ETH zürich 😲 Agroscope FiBL

Higher than expected: Nitrogen use efficiencies over 35 years of organic and conventional cropping

Astrid Oberson (ETH Zürich)

Klaus Jarosch, Andreas Hammelehle, Jochen Mayer (Agroscope) Emmanuel Frossard (ETH Zürich) Paul Mäder, Andreas Fliessbach (Research Institute of Organic Agriculture (FiBL)

Introduction

Organic and conventional cropping systems differ in type and amounts of nitrogen (N) inputs

Organic (manure) vs. synthetic mineral N fertilizers; possibly different amounts of symbiotically fixed N_2

Organic and mineral N fertilizers differ in supply of available N over time

→ Effect on efficiency and sustainability of N use?

Sustainability: Time, and fertilizer and soil N resource use

Long term field experiment

N budgets over several decades

Incl. soil N stock changes

DOK field experiment

- Goal: comparison of bio-<u>Dynamic</u>, bio-<u>Organic</u> and conventional (<u>Konventionell</u>) cropping systems¹; since 1978; in Therwil (CH)
- Soil: Haplic Luvisol on loess; silt loam²
- Treatments:

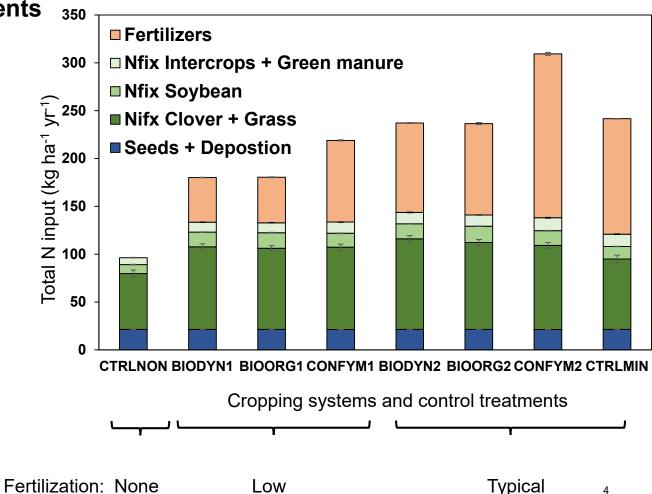
P

CTRLNON No fertilizer input

CTRLMIN Conventional; exclusively mineral NPK fertilizers → stockless

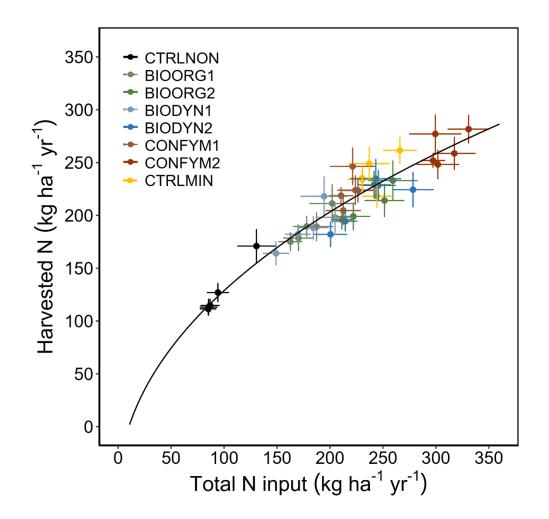
- **BIODYN** Bio-dynamic, manure compost and slurry; 1 = low, 2 = typical
- **BIOORG** Bio-organic, organic manure and slurry; 1 = low, 2 = typical
- **CONFYM** Conventional, stacked farmyard manure, slurry, mineral NPK: 1 = low, 2 = typical
- System specific plant protection
- Identical 7-year crop rotation, currently: maize¹ soybean wheat¹ potatoes wheat – grass clover 2 years; ¹followed by green manure
- Data records Agrocope → N inputs fertilization, N exports harvests, soil N conc, always all per plot → N budgets, 1985-2019 (5 crop rotation periods)

Reflecting mixed croplivestock system


Nitrogen inputs

Symbiotic N₂ Fixation

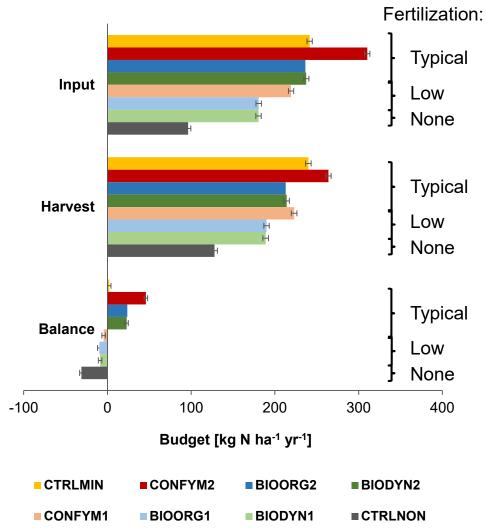
- 75 to 120 kg N ha⁻¹ yr⁻¹ → Important in all treatments
- Most N fixed with grass-clover leys
- Incl. fixed N input into soil and transfer to grass
- Minor reduction under low fertilization
- Reduced under sole mineral fertilization


