Call identifier: H2020-SFS-2017-2 BRESOV Grant agreement N°: 774244

Breeding for Resilient, Efficient and Sustainable Organic Vegetable production

Deliverable No. D5.4

Performance of the varieties in on-farm trials: Quality assessment (resistance to diseases, yield, physical appearance, ease of harvest, acceptability from the farmers) of each new variety and analysis of soil samples during the two years rotation model

> Contractual delivery date: M56

> > Delivery date: M57: 31/01/2023

> > Resubmission: M62: 12/07/2023

> > > Lead partner: P6-FiBL

BRESOV has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 774244.

Grant agreement no.	H2020 - 774244
Project full title	BRESOV - Breeding for Resilient, Efficient and Sustainable Organic Vegetable production

Deliverable number	D5.4
Deliverable title	Performance of the varieties in on farm trials: Quality assessment (resistance to diseases, yield, physical appearance, ease of harvest, acceptability from the farmers) of each new variety and analysis of soil samples during the two years rotation model
Nature	Report
Dissemination level	PU
Work package number	WP5
Work package leader	P6-FiBL
Author(s)	Joelle Herforth-Rahmé (P6-FiBL)
Keywords	Organic farming, tomato, broccoli, bean, on-farm, variety trial

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 774244.

The author is solely responsible for its content, it does not represent the opinion of the European Commission and the Commission is not responsible for any use that might be made of data appearing therein.

1.	Introduction	4
2.	Description of Activities	4
3.	Results	6
4.	Deviations	32
5.	Conclusions	32
6.	Acknowledgments	32
7.	References	32

1. Introduction

The first two objectives of WP5 were i) to evaluate a shortlist of breeding lines compatible with organic farming for the production of crops of enhanced quality and marketing value and ii) to provide farmers with new materials to be tested alongside commercial organic varieties on farm. These test materials of tomato, broccoli and beans were selected in the trials of task 5.1 and are described in BRESOV D5.1. Their production was tested under local organic production conditions during two seasons in different European location. The one-year prolongation of the project allowed the addition of a season of trials in Portugal (P4-UTAD) and Romania (P11-VRDS). P14-ZAAS and P13-BAAFS tested varieties from their own breeding programs in China. Their trials are not included in this report.

Varieties cultivated at each trial location are listed in BRESOV D5.1. These varieties originate from organic seed producers' breeding programs, BRESOV partners breeding trials, or from partners previous experiments or tests with other tasks of BRESOV. In the second year of trials, minor changes of varieties were made in some locations to adapt to the result of the first year.

In this deliverable, we describe the performance of the main common varieties tested, in terms of yield, health and appreciation by the farmers. We also include the analysis of soil sample from the different trial locations.

2. Description of Activities

Material from the three main crops of BRESOV, Tomato (greenhouse GH and open field OF), beans and broccoli were tested by up to seven partners in collaboration with regional organic farmers in 2020 and 2021, as well as in 2022 for partners P4-UTAD and P11-VRDS (table 1). The farm locations and usual production practices can be found in BRESOV D5.1.

Partner	Country	GH Tomato	OF Tomato	Broccoli	Bean
P4-UTAD ¹	PT			Х	
P5-VURV	CZ			Х	
P6-FiBL	СН	Х		Х	Х
P9-UNILIV	UK			Х	
P11-VRDS ^{1,2}	RO		Х	Х	Х
P12-CREA ²	IT		Х		
P16-SERIDA	ES				Х
P18-ITAKA ³	IT	Х	Х	Х	Х
P21-SECL	FR	Х		Х	Х

Table 1: Crops for which each partner performed variety trials. ¹three years of variety trials. ²trials were carried in two locations, except for the 2023 trials of P11-VRDS. ³One GH tomato trial, and one OF tomato trial were carried in the 2 years.

The main material tested is presented in the annex of BRESOV D5.1 and consist of the following lines:

- Greenhouse tomato
 - o FiBL2-298X
 - o FiBL7-TZ24
 - o FiBL3-236X
 - o FiBL4-TZ32
- Open field tomato
 - FiBL8_To65_Mauro Rosso
 - FiBL9_PVB8(Ti03)
 - FiBL10_PVB67(Ti08)
 - FiBL 12_ PL-10 Bacau

- Broccoli
 - o Rasmus
 - o CN-BRO-09
- Bean
 - o La Victoire
 - o Slenderwax

For the first year of trials, the seeds of tomato and broccoli were procured from the seed producers and distributed by P6-FiBL to partners. Seeds of beans (the two commonly tested varieties la Victoire and Slenderwax) were multiplied by P18-ITAKA and distributed to partners. In the first year, P11-VRDS and P21-SECL used bean seeds directly from the seed producers, due to the particular requirements of their trials (timing, and farm regulations, resp.). For the second (and third) year of trials, seeds of the commonly tested material of bean and tomato were multiplied by P18-ITAKA.

The following tomato varieties were added after the first year and provided by P10-UPV from the Breeding set (GH)

- Rosa de Barbastro (BT04150): large sized pink variety, appreciated for its flavour and carnosity
- Uco Plata (BT00900): old variety from Argentina, tolerance to TSWV, very good yield and fruit quality, medium sized fruit, harvested green
- Valenciana d'el Perelló (BT04260): cultivated by a cooperative of farmers from Valencia. Very similar, if not identical to Breeding Set accession BT04060. Heart shaped tomato, with large fruit and very fleshy
- Benissoda (BT04250): local variety used by several farmers with very good results. Pink flat tomato with very good flavour and performance. It is incorporated in the crosses of the breeding programme (Task 3.4);

from partner P17-PSR

• Brad's Atomic Grape (heirloom variety): interesting fruit, turning from lavender and purple to green with other shades when ripe, and great taste;

and from organic seed producer Sativa Rheinau (OF)

- FiBL13-PVB66: advanced breeding line for industrial tomato production
- FiBL14- PVB82: advanced breeding line for industrial tomato production;

and are therefore not listed in BRESOV D5.1.

The experimental designs of the variety trials followed recommendations of Koller et al. 2016 and Lindner& Billmann, 2006. The evaluation of the varieties of each crop was made using the tables (i.e. evaluation table and farmer questionnaire) developed in WP5 and included in BRESOV D5.2. Prior to the trials, partners sampled the farm soil following a common protocol (annexed to BRESOV D5.2) of 12 sub-samples per field, pooled them and sent the sample for soil analysis. Some partners repeated the procedure during the 2 years trials.

In this deliverable, we report the overall performance of each of the commonly tested material of tomato (GH and OF), broccoli and beans and their appreciation by the local farmer hosting the trial. We also include the soil analysis result and the evolution of the soil during the experimental period whenever available.

