffella, P.J.; Calvert, D.V. Assessing Copper Thresholds for Phytotoxicity and Potential Dietary Toxicity in Selected Vegetable Crops. J. Environ. Sci. Health Part B 2002, 37, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Johnston, H. The accumulation of copper in a New Zealand orchard soil. J. R. Soc. N. Z. 1991, 21, 323–327. [Google Scholar] [CrossRef]
- Official Gazette of Republic of Turkey. 2005. 31.5.2005, No: 25831. Regulation Soil contamination. Available online: https://www.resmigazete.gov.tr/eskiler/2005/05/20050531-6.htm (accessed on 15 January 2022).
- Official Gazette of Republic of Turkey. 2018. Organic Farming, 10.1.2018, No: 30297. Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=14217&MevzuatTur=7&MevzuatTertip=5 (accessed on 15 January 2022).
- Katsoulas, N.; Løes, A.-K.; Andrivon, D.; Cirvilleri, G.; de Cara, M.; Kir, A.; Knebl, L.; Malińska, K.; Oudshoorn, F.W.; Willer, H.; et al. Current use of copper, mineral oils and sulphur for plant protection in organic horticultural crops across 10 European countries. Org. Agric. 2020, 10, 159–171. [Google Scholar] [CrossRef]
- Eurostat. Olive Production Statistics. 2021. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 16 July 2021).
- Conte, P.; Fadda, C.; Del Caro, A.; Urgeghe, P.P.; Piga, A. Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faostat. Olive Production Statistics. 2021. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on 16 July 2021).
- Willer, H.; Schlatter, B.; Trávníček, J.; Kemper, L.; Lernoud, J. (Eds.) The World of Organic Agriculture. Statistics and Emerging Trends 2020. In Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM—Organics International, Bonn; 2020; Available online: www.organic-world.net/yearbook/yearbook-2020.html (accessed on 16 January 2022).
- Laborda, E.; Antón, F.A. Estudio de la susceptibilidad/resistencia de variedades del olivo (Olea europaea L.) al patógeno Cycloconium oleaginum (Cast.) (Spilocaea oleaginae Hugh. Boletín Sanid. Vegetal. Plagas 1989, 15, 385–403. [Google Scholar]
- Azeri, T. Research on olive leaf spot, olive knot and verticillium wilt of olive in Turkey. EPPO Bull. 1993, 23, 437–440. [Google Scholar] [CrossRef]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant pathogen interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef]
- Bremer, H. Türkiye Fitopatolojisi III; Güney Matbaası: Ankara, Turkey, 1948. [Google Scholar]
- Chen, S.; Zhang, J. Studies on olive peacock’s eye disease, infection cycle and epidemiology. Acta Phytopathol.-Ca Sin. 1983, 13, 31–40. [Google Scholar]
- Graniti, A. Olive scab: A review. EPPO Bull. 1993, 23, 377–384. [Google Scholar] [CrossRef]
- Macdonald, A.; Walter, M.; Trought, M.; Frampton, C.; Burnip, G. Survey of olive leaf spot in New Zealand. N. Z. Plant Prot. 2000, 53, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Obanor, F.O.; Walter, M.; Jones, E.E.; Jaspers, M.V. Effect of temperature, relative humidity, leaf wetness and leaf age on Spilocaea oleagina conidium germination on olive leaves. Eur. J. Plant Pathol. 2007, 120, 211–222. [Google Scholar] [CrossRef]
- Roubal, C.; Regis, S.; Philippe, C.; Nicot, P.C. OPTIPAON, a decision support system to predict the risk of peacock eye of olive in southern France. In Proceedings of the 7th Congress on Plant Protection “Integrated Plant Protection—A Knowledge-Based Step towards Sustainable Agriculture, Forestry and Landscape Architecture”, Zlatibor, Serbia, 24–28 November 2014. [Google Scholar]
- El Aabidine, A.Z.; Baissac, Y.; Moukhli, A.; Jay Allemand, C.; Khadari, B.; El Modafar, V.C. Resistance of olive-tree to Spilocaea oleagina is mediated by the synthesis of phenolic compounds. Int. J. Agric. Biol. 2010, 12, 61–67. [Google Scholar]
- EşbahTunçay, H.; Akyol, M.; Steindl, M. Urban agriculture: Implications on Istanbul cultural Theritage. J. Environ. Prot. Ecol. 2014, 15, 1793–1800. [Google Scholar]
- Kaldjian, P.J. Istanbul’s Bostans: A Millennium of Market Gardens. Geogr. Rev. 2004, 94, 284–304. [Google Scholar] [CrossRef]
- Official Gazette of Republic of Turkey, 2012. 6.12.2012, No: 28489. Büyükşehir Belediyesi kurulması ve sınırlarının belirlenmesi (6360, 12.11.20129). Available online: https://www.resmigazete.gov.tr/eskiler/2012/12/20121206-1.htm (accessed on 16 February 2022).
