Driving Soils to Change: Tyre Particles Modulate Microbial-Mediated Soil Functions & Nutrient Status in Vegetable Crops

Kundel D.^{1*}, Bigalke M.², Fliessbach A.¹, Stehle B.¹, Hammer M.¹, Nitzsche K. N.² & Bünemann E. K.¹

Dl Background

- Tyre particles (TP) from road traffic can infiltrate soil, potentially impacting microbial communities and crop yields.
- Global per capita TP emissions range from 0.23-4.5 kg/year [1], equivalent to 0.1-117 g TP/kg soil [2-6].
- A scarcity of data impedes comprehensive TP risk assessment in soils.

D2 Material and Methods

- TP (<350 µm) were produced in liquid N from old tyres (Fig. 1).
- Leek and lettuce was grown in a slightly humic, loamy sand with 5 TP concentrations (0%, 0.1%, 0.5%, 1%, 3%) during 7 and 12 weeks (Fig. 2).
- We measured TP effects on

Fig. 1. TP production. a) generation of tyre curls, b) and c) freeze d) final TP.

Confédération suisse

 \rightarrow We grew leek and lettuce in the presence of five TP concentrations and measured the impact on the plant-soil system.

- microbial catabolic profiles using the MicroRespTM test,
- extracellular enzymatic activity upon addition of seven substrates with fluorometric enzyme assays,
- plant biomass and trace metal concentrations

Fig. 2. Plants were exposed to TP.

D B Results: Tyre particle addition affects...

extracellular enzymatic activity

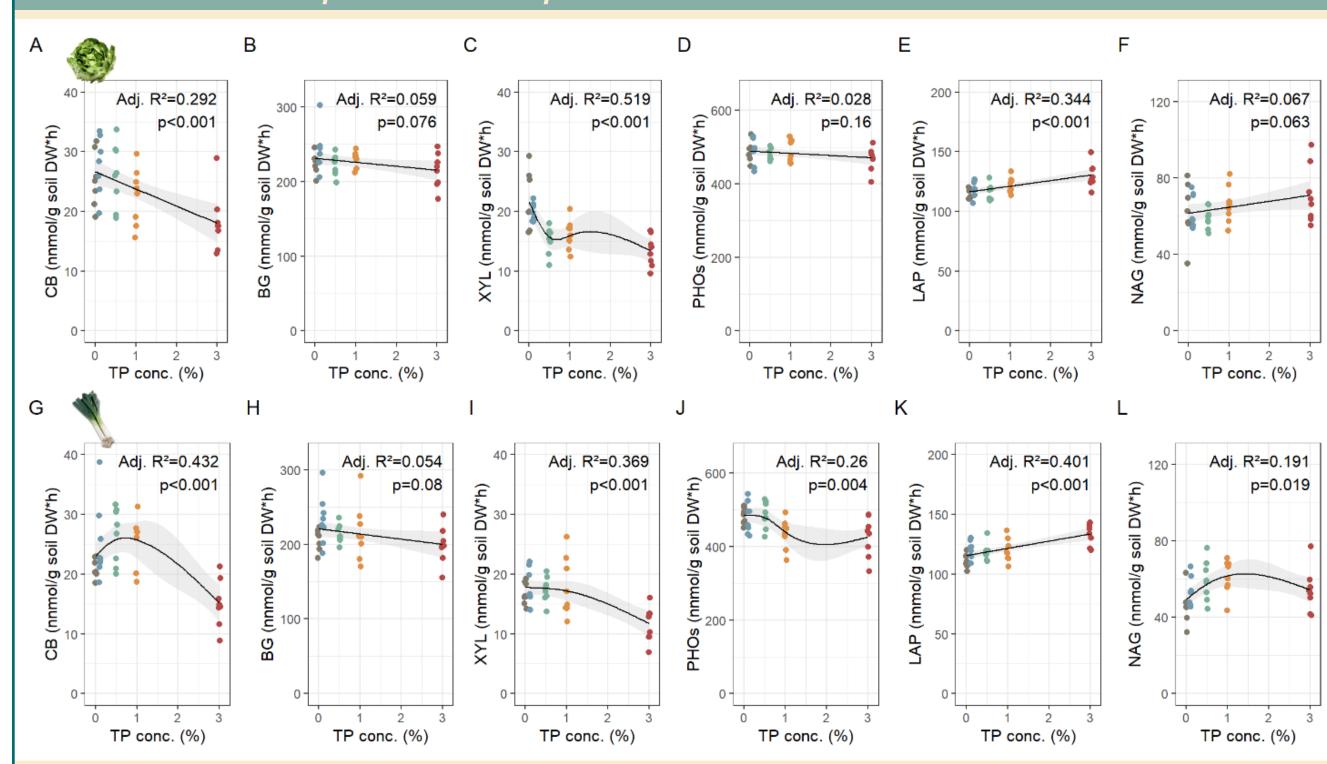
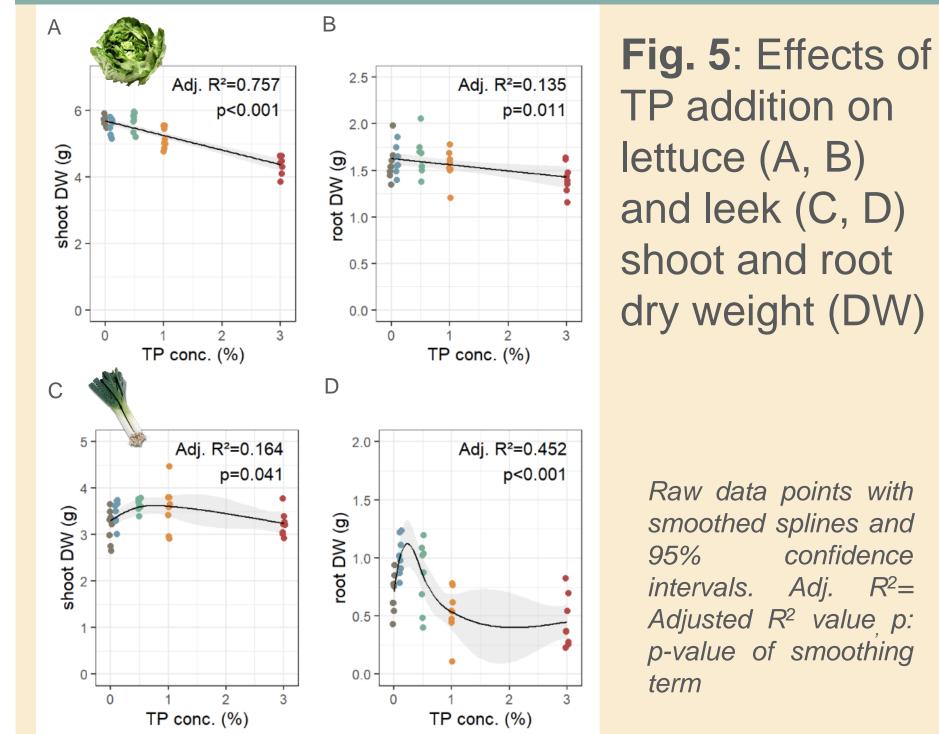