3. Results

While partners used the same evaluation tables to acquire data on their trials, the particular conditions of an on-farm production trial and the different expertise of each partner resulted in heterogeneous exhaustivity and therefore large complexity of the data. This data was homogenised as much as possible by P6-FiBL and was uploaded to the project database on Kibana. The detailed results will be used by task 5.2 partners to write up to three manuscripts for peer-reviewed publications.

In this public deliverable, a summary of the performance of the varieties in each location is reported.

Greenhouse tomato

Greenhouse tomato variety trials were carried out in Switzerland, Italy, and France by P6-FiBL, P18-ITAKA, and P21-SECL, respectively. The commonly tested material was selected in task 5.1 and consists of FiBL2-298X, FiBL7-TZ24, FiBL3-236X, FiBL4-TZ32, brad's atomic grape and BT04150, BT00900, BT04260 and BT04250. Overall, not one of the tested materials gained the unanimity of partners and farmers. They all performed below the commercial variety references that can currently be found on the market. FiBL3-236x and FiBL7-TZ24 were even excluded from P6-FiBL and P21-SECL's second year of trial due to poor marketable yield and fruit quality (fruits' heterogeneity and waste). Only for Brad's atomic grape, which was tested by P6-FiBL and P21-SECL, an interest in its cultivation was found, despite a susceptibility to bursting as well as to pests and diseases. In France, a potential was also found in Valenciana d'el Perelló and FiBL-TZ32 (only in direct marketing), for their interesting quality and special type of fruits, respectively.

In table 2., we describe the performance of each variety in the different trials based on the results of the production at this site.

		P6- FiBL	P18-ITAKA P21-SECL		I-SECL
	2020	2021	2021	2020	2021
GENERAL	No clear variety differences regarding diseases detected.	Year with high proportion of waste due to late blight <i>Phytophthora</i> <i>infestans</i> .	All varieties in the trial performed worse than reference Tiepolo EZ. Fruit cracking and BER were the main reasons for an extremely high proportion of rejects.	All varieties in trial out- performed by the commercial reference. All were more subject to powdery mildew. Limited interest for commercialization except in small quantity (direct marketing)	Among the five varieties tested, only 'El Perello's Valenciana' and 'Brad Atomic grape' were found of interest.
FiBL2-298X	Average Fruit Weight: 37 g 80-85% of the right calibre, 2-3 Fruit Chambers Good yield and good taste properties. Nice aerated plant architecture Work intensive (a lot of pruning necessary) Produced small, un- tasty fruits. K deficiency symptoms observed (but lower than FiBL4-Tz32 and F1 reference).	Best in term of growth strength, uniformity of stock and good resistance to <i>Phytophthora</i> <i>infestans</i> (highest tolerance in trial). Aerated architecture. FiBL2- x298 produced a high proportion of fruits outside the regular calibre.	Best marketable yield among tested (75% of the reference). Not attractive for commercialization due to fruit deformation and cracking. Needs a better management of irrigation. Not recommended.	Commercial yield on the highest (ca. 75% of the reference Codino) Less sensitive to bursting than FiBL3 Colour more attractive than FiBL3 (more intense, more brilliant, less golden spots) Very good not excessive firmness. Heterogenous size (18-20 g up to 50g, not conform with cherry). Susceptibility to powdery mildew. In tasting, thick and crunchy skin but good balance of acidic sugar. To review despite a calibre on the larger side.	Highest commercial yield among tested varieties in the trial with 14.1 kg.m-2. Could be of little commercial interest with a smaller fruit calibre.
FiBL3-236X	Average Fruit Weight: 34 g	Excluded.	Low % rejects (18%) similar to reference. Highest BRIX 6.2 >	Very sensitive to bursting even after harvest.	Excluded.

	P6- FiBL		P18-ITAKA P21-SECL		1-SECL
	2020	2021	2021	2020	2021
	60-70% of the right		ref. Low yield, easy to harvest,	Unattractive colour, lacks	
	calibre, 2-3 fruit		sweeter fruits than reference	shine with many golden	
	chambers.		with full pulp. Fruits are	spots. Heterogeneous size	
	Easy to harvest.		cracked and deformed.	from 25-50gr, not fitting a	
	sensitive to bursting,		Needs better irrigation	commercial category.	
	produces small, non-		management.	Insufficient firmness	
	tasty fruits with a bland			Susceptibility to powdery	
	taste.			mildew.	
				In terms of taste, thinner	
				skin than Fibl2 but less	
				acidic juice. No commercial	
				interest given the	
				productivity and sensitivity	
				to bursting! (with FiBL7	
				obtained farmer's lowest	
				rating of 2/9).	
FiBL4-TZ32	Average Fruit Weight:	Good vigour, compact and dense	50.75% waste, bad quality of	Highest commercial yield	Intermediate yields 9.8 kg.m ⁻² .
	255 g	architecture (can increase	fruits. Skin cracking, Blossom	among tested (ca. 75% of	Highest susceptibility to
	Right size category:	probability of fungal diseases if not	End Rot, and sunburn. Variety	the reference).	Blossom end rot (17.2%) and
	estimated 80-85% 5	pruned enough), absence of rolled	not adapted to hot summer	Intense and pretty pink	yellow collar (3.7%) in the trial.
	Fruit Chambers	leaves. Better tolerance to	cycles. Better management of	colour. Very heterogeneous	
	Good yield and uniform	Phytophthora infestans (still	irrigation and monitoring of	shape. Some fruits with	
	plant development.	responsible of over third of	calcium are needed. One of the	yellow collars. Very limited	
	Late start of harvest	rejects) than others in test.	worst varieties in the trial	firmness and very large	
	with irregular maturing	Highest yield. Lowest rate of fruit	(Farmer rating 3/9).	disparity in calibre. Very	
	of fruit (yellow, green	bursting in the trial. Not		susceptible to Blossom End	
	spots)	appreciated for its taste in our		Rot.	
	Very dense plant	trial.		Very limited commercial	
	architecture (Pruning			interest, size of the	
	important)			bouquet needs to be	
	Showed the strongest			specified. BER is a major	

		P6- FiBL	P18-ITAKA	P21-SECL	
	2020	2021	2021	2020	2021
	symptoms of K- deficiency Irregular fruit size.			handicap. Could be of interest only in direct marketing because of its type of fruits.	
FiBL7-TZ24	Average Fruit Weight:394g90% in the right sizecategory.Undeterminablenumber of chambersGood yield and regularfruit shape and size, butbig.Displays yellow collar,less uniform plantdevelopment, denseplant architecture and ahigher susceptibility todiseases.DisplayssymptomsofK-deficiency.	Excluded.	53,72% rejects. Low production and unsuitability for market due to low shelf life and high commercial waste. Cracking of thin skin, subject to Blossom End rot and sunburn. Small structure, difficult management of irrigation. Variety not adapted to summer cycles at high temperature.	Very heterogeneous shape and large display of yellow collars and Blossom End Rot. Cracked and burst fruits make for the rest of the rejects. Very insufficient firmness. No commercial interest. (lowest rating with FiBL3 2/9).	Excluded.
Rosa de Barbastro (BT04150)	Not tested.	High susceptibility to Phytophthora, strong growth, good vigour. Susceptibility to late blight responsible of over third of rejects. Tastiest varieties after Brad's Atomics in a panel degustation. It has a good quality of yield but inferior to FiBL4. It has beautiful fruits and a good taste.	62,73% waste. Skin cracking. Variety not adapted to hot summer cycles. Better management of irrigation and monitoring of calcium. One of the worst varieties in the trial (Note 3/9).	Not tested.	Not tested.