- Official Gazette of Republic of Turkey, 2020. 16.10.2020, No: 31276. Kamu Mali Yönetimi ve Kontrol Kanunu ile Bazı Kanunlarda Değişiklik Yapılması Hakkında Kanun. Available online: https://www.resmigazete.gov.tr/eskiler/2020/10/20201016M1-1.htm (accessed on 16 February 2022).
- Official Gazette of Republic of Turkey, 2018b. 23.2.2018, No: 30341. Tarımda Kullanılan Gübrelerin Piyasa Gözetimi ve Denetimi. Available online: https://www.mevzuat.gov.tr/anasayfa/MevzuatFihristDetayIframe?MevzuatTur=7&MevzuatNo=38682&MevzuatTertip=5 (accessed on 16 February 2022).
- Özden, F. İzmir’de Gıda Grupları ve Topluluk Destekli Tarım. Meltem İzmir Akdeniz Akad. Derg. 2019, 93–97. [Google Scholar] [CrossRef]
- Gida Topluluklari. 2021. Available online: http://gidatopluluklari.org/ (accessed on 18 July 2021).
- Van Der Ploeg, J.D. The New Peasantries: Struggles for Autonomy and Sustainability in an Era of Empire and Globalization; Routledge: Oxfordshire, UK, 2012. [Google Scholar]
- Kazemi, H.; Klug, H.; Kamkar, B. New services and roles of biodiversity in modern agroecosystems: A review. Ecol. Indic. 2018, 93, 1126–1135. [Google Scholar] [CrossRef]
- Kopytko, N. Supporting Sustainable Innovations: An Examination of India Farmer Agrobiodiversity Conservation. J. Environ. Dev. 2019, 28, 386–411. [Google Scholar] [CrossRef]
- Kloppenburg, J. Impeding Dispossession, Enabling Repossession: Biological Open Source and the Recovery of Seed Sovereignty. J. Agrar. Chang. 2010, 10, 367–388. [Google Scholar] [CrossRef]
- Di Falco, S.; Penov, I.; Aleksiev, A.; van Rensburg, T.M. Agrobiodiversity, Farm Profits and Land Fragmentation: Evidence from Bulgaria. Land Use Policy 2010, 27, 763–771. [Google Scholar] [CrossRef]
- Japón-Luján, R.; de Castro, M.D.L. Small Branches of Olive Tree: A Source of Biophenols Complementary to Olive Leaves. J. Agric. Food Chem. 2007, 55, 4584–4588. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; Roldán, C.; León, L.; De La Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Chemometric Analysis for the Evaluation of Phenolic Patterns in Olive Leaves from Six Cultivars at Different Growth Stages. J. Agric. Food Chem. 2015, 63, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Townsend, G.K.; Heuberger, J.W. Methods for Estimating Losses Caused by Diseases in Fungicide Experiments. Plant Dis. Rep. 1943, 27, 340–343. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem. 2008, 108, 253–262. [Google Scholar] [CrossRef]
- Ranalli, A.; Contento, S.; Lucera, L.; Di Febo, M.; Marchegiani, D.; Di Fonzo, V. Factors Affecting the Contents of Iridoid Oleuropein in Olive Leaves (Olea europaea L.). J. Agric. Food Chem. 2005, 54, 434–440. [Google Scholar] [CrossRef]
- Hrncirik, K.; Fritsche, S. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid Sci. Technol. 2004, 106, 540–549. [Google Scholar] [CrossRef]
- Kacar, B. Bitki Besleme; Ankara University Agriculture Faculty Publication No. 367: Ankara, Turkey, 1977. [Google Scholar]
- Kacar, B.; ve İnal, A. Bitki Analizleri; Şti. Yayınları, Yayın No: 1241; Fen Bilimleri: 63, (I. Basım); Nobel Yayın Dağıtım Ltd.: Ankara, Turkey, 2008. [Google Scholar]
- Reuter, D.J.; Robinson, J.B. Plant Analysis, An Interpretation Manual; Inkata Press: Collingwood, VIC, Australia, 1997; 127p. [Google Scholar]
- SAS STAT Software, Release 2007 JMP©, Version 7; SAS Institute Inc.: Cary, NC, USA, 2007.
