

Never change a running system? Balancing systems approach and comparability when adapting LTEs

David Bautze, Eva Goldmann, Noah Adamtey, Amritbir Riar, Akanksha Singh, Beate Huber, Marc Cotter, Johanna Rüegg, Laura Armengot Martínez

Farming Systems Comparisons Trials in the Tropics (SysCom)

SysCom 🐼

FiBL

	Kenya	India	Bolivia
Site	Sub-Saharan Africa - Kenya Central Highlands	South Asia - India Madhya Pradesh, Nimar Valley	South America – Bolivia Sara Ana
Crops	Maize-based systems, 3-year crop rotation with maize, vegetables and potato	Cotton -based systems, 2-years crop rotation with cotton, wheat and soybean	Cacao-based systems, cacao trees with bananas, coffee and timber and fruit trees
Systems	Organic vs conventional at low and high input level	Organic and biodynamic vs conventional with/without GMO	Organic vs conventional as monoculture or agroforestry

Farming Systems Comparisons Trials in the Tropics (SysCom)

Methodological approach – Comparison trials

Same cropping pattern/crop rotation, same timing of nutrient application and pest control, same crop varieties, plant densities

Results – Productivity of annual crops Average yields of annual crops in Kenya and India (2007-2019)

SysCom

FiBL

Annual crop yields in organic systems are primarily limited by nutrient availability as well as pest and disease damage

6

Yield Difference between Farms

FiBL

SysCom

A survey on cotton yields among farmers in the Nimar Valley in India

- Yield difference within system >300%
- Yield difference
 between systems
 - ~10%

System experiment

«System experiments make it possible to evaluate the ability of an agriculture system to meet its objectives (global strategy) assigned to it given its complexity.»

(compare objective with system structure and behaviour)

Systems Approach and changes in the long-term experiment Examples

Mono cropping system

Low-quality inputs (often commercial)

No mulching (including deep tillage)

FiBL

SysCom (

Inter cropping system (including push-pull)

High-quality inputs (made from local resources)

Mulching (including minimum tillage)

Results after changing to a system approach in organic system Example from Kenya

10

Results after changing to a system approach in organic system Example from India

Open questions and challenges

- Farming systems reacting differently to changes depending on site, crop, season, etc.
 - Adaption is a continuous process
- Long decision making process as every change can have multiple effects
- Limited toolset not every change is possible (agroforestry, integrated livestock)
- Difficulty to publish more proof of concept than basic science
- Comparability through meta values (energy consumption, etc.)
- Needs long-term funding no final answer on system performance

12

Many thanks to our partners and donors!

Swiss Agency for Development and Cooperation SDC LED LIECHTENSTEIN DEVELOPMENT SERVICE