	P6- FiBL		P18-ITAKA	P21-SECL	
	2020	2021	2021	2020	2021
Uco Plata (BT00900)	Not tested.	Not tested.	Higher yield than other varieties but lower than reference and 30% waste. Susceptible to cracking, BER and sunburn. Only variety in the trial where farmer see a potential for IT market but not possible today due fruits deformity.	Not tested.	Not tested.
Valenciana d'el Perelló (BT04260)	Not tested.	Extremely susceptible to <i>Phytophthora infestans</i> , and bursting which are responsible of around a third of the rejects, each.	Low yield. Brix 5.82. Smaller plant, difficult irrigation management, not suitable for summer cultivation. Production not suitable to IT market place.	Not tested	Intermediate commercial yields 9.8 kg.m-2. With Brad's atomic grape, only varieties with some commercial interest. Interesting fruit quality with a good percentage of first choice quality (81%). Size somehow limiting for a 'beef' tomato type. The variety is sensitive to blossom end rot and bursting.
Benissoda (BT04250)	Not tested.	High susceptibility to Phytophthora infestans. High tendency to roll leaves. Small, compact plant. Susceptibility to late blight responsible of over third of rejects and fruit bursting responsible of up to third of rejects. Taste not appreciated in our trial, low note in tasting. No interest in the variety due to its	Highest yield (80% of reference, but 43% rejects). Subject to cracking, BER and yellow collar (blotchy). Better management of irrigation and Ca needed. One of the worst varieties in the trial (Note 3/9).	Not tested.	Lowest yield in trial of 8.9 kg.m ⁻² . Only 58% in first quality. Not recommended.

		P6- FiBL	P18-ITAKA	P21-SECL	
	2020	2021	2021	2020	2021
		taste and susceptibility to			
		Phytophthora.			
Brad's	Not tested.	Fruit bursting was responsible of	No tested.	Not tested.	Intermediate commercial yield
atomic		up to third of rejects. Brads atomic			11.9 kg.m ⁻² . With Valenciana
		grape was found better than FiBL2			del Perello, only varieties with
		because of its beautiful fruits,			some commercial interest.
		taste and attractiveness to the			Attractive and original fruit,
		consumers. It is however			may fit for a niche market.
		susceptible to pests and diseases.			Good agronomic potential,
		In a tasting, Brads atomic grape			99% of the first choice with
		followed by Rosa de Barbastro			less than 6% of waste.
		were found the tastiest of all			
		varieties. It has beautiful fruits,			
		great taste and attractiveness.			

Table 2. Performance of tested tomato varieties in greenhouse on-farm production trial

Open Field tomato

Open field tomato trials were carried out by P11-VRDS, P12-CREA and P18-ITAKA. In both trial years, varieties performed differently depending on the location and low or high inputs in the production. FiBL10-PVB67 was excluded from P12-CREA's second year of trial due to its bad performance in the trial. P12-CREA performed trials in two location: The Battaglia farm with low input and an agroecological approach, and the Concetti farm with higher input. P11-VRDS also conducted the trials in two locations in 2020 and 2021. P11-VRDS conducted a third year of tests in one location.

Two new advanced breeding materials were procured and were evaluated by P12-CREA and P11-VRDS in the second year (and third year for P11-VRDS).

At P12-CREA, in the Concetti trial, the Malareto local variety showed the highest Brix, and HF1-17 the highest yield (significantly higher than all others in test). From the commonly tested varieties, a good potential was found for FiBL9_PVB8 (TiO3), and under low input conditions for FiBL13-PVB66 and FiBL14- PVB82 (highest yield at the Battaglia farm), as well as for FiBL8_To65_Mauro Rosso and FiBL12-PL10 Bacau which might be interesting for some markets. In 2020, P11-VRDS obtained similar performances for tested varieties and found that local line T6-Buzau47, T9-Inima de bou Musca, T10-Maremano and T11-PL 15 BACAU gave a better performance than the reference. In 2021 and 2022, however, T9-Inima de bou Musca and T10-Maremano did not perform well and are therefore not recommended. Similarly, T11-PL15 Bacau gave a lower performance in 2022 and is also not recommended. In general, FiBL12 performed differently in every location. In all three trial years, the four commonly tested varieties had an acceptable performance and are therefore recommended for organic production in Romania.

The third year of trials carried by P11-VRDS showed that seeds from the same varieties but resulting from two different seed multiplications (Sativa Rheinau vs. P18-ITAKA BRESOV multiplication) resulted in plants with very different performance in the production trial. FiBL8, FiBL10 and FiBL12 resulting from seeds multiplied by P18-ITAKA performed much worse than the same variety with the seeds provided by Sativa Rheinau via P6-FiBL.

In all trials, there was no breakthrough discovery of a consistently excellent tomato variety. Diseases and bad performance of the reference variety in certain cases requires that the results are handled with care.

In table 3, we describe the performance of each variety in the different trials based on the results of the production at these sites.