- Kellogg, C.E. Our Gardens Soils; The Macmillan Company: New York, NY, USA, 1952. [Google Scholar]
- Evliya, H. Kültür Bitkilerinin Beslenmesi; Ankara Üniversitesi Ziraat Fakültesi Yayınları, Sayı: Ankara, Turkey, 1964; Volume 36. [Google Scholar]
- Akalan, İ. Soil Formation Structure and Features; Ankara University Faculty of Agriculture: Ankara, Turkey, 1968. [Google Scholar]
- Loue, A. Diagnostic Pétiolairem de Prospection. In Etudes Sur La Nutrition et La Fertilisation Potassiques de La Vigne; Sociéte Commerciale des Potasses d’ Alsace Services Agronomiques: Antananarivo, Madagacar, 1968; pp. 31–41. [Google Scholar]
- Olsen, S.R.; Dean, L.A. Phosphorus. In Methods of Soil Analysis. Part 2; Black, C.A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; pp. 1035–1049. [Google Scholar]
- Pizer, N.H. Some Advisory Aspects. Soil Potassium and Magnesium. Tech. Bull. 1967, 14, 184–186. [Google Scholar]
- Follett, R.H.; Lindsay, W.L. Changes in DTPA-extractable zinc, iron, manganese, and copper in soils following fertilization. Soil Sci. Soc. Am. Proc. 1971, 35, 600–602. [Google Scholar] [CrossRef]
- Keren, R.; Bingham, F.T. Boron in Water, Soils and Plants. Adv. Soil Sci. 1985, 1, 229–276. [Google Scholar]
- Zeytincilik Araştırma Enstitüsü, Bölge Yaprak ve Toprak Analiz Laboratuvarı Survey Çalışmaları Kesin Sonuç Raporu; Anonim: Bornova, İzmir, 1993.
- Ozturk, M.; Altay, V.; Gönenç, T.; Unal, B.; Efe, R.; Akçiçek, E.; Bukhari, A. An Overview of Olive Cultivation in Turkey: Botanical Features, Eco-Physiology and Phytochemical Aspects. Agronomy 2021, 11, 295. [Google Scholar] [CrossRef]
- Aydoğdu, E. Domat ve Uslu Zeytin Çeşitlerinde Yaprakların Besin Element İçerikleri ve Bunların Mevsimsel Değişim-lerinin İncelenmesi. Toprak Bilimi ve Bitki Besleme ABD. Master’s Thesis, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, Turkey, 2011. [Google Scholar]
- Şahin, G. Organik Zeytin Yetiştiriciliğinde Farklı Gübre Dozlarının Toprak Özellikleri, Yaprak Besin Elementi Içeriği ve yağ Kalitesi Üzerine Etkileri. Toprak Bilimi ve Bitki Besleme ABD. Master’s Thesis, Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın, Türkiye, 2013. [Google Scholar]
- Eryüce, N. Organik ve Geleneksel Zeytin Yetiştiriciliğinde Bitki Beslenme Durumunun Meyve, Yaprak ve Zeytinyağında Önemli Kalite Ölçütleri Üzerindeki Etkilerinin Belirlenmesi. Proje No: 108O164, TUBITAK, Ankara, 2010, 132s. Available online: http://zeytindostu.org.tr/wp-content/uploads/2019/06/TVRBeU9UWTI.pdf (accessed on 13 June 2022).