Fertilizers

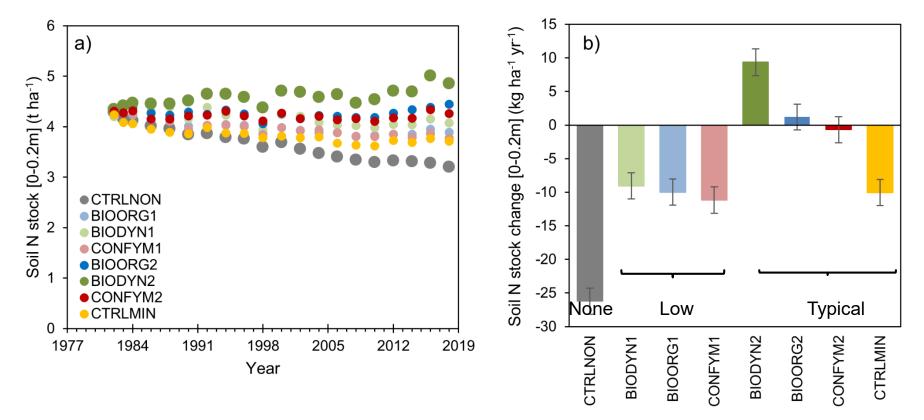
- Main N input in conventional treatments
- In organic systems ~55% of CONFYM
- In CONMIN ~ 70% of CONFYM
- Level 1 always half of level 2

Harvested N in function of total N inputs

- Strong correlation (R²= 0.81, with square root model equation)
 - → N responsive conditions
- Harvested N under typical organic cropping by ~19% less than typical conventional
 → Reflecting overall yield difference¹
- CONFYM1 close to Bio2 level → Plant protection¹


Soil surface budget and N use efficiency (NUE)

Soil surface budget¹ (kg N ha⁻¹ yr⁻¹) Balance = Fertilizer + Fixation + Depos. + Seed – Harvest = Input – Harvest


 Positive N balance under level 2, negative for other treatments²

Surface budget derived NUE (Nharv/Ninput), %

- Typical level 85 to 99%²
- >100% in others²
- Soil N stock changes and N losses not yet included

Changes in soil N stocks

- N stocks in topsoil (0-0.2 m) decrease except in treatments with manure level 2
- Positive surface N balance needed to maintain soil N --> N losses cannot be fully avoided
- >100% NUE at none and level 1 → Soil N mining, but also under sole mineral fertilization
- Importance of animal manure, positive effect of composting^{1,2}

¹Mayer et al., 2022, Geoderma; ²Krause et al., 2022, Agr Sust Dev ⁷

Soil system budget and NUE

Soil system balance (kg N ha⁻¹ yr⁻¹) = Inputs – Harvest – Δ SoilN

Treatments	CTRLNON	BIODYN1	BIOORG1	CONFYM1	BIODYN2	BIOORG2	CONFYM2	CTRLMIN	LSD
Fertilization	None		Low			Тур	oical		
kg N ha ⁻¹ yr ⁻¹									
Soil surface balance	-31	-9	-10	-5	23	24	46	2	6
Topsoil stock change	-26	-9	-10	-11	9	1	-1	-10	14
Soil system balance	-5	0	0	7	14	23	47	12	6
%									
Soil surface NUE	133	105	106	102	91	90	85	99	3
Soil system NUE	104	100	100	97	94	91	85	95	3

- At typical level not entire soil surface balance surplus reflected in topsoil N changes \rightarrow Losses
- Soil system balance surplus indicates moderate N losses: 12 to 47 kg N ha⁻¹ yr⁻¹ at typical level
- Overall high NUE of combined N inputs confirmed
- Subsoil N not considered

Fertilizer N use efficiency

Difference method corrected (%) = $\frac{NharvF-NharvCTRLNON}{Nfert+NfixF-NfixCTRLNON-\Delta soilNF+\Delta soilNCTRLNON} x 100$

Budget method corrected (%) = $\frac{Nharv - Nfix - Nseed - Ndeposition + \Delta soilN}{Nfert} x 100$

	BIODYN1	BIOORG1	CONFYM1	BIODYN2	BIOORG2	CONFYM2	CTRLMIN	LSD
		Low		Typical				
Difference method	91	92	87	82	73	70	86	7
Budget method	101	101	93	87	78	73	91	8

- High NUE for both, mineral fertilizer and animal manure
- Animal manure compost and mineral fertilizer with similarly high NUE

Conclusions

- High NUE of combined N inputs and fertilizers in all treatments → Optimal management, deep soil profile, climatic conditions
- **Positive N balance needed** to maintain or increase **soil N stocks** → Losses cannot be fully avoided
- Negative balance with >100% NUE → Soil N mining → Animal manure at low level cannot sustain soil organic N and C → Need for alternative organic matter and nutrient inputs
- Both, mineral N and animal manure N used at high efficiency, but sole mineral N fertilization cannot maintain soil organic N
- The unique value of Long Term Field experiments!

Thanks!

Field and lab teams of Agroscope and FiBL for 45 years of DOK experiment

Many students and scientist on this long-lasting way

You for your attention

Photo:FiBL/Agroscope