	P12-	CREA	P18-ITAKA	P11-VRDS		
	2020	2021	2020	2020	2021	2022
General	Varieties selected	Battaglia farm	Bad production in	Difference in variety	Local lines T8-Leana	This additional trial
	by P12-CREA	obtained 3.919	this trial with very	performance was	Mare, T11-PL15	was only conducted
	showed a higher	Kg/plant and a total	high rates of rejects	observed in the two	Bacau, FiBL8, T12-	on the experimental
	adaptability to the	yield of 60.582 t,	due to BER (Blossom	farms (production	FiBL8, T15-FiBL12	farm. Growth
	environmental	while Concetti	end rot) and	and experimental),	obtained highest	strength was
	variatios in both	produced lower	sunburn. Bad	with large yield	yield at the	medium for all
	farms and both	Kg/plant (2.608)	performance of the	differences	production farm,	varieties, weaker
	vears. presented	and higher total	reference variety	between locations.	while T10-PL Mare	than reference.
	the following waste	yield (65.198 t). See	does not allow for	FiBL8,9,10&12	and T13-FIBL9	All stocks were
	classes in order of	2020 for waste	conclusive results.	performed	yielded the most at	uniform, assessed as
	importance:	categories.		similarly. All trial	the experimental	strong to very
	undersize, rot and			varieties showed	station. Most	strong. The best
	burns (physiological			severe symptoms	varieties	varieties overall
	alterations), pest			from the green	outperformed the	were FiBL8, FiBL 13
	attack (Tuta			aphid <i>Myzus</i>	reference Bacuni. It	and FiBL 14.
	armiaera) and			persicae.	is hard to draw	
	fungal attack.				conclusions.	
					A higher yield of	
					tomato was	
					obtained in the	
					production farm	
					with high rotation	
					and diversity.	
FiBL8_To65_Mauro Rosso	At the lower end of	Obtained	Despite a high rate	Best yield on the	With FiBL12,	Similar to 2021 when
	yield in both farms.	intermediate to	of rejects due to BER	production farm.	obtained the	using seeds from the
	Only at Concetti	high yield in both	and sunburn, the	Better yield than	highest yield at the	same lot. Alternaria
	farm a very limited	farms. At Battaglia,	variety performed	the reference but	production farm.	was detected here
	market potential	it was much better	better than the	lower tolerance to	Compact	despite a low
	was found as it	than reference in	reference and can	diseases. Low	architecture. Better	susceptibility
	performed worse	terms of resistance	work for summer	susceptibility to	yield quality than	described in the first
	than the reference	to diseases and	cycles under better	Alternaria.	reference. Overall,	year of trial.

	P12-	CREA	P18-ITAKA	P11-VRDS		
	2020	2021	2020	2020	2021	2022
	in terms of yield,	better in terms of	irrigation and		obtained the best	Homogeneous fruits.
	quality, and	taste, yield quality	calcium		appreciation by	Third highest
	susceptibility to	and ease of harvest.	management.		farmers.	marketable yield
	pests and diseases.	It was appreciated				after FiBL13 and
		by farmer there. It				FiBL10. One of the
		was, however, not				best 3 varieties in the
		recommended in				trial.
		the Concetti due to				
		lower yield and				
		overall				
		performance				
		compared to				
		reference and				
		despite being less				
		labour intensive.				
FiBL9_PVB8 (TiO3)	Only variety next to	Highest Brix in the	Despite a high rate	Better yield than	Produced the	Similar to 2021.
	local lines (Cream	Battaglia trial the	of rejects due to BER	the reference but	highest yield at the	Homogeneous fruits.
	sausage, Malareto	variety and better	and sunburn, the	lower tolerance to	experimental farm.	
	and Hf1-17) which	performance than	variety performed	diseases. A slight	Compact	
	was appreciated at	standard. The	better than the	impact of the pest	architecture	
	Battaglia low input	results obtained in	reference and can	Gryllotalpa was		
	farm for its highest	Concetti farm	work for summer	observed. High		
	yield, taste and	confirmed the	cycles under better	susceptibility to		
	overall	agronomic	irrigation and	Alternaria.		
	performance	performances of	calcium			
	compared to the	the two varieties	management.			
	reference. It	Malareto and FiBL9-				
	obtained the	t103 with the				
	highest Brix at	highest yield. Under				
	Battaglia. Under	low input at				
	high input, it gave	Battaglia farm it				

	P12-	CREA	P18-ITAKA	P11-VRDS		
	2020	2021	2020	2020	2021	2022
	an intermediate	obtained the lowest				
	yield	yield. Its acceptance				
	Recommended	by consumers and				
	under both low and	taste was better				
	high input	than the reference				
	production.	and is therefore				
		recommended.				
FiBL10_PVB67(Ti08)	Taste better than	Excluded due to bad	Despite a high rate	Second best yield	Aerated	Similar to 2021 when
	the reference at	performance in	of rejects due to BER	behind FiBL 8 on the	architecture. Good	using seeds from the
	Battaglia but lower	2020.	and sunburn, the	production farm	yield, quality,	same lot. Highest
	performance		variety performed	and better yield	tolerance to	marketable yield
	overall. Low yield in		better than the	than the reference.	diseases and	after FiBL 13,
	both farms, lowest		reference and can	Lower tolerance to	acceptance by	followed by FiBL8.
	yield and high rate		work for summer	diseases and	consumers	
	of rejects in high		cycles under better	acceptance by the	compared to the	
	input farms.		irrigation and	customers. Lower	reference.	
			calcium	homogeneity of		
			management.	fruits compared to		
				other varieties.		
FiBL 12_ PL-10 Bacau	Yield, taste and	At Battaglia,	Lowest marketable	Best yield at P11-	With FiBL8,	Similar to 2021 when
	acceptance by	perceived as slightly	yield, and highest	VRDS experimental	obtained the	using seeds from the
	consumers less	better than	proportion of waste.	farm. Overall best	highest yield at the	same lot.
	good than	standard variety.	Largest fruit calibre	performance and	production farm.	Homogeneous fruits.
	reference at the	Comparable	of varieties in test	appreciation by	However, it has	
	Battaglia farm. But	intermediate yield	(175g compared to	farmers, despite a	overall a lower yield	
	still among the	under both low and	77-87g on average	lower tolerance to	than the reference.	
	highest yielding	high input. Lower	for other three).	diseases and	Aerated	
	under low input.	performance than	Lack of firmness and	highest	architecture. Best	
	Under high input at	standards in	bad shelf life of	maintenance needs	taste in the trial.	
	the Concetti farm, it	Concetti, but might	fruits makes it	than reference. Low		
	gave an		unsuitable for an	susceptibility to		

	P12-CREA		P18-ITAKA		P11-VRDS	
	2020	2021	2020	2020	2021	2022
	intermediate yield	have a potential	industrial	Alternaria. Largest		
	like all others in test	market somewhere.	production. It has an	fruits (>100g) in trial		
	and better taste		unbalanced	compared to others		
	than the standards.		structure with	with 40-55g.		
			slightly long			
			internodes, sweet			
			but watery fruits.			
			Not recommended.			
FiBL13-PVB66	Not tested.	Good yield, taste	Not tested.	Not tested.	Heterogeneous	Highest marketable
		and performance at			architecture and	yield obtained.
		Battaglia,			low yield produced.	Overall, one of the
		recommended.			Average fruit	best 3 varieties in the
		Under high input,			weight of 75g	trial.
		despite a good				
		yield, yield quality				
		and overall				
		performance, these				
		were worse than				
		standard varieties,				
		and is therefore not				
		recommended.				
FiBL14- PVB82	Not tested.	Highest yield at	Not tested.	Not tested.	Heterogeneous	Similar to previous
		Battaglia farm			architecture and	year. One of the best
		under low input and			low yield. Average	3 varieties in the
		good high yield in			fruit weight 55g.	trial.
		Concetti but lowest			Better yield, quality,	
		Brix 3.98. NOTINAL			overall	
		harvest in Battaglia			performance and	
		inconclusive			acceptance by	
		farmer's evaluation.			consumers	
		In Concetti, lower			compared than	

P12-	CREA	P18-ITAKA		P11-VRDS	
2020	2021	2020	2020	2021	2022
	performance, yield			reference. Slightly	
	and quality than			better rated than	
	reference. Not			FiBL13. Like FiBL8	
	recommended.			has good potential.	