- Oztürk Gungor, F. Effects of Different Preservation Methods on Shelf Life and Qualıty of Domat Table Olive Varıety Prepared Usıng Chloride Salts (NaCl, KCl, CaCl2). Ph.D. Thesis, Ege University, Izmir, Turkey, 2020. [Google Scholar]
- Ben Othman, N.; Roblain, D.; Thonart, P.; Hamdi, M. Tunisian Table Olive Phenolic Compounds and Their Antioxidant Capacity. J. Food Sci. 2008, 73, C235–C240. [Google Scholar] [CrossRef] [PubMed]
- Piga, A.; Del Caro, A.; Pinna, I.; Agabbio, M. Anthocyanin and colour evolution in naturally black table olives during anaerobic processing. LWT 2005, 38, 425–429. [Google Scholar] [CrossRef]
- Pirgün, Y. Determination of Antioxidant Effects of Gemlik and Halhalı Olives Grown in Hatay. Food Engineering. No: ZF2006YL15. Ph.D. Thesis, Çukurova University, Adana, Turkey, 2007; 56p. [Google Scholar]
- Lanza, B.; Di Serio, M.G.; Iannucci, E. Effects of maturation and processing technologies on nutritional and sensory qualities of Itrana table olives. Grasas Y Aceites 2013, 64, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Irmak, Ş. A Study on the Determination of Polyphenol Content of Some Table Olive Varieties and the Effect of Processing Techniques on Poli-Phenols; Olive Research Institute: Izmir, Turkey, 2010. [Google Scholar]
- Tamendjari, A.; Mettouchi, S.; Sacchi, R.; Moussa, Z.E.O.; Paduano, A.; Savarese, M. Effect of Spanish style processing on the phenolic compounds and antioxidant activity of Algerian green table olives. Grasas Y Aceites 2016, 67, e114. [Google Scholar] [CrossRef] [Green Version]
Application of Fertiliser | Application Dates of Fertilisers (Year/Season) | Contents of Applied Certified Organic Commercial Fertilisers * (A, B, and C) (w/w) in Each Year ** | Applied Cu *** Doses to Leaves of Olive Tree for the Disease (kg.ha−1.year−1) |
---|---|---|---|
Soil | 2018/Early-April 2019/Late-March 2020/Late-April | A—An annual dose of 0.8 Liters per hectare of N and P, applied 4 times. The fertiliser contain Bacilullus subtilis 1 × 109 KOB.mL−1 and Baciullus megaterium 1 × 108 KOB.mL−1 | 4.7 |
2018/Early-April 2019/Late-March 2020/Late-April | B—An annual dose of 1.2 Liters per hectare of K, applied in 4 times. The fertiliser contains 15% Organic matter, 6%, Organic Carbon, and 1% water soluble K2O | ||
2018/Early-April 2019/Late-March 2020/Late-April | C—An annual dose of 0.9 Liters per hectare of Compost Tea (Derived from plants), applied in 4 times. The fertiliser contains, 35% Organic matter, 24% Organic Carbon, and 2.5% Total Nitrogen |
Treatment | Details of Application | |
---|---|---|
1 | Copper oxychloride * (Control 1) | Total applied copper 6 kg/ha/year, WG, 4 g. 20 L−1 water, [700 g/L metallic copper equivalent commercial product, appl. dosage is 150 cc/100 L water], applied after early warning system alarms with “leaf spray” application system (within 48 h after Decision support system-DSS (early warning system) signal occurred) |
2 | Bacillus subtilis EU 007 WP | 1 × 104−6 CFU, applied after early warning system alarms with “leaf spray” application system (within 48 h after early warning signal occurred). |