Table 3. Performance of tested tomato varieties in open field on-farm production trials

Broccoli

Two broccoli varieties, Rasmus and CN-Bro-09 were tested by P4-UTAD1, P5-VURV, P6-FiBL, P9-UNILIV, P11-VRDS, P18-ITAKA3 and P21-SECL.

The non-CMS variety CN-Bro-09 performed well in most trials and obtained results similar to F1 references. It is a good alternative to CMS varieties. The open pollinated variety Rasmus was also appreciated in several locations, with high yields (sometimes similar or higher to CN-bro-09) and yield in general exceeding other tested lines (other than F1 references). It was appreciated in Portugal for its ability to produce secondary heads. Under certain conditions, Rasmus had less homogeneous heads and a higher proportion of unmarketable yield compared to CN-Bro-09. Both test varieties are recommendable for organic production of broccoli. Rasmus and CN-bro-09 performed differently depending on location. In Italy and France, these varieties were evaluated as less good than available standard varieties in their market. In 2020, the trial in Romania unfortunately failed due to late sowing. Broccoli production suffered in many locations in the wet spring and summer of 2021. In general, CN-Bro-09 was the most appreciated. The status of CN-Bro-09 needs clarification at the moment. We know that it is free of cytoplasmic male sterility but have no additional information from the seed provider.

In tables 4.a and 4.b, we describe the performance of each variety in the different trials based on the results of the production at these sites.

		P4-UTAD		P5-\	/URV	P6-FiBL		
	2020	2021	2022	2020	2021	2020	2021	
General		CN-Bro-09 and Rasmus obtained a similar good performance, also similar reference Naxos. Reference Marathon was more productive with bigger and well-developed main heads	The farmer reported that the test varieties Rasmus and CN- BRO-09 were well accepted in the market and are recommended for organic production.	Broccoli cultivation is not very common in Czech Republic. Rasmus and CN-bro-09 gave comparable yields with a 10% lower yield than reference Limba			Loss of certain repetition blocks due to floods in the field. Rasmus and CN-bro-09 had no yellowing heads contrary to the F1 references. KSB- BRO-CHE-BALB a tested variety which didn't make the selection in Task 5.1 (see deliverable 5.1) outperformed Rasmus in this trial.	
Rasmus	Highest percentage of 1 st quality heads, outperforming the references. Smaller heads than CN-Bro- 09 and references. The farmer recommends this variety.	Lowest yield. Appreciated for its secondary sprouts. Head diameter comparable to reference Marathon, but smaller than CMS varieties. Slightly higher rate of rejects. Smaller heads (80% of their size) than the 3 F1 references. In general, preferred	Smaller heads than CN-Bro-09 and references (around 25% smaller). Thinner stalk. Marketable yield similar to CN-BRO- 09 but lower than references. High proportion of non- marketable heads Re-emission ability very appreciated by farmer as secondary sprouts	Yield similar to reference Limba except, except for a small proportion of rejects and a slightly lower marketable yield	Higher total yield than reference, but lower yield of first quality and second quality heads Reasons for rejection, were mainly yellowing or lack of compactness	Lower yield than the F1 and CN-bro- 09, higher proportion of 2 nd quality heads. More regular heads than CN-Bro- 09 but higher branching. Smaller heads compared to CN-bro-09 and references.	Lower yield with a large proportion of rejects, mainly due. to head rot, uncommon, misshapen heads, smaller heads or lack of compactness.	

		P4-UTAD		P5-V	/URV	P6-	FiBL
	2020	2021	2022	2020	2021	2020	2021
		to Naxos. Has a	are commercially				
		potential for	valorised by				
		market but not	organic vegetables				
		under these	consumers,				
		conditions due to a	recommended for				
		verified sensitivity	certain markets.				
		to excess water					
		and heterogeneity					
		of main heads.					
CN-Bro-09	Large heads,	Head diameter	80% of heads are of	Yield similar to	Latest variety to	Yields similar to F1	High marketable
	similar to	comparable to	first quality. Similar	reference Limba	ripen, with a	reference Batavia.	yield similar to
	reference Naxos.	reference	yield to Rasmus in	except, except for a	harvest two weeks	Comparable head	non-CMS and CMS
	High marketable	Marathon, but	terms of number of	small proportion of	later than Rasmus	sizes with the F1	F1 references,
	yield compared to	smaller than CMS	1 st quality	rejects and a	and reference	references. Less	Batavia and
	reference. The	varieties. Smaller	marketable heads	slightly lower	Limba. Highest	regular heads than	Ironman,
	farmer	heads (80% of their	and total	marketable yield	total yield followed	Rasmus.	respectively. The
	recommends this	size) than the 3 F1	marketable yield in		by Rasmus. Lowest		few rejected heads
	variety.	references.	weight. Lower yield		yield of first quality		were either small
		Recommended by	than references		heads. The main		or had an
		the farmer for its	Heraklion and		reason for		uncommon shape
		rigorous plants and	Naxos.		rejection was the		
		overall good	Recommended.		lack of		
		performance.			compactness		

Table 4.a Performance of tested broccoli varieties in on-farm production trials in Portugal, Czech Republic and Switzerland

	P9-U	NILIV		P11-VRDS		P18-I	ТАКА	P21-SECL	
	2020	2021	2020	2021	2022	2020	2021	2020	2021
General			Due to late	Next to several	Farmer		The reference	Yields	Despite good
			planting when	local reference	assessed both		variety	impacted by	performance
			temperatures	varieties and a	Rasmus and		produced the	water deficit	of both
			had dropped,	sprouting	CN-Bro-09 as		highest	during the 1st	varieties, the
			the trial failed	variety, both	excellent, and		proportion of	stage of crop	reference
			to produce	Rasmus and	better than		rejects (26%).	development	Steel was still
			marketable	CN-Bro-09	the reference			and bird	preferred for
			heads.	gave the best	Calabrese and			damages. The	the
				performance	the rest of			trial was later	production.
				in terms of	tested			aborted.	
				yield and	material.				
				quality.					
Rasmus	Despite	Highest	Experienced a	More regular	Better yield,	Less	Higher	Did not meet	Less regular
	highest yield,	marketable	higher attack	head shape	quality,	productive	proportion of	the strict	head shape
	most heads	yield followed	of Pieris albae	and smaller	appearance,	Than CN-Bro-	rejects	criteria of P11-	than CN-Bro-
	not	by CN-Bro-09	compared to	branching	number of 1 st	09 and	compared to	SECL's market	09 and
	marketable	despite	the other	compared to	quality	reference.	CN-bro-09	requirements	reference.
	due to a	highest	varieties.	CN-Bro-01.	commercial	27% rejects.	(24%).	(irregular and	Branching
	susceptibility	proportion of		However, less	heads than	Not	Produced the	small buds).	similar to the
	to spear rot.	rejects in		homogeneous	reference.	recommended	most	Higher	reference.
	Variety more	terms of		than CN-bro-	Good general	because of	secondary	branching, less	Shape rather
	adapted to	weight (similar		09. Equally	performance	smaller heads	heads. Lower	regular shape,	transfer
	spring-	to Waltham		good	in organic	and higher	yield and	smaller heads	medium
	summer	reference in		performance	agriculture,	need of	smaller heads	and more buds	elliptic. Lowest
	cultivation.	term of		in both	recommended	Nitrogen.	than	than reference	marketable
		number of		locations with	•		reference.	Steel. Higher	yield, 7.5t/ha
		heads) due to		the highest			Rated better	head weigh	compared to
		grow out buds,		marketable			than CN-Bro-	than CN-Bro-	the reference
		shape and lack		yield,			09 by the	09.	with 9.5t/ha.
		of uniformity.		especially on			farmer but		
		Taste less		the production					

		good than		farm On the			worse than the		
		Waltham and		evnerimental			reference		
		warman and		form obtained			reference.		
		susceptibility		higher 1st					
		to spear rot		nigher 1*					
		makes it not		quality heads					
		recommended		than CN-Bro-					
		by farmer.		09 but similar					
				total					
				marketable					
				yield.					
				Recommende					
				d by farmer for					
				its better yield,					
				quality and					
				appearance					
				compared to					
				reference					
				Calabrese.					
CN-Bro-09	Best variety	Outperformed	Slightly or not	Irregular head	Similar to	Highest	Out-	Did not meet	Highly regular
	(20% more	Rasmus and	affected by	shape but very	Rasmus, a	marketable	performed	the strict	head shape,
	yield than	Waltham in	CAMV virus.	homogenous	better yield,	yield (despite	Rasmus.	criteria of P11-	and branching
	Rasmus),	terms of yield,		heads.	quality and	18% rejects)	Higher	SECL's market	just like the
	much less	quality, ease		Outperformed	appearance	followed	marketable	requirements	reference.
	diseases than	of harvest and		by Rasmus,	compared to	closely by	yield than	(irregular and	Same
	Rasmus and	maintenance,		especially in	the reference	reference	Rasmus but	small buds).	transverse
	reference	resistance to		the Romanian	and a general	Naxos.	lower than	Higher	narrow elliptic
	Waltham.	pest and		farm.	suitability to	Recommende	reference.	branching, less	shape as
	Higher	diseases. Only		Recommende	organic	d for its yield	Lowest	regular shape,	reference.
	susceptibility	the taste was		d by farmer for	agriculture,	and ease of	proportion of	smaller heads	Marketable
	to hollow	slightly less		its better yield,	makes it	agricultural	rejects (15%).	and more buds	yield
	stems.	good than		quality and	recommended	management.	Easy to	than reference	comparable to
		Waltham. It is		appearance			manage	Steel. Least	reference
		also more		compared to			agronomically,		Steel (9t/Ha).

susceptible to	reference	good	yield and	regular	heads	Earlier h	arvest
hollow stem.	Calabrese.	bette	r taste	in trial.		but	more
Recommende		than	reference			harvest	days
d by the		Naxo	s makes it			than	
farmer.		appr	eciated by			reference	e.
		farm	er.				

Table 4.b Performance of tested broccoli varieties in on-farm production trials in England. Romania, Italy and France

Beans

Slenderwax and la Victoire, the two bean varieties selected in task 5.1 (see deliverable 5.1), were tested by P6-FiBL, P11-VRDS, P16-SERIDA, P18-ITAKA3 andP21-SECL. Both performed in general very well in the trials. During the production, it was not always easy to identify the disease when evaluating the varieties. Also, in the second year, both commonly tested varieties, Slenderwax and La Victoire, gave good results and high yields, comparable or better to standard references. Both varieties are therefore recommended for organic cultivation in all regions. Depending on the location, one or the other variety was preferred. In some trials, Slenderwax outperformed La Victoire. In others, it was the opposite. Regional visual appreciation of the varieties also differed, such as for Slenderwax's whose yellow pods were not appreciated in Italy. Other tested BRESOV lines gave good result, in particularly SPB240-Prennel in Romania and Spain. These trials confirm the good performance of Slenderwax and La Victoire under most organic production of beans.

In tables 5.a and 5.b, we describe the performance of each variety in the different trials based on the results of the production at these sites.

	P6-	FiBL	P18-I	ТАКА	P21-	SECL
	2020	2021	2020	2021	2020	2021
General	Slenderwax, Maxi and la Victoire gave better results than P17-PSR- varieties included in the trial.	Compared to 2020, yield of reference Maxi decreased by 22%, La Victoire by 13% and Slenderwax by 30%. For all varieties, rejects mostly due to fat spots (Pseudomonas). Symptoms of aphids, snails and other pests were equally present on both varieties and reference. Similar performance for all varieties. All three had quite straight pode	This trial was performed under greenhouse. Both gave comparable, even slightly higher yield than reference Ferrari. They were however found less easy to manage in GH and less tasty than the reference.	In 2021, beans were cultivated in 2 rotations, one in GH and one in OF. Both tested varieties are recommended by farmers for their vigorous plants, earliness and high yield in both systems.		Tested varieties obtained a good satisfying yield, but slightly lower than the reference Maxi, which was therefore preferred by the farmer. Yield, yield quality, ease of harvest and overall performance were found slightly better with the reference Maxi.
La Victoire	High yield slightly lower than the reference Maxi. Very good overall performance.	Highest yield but also highest proportion of rejects, mainly due to fat spots. Pods slightly narrower than Slenderwax and Maxi, but longer than slenderwax.	Good yield, slightly higher than reference, comparable to Slenderwax.	Similar slightly lower yield than reference Ferrari. Performance found as good as reference.	Only variety tested. Gave 12% lower yield than reference Maxi. Less easy to harvest than Maxi whose pods are above to foliage. The reference is therefore preferred.	Yield comparable but slightly lower than Slenderwax and lower than reference. On average across harvest dates, 81% of pods of marketable quality, just like the reference. Two sets of seeds from two different multiplication of La Victoire were tested, with a lower (but

	P6-	FiBL	P18-I	ТАКА	P21-	SECL
	2020	2021	2020	2021	2020	2021
						acceptable)
						performance of plants
						from seeds multiplied
						within the project.
Slenderwax	Highest yield followed	Higher susceptibility	Despite a very good	Yellow pods not	Not tested as	Yield comparable but
	by reference Maxi and	to Botrytis compared	performance, wasn't	appreciated. Obtained	necessary sanitary	slightly higher than La
	la Victoire. Lower	to La Victoire and	attractive due to its	highest marketable	tests on seeds could	Victoire and lower
	susceptibility to	Maxi, but higher	yellow pods.	yield in trials.	not be carried on time.	than reference.
	diseases.	resistance to	Therefore, not yet	Received a lower		Slenderwax needed
		Ascophyta. Fast	suitable for this	assessment compared		less harvest days than
		manual harvest,	market.	to the reference.		Maxi and La Victoire.
		similar to Maxi				On average across
		because of its easy to				harvest dates, slightly
		spot yellow pods.				lower proportion of
		Seeds were more				marketable pods
		marked than La				(71%) compared to
		Victoire and Maxi.				reference and La
						Victoire.