3 | Platanus orientalis (extract of leaves) | Extracted in boiling water, 25 leaves. 20 L−1 water, home-made, applied after early warning system alarms with “leaf spray” application system (within 48 h after early warning signal occurred) |
4 | Vermicompost tea * | Liquid, 30 cc. 20 L−1 water, commercial product, applied after early warning system alarms with “leaf spray” application system (within 48 h after early warning signal occurred). |
5 | Mycorrhiza mix * | WP, 3.2 g. 20 L−1 water, commercial product, applied “drench from soil” application system. Application made according to the phenologic stage of the tree. (a—1 month before the autumn leaves are seen, b—1 month before the spring leaves are seen, c—before the flower buds are seen) |
6 | Seaweed® * | WP, 14 g. 20 L−1 water, commercial product, applied after early warning system alarms with “leaf spray “application system (within 48 h after signal early warning occurred) |
7 | Trichoderma citrinoviride TR1 | 1 × 106 CFU, applied “drench from soil” application system. Application made according to the phenologic sage of tree. (a—1 month before the autumn leaves are seen, b—1 month before the spring leaves are seen, c—before the flower buds are seen) |
8 | Zero application (Control 2) | Untreated control (only irrigation) |
9 | Potassium silicate (KSiO3) | Liquid, 250 cc. 20 L−1 water, commercial product, “drench from soil” application system approx. 80–100 cc KSiO3 per tree. Application made according to the phenologic sage of tree. (a—1 month before the autumn leaves are seen, b—1 month before the spring leaves are seen, c—before the flower buds are seen) |
10 | Vermicompost + Platanus orientalis (extract of leaves) | Liquid, 50% of each, applied after early warning system alarms with “leaf spray” application system |
11 | Penicillium | Mouldy bread pieces, 4 kg per tree, “mix into soil 0–20 cm depth” application system. Application made according to the phenologic sage of tree. (a—1 month before the autumn leaves are seen, b—1 month before the spring leaves are seen, c—before the flower buds are seen). |
No | Treatment | Soil Available Cu | Leaf Cu | Fruit Cu | |
---|---|---|---|---|---|
0–30 cm | 30–60 cm | Initial ** (mg.kg−1) | |||
1 | Copper oxychloride (Control 1) b | 6.43 | 6.20 | 71.42 | 4.59 |
2 | Bacillus subtilis EU 007 WP | 3.50 | 3.45 | 77.45 | 4.40 |
3 | Platanus orientalis | 5.53 | 4.55 | 76.45 | 4.45 |
4 | Vermicompost | 4.43 | 3.80 | 74.48 | 4.40 |
5 | Mycorrhiza | 3.75 | 3.30 | 70.76 | 4.67 |
6 | Seaweed | 6.00 | 5.56 | 74.84 | 4.48 |
7 | Trichoderma citrinoviride TR1 | 5.30 | 5.10 | 71.30 | 4.43 |
8 | Zero application (Control 2) | 4.30 | 4.23 | 74.86 | 4.76 |
9 | Potassium silicate (KSiO3) | 6.46 | 6.40 | 78.96 | 4.79 |
10 | Vermicompost + P. orientalis | 4.00 | 3.90 | 70.51 | 4.60 |
11 | Penicillium | 3.50 | 3.00 | 76.20 | 4.41 |
CV * (%) | 14.2 | 14.5 | 9.4 | 8.1 | |
p-value ≤ 0.05: * | ns | ns | ns | ns |
2020 | 2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|
No | Treatments | Soil Available Cu (mg.kg−1) | Leaf Cu (mg.kg−1) | Fruit Cu (mg.kg−1) | Soil Available Cu (mg.kg−1) | Leaf Cu (mg.kg−1) | Fruit Cu (mg.kg−1) | ||
0–30 cm | 30–60 cm | 0–30 cm | 30–60 cm | ||||||
1 | Copper oxychloride (Control 1) | 3.81 | 3.21 A | 68.63 A | 2.48 | 0.92 A | 3.24 A | 80.75 A | 2.17 |