Table 5.a Performance of tested bean varieties in on-farm production trials in Switzerland, Italy and France

	P16-S	ERIDA		P11-VRDS	
	2020	2021	2020	2021	2022
General	Several additional lines	Four lines: SBP_240	Additional local lines and	Good yield obtained by	This additional trial year
	were tested. Many	Prennel, SBP_237,	material from P16-SERIDA	SPB240-Prennel in both	confirmed previous
	obtained a good	Slenderwax (SBP_355),	tested with a great	locations. This line	performances of
	performance. One of the	and SBP_049 obtained a	performance of SPB240-	combines several	Slenderwax, La Victoire
	best varieties was SPB-240	production > 4.5 kg /plot	Prennel followed by the	resistances according to	and SPB240-Prennel. All
	followed by Slenderwax.	and high pod quality.	two varieties Slenderwax	WP2 tasks. Similar good	were found excellent and
			and La Victoire.	performance of	recommended by farmer.
				Slenderwax. Both	Agronomical assessment
				Slenderwax and La Victoire	of La Victoire and
				rated excellent by farmer.	Slenderwax slightly better
					than for Prennel.
La Victoire	Lower yields than	La Victoire obtained a	High yield and good overall	Good steadfastness of the	Very good yield, quality
	Slenderwax. Great taste.	lower yield than in the first	performance but lower	plant. Better tolerance to	and overall performance.
		year.	than SBP240-Prennel and	anthracnose compared to	Better than local reference
			Slenderwax. Rated	other tested materials,	Miruna. Surprisingly, no
			excellent by farmer.	except Slenderwax and	anthracnose detected
				Perlata Straight pods,	contrary to other varieties.
				longer than Slenderwax.	Pod weight similar to
					Slenderwax but lower than
					Prennel.
Slenderwax	Highest yield and lower	Top yielding variety among	Highest yield and lower	Best plant steadfastness.	Very good yield, quality
	susceptibility to diseases.	12 determinate beans in	susceptibility to diseases.	Least susceptible to	and overall performance.
		test and very good pod	Rated excellent by farmer.	anthracnose in test.	Better than local reference
		quality.		Straight pods. With	Miruna. Pod weigh similar
				SBP240-Prennel, least	to La Victoire but lower
				affected by common	than Prennel.
				blight. Highest marketable	
				yield behind SBP240-	
				Prennel in both farms.	

Table 5.b Performance of tested bean varieties in on-farm production trials in Spain and Romania

At the beginning and during production trials of the three crops, soil samples from the farm were analysed. The results allowed to adapt fertilization and irrigation when needed during crop cultivation. For tomato and other crops such as broccoli in the UK, the sampling and analysis were repeated during the trial. The results of the soil analysis of samples from the different farms where the variety trials were conducted are reported in tables 6.a for tomato, 6.b for broccoli and 6.c for beans. This data would complete the discussion of the detailed result of each crop and each trial in prospective papers. Ideally, up to three peer-reviewed publications based on these trials can be developed with the trials' partners.

Partner, Country	P6-FiBL,	P6-FiBL,	P6-FiBL,	P11-VRDS,	P12-	P12-	P18-	P18-	P21-SECL,
	СН	СН	СН	RO	CREA, IT - Battaglia	CREA, IT - Concetti	ITAKA, IT - Sicily	ΙΤΑΚΑ, ΙΤ	FR
Year /date	2020	2021 pre- plant.	2021 post- harv.	2020, 2021	2020	2020	2020	2021	2020, 2021
Сгор	GH Tomato	Tomato GH	Tomato GH	Tomato OF, Bean, Broccoli	OF Tomato	OF Tomato	GH Tomato, Bean	Tomato OF	Tomato GH
Soil type	sandy Ioam	sandy loam	sandy Ioam	chernozem cambic	clay	39.5% sandy, 39.6% clay	sandy	sandy	silt & clay
рН	7.1	7.1	7.4	6.7	7.82	7.7	7.95	7.87	7.04
Soil salinity- electrical conductivity (dS/m)	95.3 (μS/cm)	95.3 (μS/cm)	95.3 (μS/cm)		479 (ds/m)	421	0,46 dS/m	1.78	0.53 mS/cm
Organic matter (% or g/100g)	3	3	2.5	2.6	1.13%	0.63	1.17%	1.68%	4.2
Macronutrient									
Total nitrogen (g/kg)	5.4 mg/kg	5.4 mg/kg	10.6	0.15%	1.15	0.51	0.6	0.9	31.58 mg/kg
Assimilable phosphorus (mg/kg)	2.5	2.5	24.1	138 ppm	4.8	5	20.4	7.5	6.7
Exchangeable potassium (mg/kg)	16			185			183.38	120.62	195.6
Exchangeable calcium (mg/kg)	103.3	103.3	87.8	1170			1903.39	2083.29	194.3
Exchangeable magnesium (mg/kg)	10.5	10.5	18.8	4640			93.47	89.67	61.3
Micronutrient									
Assimilable iron (mg/kg)	802	802	802	2.66%			11.2		
Assimilable manganese (mg/kg)	375	375	347	823			1.1		
Assimilable rame (mg/kg)	6.1	6.1	105	32.4			0.2		
Assimilable zink (mg/kg)				75.34			0.6		
Soluble boron (mg/kg)	0	0	0.7				0.6		

Table 6.a Reported soil analysis in tomato production

Partner, Country	P4-UTAD,	P6-FiBL,	P6-FiBL,	P6-FiBL, CH	P9-	Р9-	P9-	P9-UNILIV,	P11-VRDS, RO	P18-ITAKA, IT
	РТ	СН	СН		UNILIV, UK	UNILIV, UK	UNILIV, UK	UK		
Year /date	2020	2020	2021 pre- plant.	2021 post- harv.	2020 pre- plant.	2020 post- harv.	2021 pre- plant.	2021 post- harv.	2020, 2021	2020
Сгор	Broccoli	Broccoli	Broccoli	Broccoli	Broccoli	Broccoli	Broccoli	Broccoli	Tomato OF, Bean, Broccoli	Broccoli OF
Soil type	loamy		sandy Ioam	sandy loam	sandy Ioam	sandy Ioam	sandy Ioam	sandy loam	chernozem cambic	sandy
рН	рН H2O5.15; рН KCl 4.05	7.1	7.1	7.2	5.77	6.06	5.6	5.63	6.7	7.78
Soil salinity- electrical conductivity (dS/m)		121.1	95.3 (μS/cm)		30mg KCl/100	15mg KCl/100	37.5mg KCl/100	48.75mg KCl/100		2.4
Organic matter (% or g/100g)	4.915	1	3	3	3.45	4.17	5.18	4.71	2.6	0.30%
Macronutrient										
Total nitrogen (g/kg)		20.5 mg/Kg avail. N	20.5 mg/kg	14.5 mg/kg	83.9	34.6	122.1	106.8	0.15%	0.8
Assimilable phosphorus (mg/kg)	51	4	4	9	66	68	60	62	138 ppm	20.7
Exchangeable potassium (mg/kg)	113.5	12.8			131	82	71	83	185	101.2
Exchangeable calcium (mg/kg)		93	93	62.3	659	1201	736	1010	1170	2503.79
Exchangeable magnesium (mg/kg)		162	10.2	9.9	90	126	88	99	4640	192.35
Micronutrient										
Assimilable iron (mg/kg)		291	291	262	505	493	400	482	2.66%	7.3
Assimilable manganese (mg/kg)		346	346	252	2.4	1.3	3	2.7	823	2.8
Assimilable rame (mg/kg)		6.9	6.9	8.3	18	17.9	22.6	18.6	32.4	1.9
Assimilable zink (mg/kg)					5.3	5.5	6.1	6.4	75.34	1.1
Soluble boron (mg/kg)		0.1	0.10	0.30	0.39	0.31	0.39	0.38		1.3

Table 6.b Reported soil analysis in broccoli production

Partner, Country	P6-FiBL,	P6-FiBL,	P11-VRDS,	P16-	P18-	P18-
	СН	СН	RO	SERIDA,	ΙΤΑΚΑ, ΙΤ	ΙΤΑΚΑ, ΙΤ
				ES		
Year /date	2021 pre-	2021	2020, 2021	2020,	2020	2021
	sow.	post-		2021		
		harv.				
Сгор	Bean	Bean	Tomato OF,	Bean	GH	Bean OF
			Bean,		Tomato,	
			Broccoli		Bean	
Soil type	sandy	sandy	chernozem	62%	sandy	sandy
	loam	loam	cambic	loam-		
рН	7.1	7.2	6.7	6	7.95	7.81
Soil salinity- electrical conductivity (dS/m)	95.3	(µS/cm)		0.43	0,46	1.46
	(µS/cm)			mS/cm	dS/m	
Organic matter (% or g/100g)	3	3	2.6	0.0324	1.17%	1.31%
Macronutrient						
Total nitrogen (g/kg)	20.5	12.2	0.15%	90.7	0.6	0.7
	mg/kg	mg/kg		mg/kg		
Assimilable phosphorus (mg/kg)	4	12.5	138 ppm	99.3	20.4	21.6
Exchangeable potassium (mg/kg)			185	157	183.38	83.38
Exchangeable calcium (mg/kg)	93	65.7	1170	1480	1903.39	2301
Exchangeable magnesium (mg/kg)	10.2	10.7	4640	128	93.47	113.49
Micronutrient						
Assimilable iron (mg/kg)	291	304	2.66%	74.5	11.2	5
Assimilable manganese (mg/kg)	346	277	823	8.56	1.1	1.2
Assimilable rame (mg/kg)	6.9	11.5	32.4	24.9	0.2	1.3
Assimilable zink (mg/kg)			75.34	7.92	0.6	0.8
Soluble boron (mg/kg)	0.10	0.40		0.727	0.6	0.9

Table 6.c Reported soil analysis in bean production

4. Deviations

Since the project was prolongated by one year due to the delays cause by the Covid pandemic in other work packages, partners who had the capacity, namely P4-UTAD and P11-VRDS, added a third year of on-farm trial, which brings added value to the results.

Impossible timely exchange of seeds with China prevented partners P13-ZAAS and P14-BAAFS of testing the same varieties as in Europe. They tested their own breeding material instead.

5. Conclusions

These on-farm trials allowed new or less widespread varieties as well as advanced breeding lines to be tested under usual organic production conditions on-farm in several European locations. They presented new crop material to the farmers but also to their customers, therefore the objective of WP5.

The results show that tomato material tested for greenhouse cultivation could not compete with commercially available varieties. However, it allowed the identification of varieties interesting for alternative markets such as direct marketing. Tested material for open field tomato cultivation performed differently according to location and inputs and were in general out-performed by local lines. Broccoli trials showed the great potential of the new open pollinated variety Rasmus (registered in 2018) and the CMS-free variety CN-bro-09. These trials showed that good alternatives to CMS varieties exist and that other open pollinated varieties in the pipeline could be of interest. Bean trials confirmed the good performance of Slenderwax and La Victoire and allowed the discovery of other interesting bean material such as SPB240-Prennel.

Planning for these multi-location on-farm trials resulted in the development of evaluation and farmer assessment tables for each crop (available in D5.2) that can be used by future variety trials. The extensive data collected on these trials can be used by the partners of task 5.2 for peer-reviewed publications and exploitation beyond the project's lifetime.

6. Acknowledgments

We would like to thank the organic seed producers Sativa Rheinau, Culinaris Saatgut, Kultursaat as well as BRESOV partners for providing the genetic material tested in the on-farm trials. These trials were funded by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 774244.

7. References

Herforth-Rahmé, Joelle; Schwitter, Patricia and Hauenstein, Samuel (2021) BRESOV D5.1 -Comprehensive list of varieties per crop and location to be grown on-farm along with fact sheets concerning their growing, harvesting and taste characteristics. https://orgprints.org/id/eprint/43073/ Herforth-Rahmé, Joelle; Schwitter, Patricia; Hauenstein, Samuel; Timpanaro, Giuseppe; Cammarata,

Mariarita; Scuderi, Alessandro and Branca, Ferdinando (2021) BRESOV D5.2 - List of crop performance measurements to be collected at all location and a questionnaire for the farmers involved. FiBL, Crop sciences, Frick. https://orgprints.org/id/eprint/43074/

Koller, M., Rayns, F., Cubison, S. and Schmutz, U., 2016. Guidelines for experimental practice in organic greenhouse horticulture. BioGreenhouse COST Action FA 1105.

Lindner, U. and Billmann, B., 2006. Planung, Anlage und Auswertung von Versuchen im ökologischen Gemüsebau. Handbuch für die Versuchsanstellung. Forschungsinstitut für biologischen Landbau FiBL, CH-Frick.