2 | Bacillus subtulis EU 007 WP | 3.70 | 2.42 B | 28.80 B | 2.40 | 0.84 B | 1.07 B | 7.97 C–E | 2.13 |
3 | Platanus orientalis | 3.71 | 2.40 B | 15.94 B–D | 2.21 | 0.84 AB | 1.17 B | 7.12 DE | 2.05 |
4 | Vermicompost | 3.70 | 2.21 B | 23.48 BC | 2.36 | 0.84 AB | 1.50 B | 6.67 E | 2.14 |
5 | Mycorrhiza | 3.72 | 2.36 B | 21.92 BC | 2.44 | 0.90 AB | 1.40 B | 6.70 E | 2.21 |
6 | Seaweed | 3.70 | 2.32 B | 11.61 D | 2.36 | 0.86 AB | 1.09 B | 8.57 CD | 2.11 |
7 | Trichoderma citrinoviride TR1 | 3.71 | 2.18 B | 23.61 BC | 2.41 | 0.89 AB | 1.51 B | 7.12 C–E | 2.27 |
8 | Zero application (Control 2) | 3.71 | 2.14 B | 15.48 B–D | 2.36 | 0.85 AB | 1.42 B | 9.02 C | 2.16 |
9 | Potassium silicate (KSiO3) | 3.67 | 2.14 B | 16.34 B–D | 2.24 | 0.92 A | 1.38 B | 13.19 B | 2.13 |
10 | Vermicompost + P. orientalis | 3.71 | 2.66 AB | 23.74 BC | 2.36 | 0.85 AB | 1.09 B | 7.53 C–E | 2.06 |
11 | Penicillium | 3.74 | 2.21 B | 13.28 CD | 2.29 | 0.87 AB | 1.36 B | 6.80 E | 2.13 |
CV *** (%) | 0.04 | 0.02 | 0.12 | 0.06 | 0.004 | 0.04 | 0,12 | 0.02 | |
p-value ≤ 0.05: * | * | * | * | ns | * | * | * | ns |
No | Treatment | Average of Replications | Standard Deviation |
---|---|---|---|
1 | Copper oxychloride (Control 1) | 202.78 A | 14.33 |
9 | Potassium silicate (KSiO3) | 195.31 AB | 29.13 |
4 | Vermicompost tea | 180.95 B | 11.32 |
5 | Mycorrhiza mix | 178.77 B | 9.94 |
7 | Trichoderma citrinoviride TR1 | 178.31 B | 13.16 |
3 | Platanus orientalis (extract of leaves) | 164.68 C | 7.39 |
8 | No application (Control 2) | 162.86 C | 10.23 |
10 | Vermicompost + Platanus orientalis (extract of leaves) | 160.85 C | 6.50 |
11 | Penicillium (Mouldy bread pieces) | 156.82 C | 7.11 |
6 | Seaweed | 139.59 C | 11.16 |
2 | Bacillus subtilis EU 007 WP | 137.87 C | 9.75 |
CV (coefficient of variation) (%) | 2.08 | ||
p-value ≤ 0.05: * | * |
No | Phenol Content | Publication |
---|---|---|
1 | “Domat” variety: 245 mg CAE */100 g (in 2014) and 303.6 mg CAE/100 g (in 2015) | [61] Ozturk Gungor, 2020 |
2 | 144.0–674.0 mg GAE **/100g | [62] Ben Othman et al. (2008) |
3 | 306–550.3 mg GAE/100g | [63] Piga et al. (2005) |
4 | 206.5 mg CAE/100g | [64] Pirgün (2007) |
5 | 110–239 mg CAE/100 g | [65] Lanza et al. (2013) |
6 | 274.9 mg CAE/100 g | [66] Irmak (2010) |
7 | 124–1688 mg CAE/100 g. | [67] Mettouchi et al. (2016) |
8 | “Domat” variety: 189.8 mg CAE/100 g | [66] Irmak et al. (2010) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kir, A.; Cetinel, B.; Sevim, D.; Gungor, F.O.; Rayns, F.; Touliatos, D.; Schmutz, U. Agroecological Screening of Copper Alternatives for the Conservation of Soil Health in Organic Olive Production. Agronomy 2022, 12, 1712. https://doi.org/10.3390/agronomy12071712
Kir A, Cetinel B, Sevim D, Gungor FO, Rayns F, Touliatos D, Schmutz U. Agroecological Screening of Copper Alternatives for the Conservation of Soil Health in Organic Olive Production. Agronomy. 2022; 12(7):1712. https://doi.org/10.3390/agronomy12071712
Chicago/Turabian StyleKir, Alev, Barbaros Cetinel, Didar Sevim, Feriste Ozturk Gungor, Francis Rayns, Dionysios Touliatos, and Ulrich Schmutz. 2022. "Agroecological Screening of Copper Alternatives for the Conservation of Soil Health in Organic Olive Production" Agronomy 12, no. 7: 1712. https://doi.org/10.3390/agronomy12071712