Fig. 3: Effect of TP addition on extracellular enzyme activity involved in C-cycling (CB, BG, XYL), P-cycling (PHOs) and N-cycling (LAP, NAG) measured for lettuce and leek.

Raw data points with smoothed splines and 95% Cls. Adj. R^2 = Adjusted R^2 value, p: p-value of smoothing term. CB: 4-Methylumbelliferyl-ß-D-glucopyranoside; BG: 4-Methylumbelliferyl-ß-D-glucopyranoside; XYL: 4-Methylumbelliferyl-ß-D-xylopyranoside; PHOs: 4-Methylumbelliferyl phosphate;

plant biomass

LAP: 7-Leucin-7-amido-4-methylcoumarin-hydrochloride, NAG: 4-Methylumbelliferyl N-acetyl-ß-D-glucosaminide.

p-value of smoothing

microbial respiration profiles

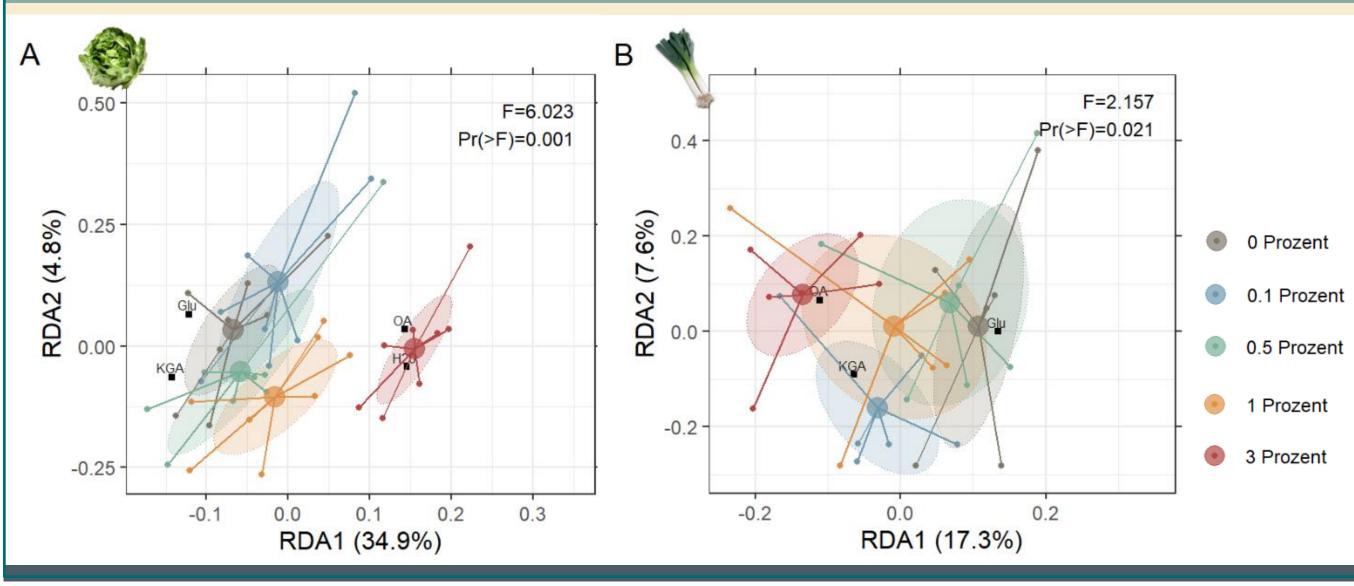


Fig. 4: Redundancy analysis (RDA) on catabolic expression profiles upon addition of 8 substrates¹ and different TP concentrations for lettuce (A) and leek (B).

¹water (H20); D-glucose (GLU); L-alanine (ALA); gammaaminobutyric acid (ABA); n-acetyl-glucosamine (NAG); oxalic acid (OA); alpha-ketoglutaric acid (KGA); xylan (XYL)

		nutrition	
n	ant	nutrition	
	<u> </u>		

Element		
N (%)	-	-
P (µg/g)	+	0
S (%)	+	0
Ca (µg/g)	+	0
K (µg/g)	0	-
Na (µg/g)	-	+
Zn (µg/g)	+	+
Cu (µg/g)	0	+

Table	:1	Effec	ts of
TP	add	dition	on
plant		nutriti	onal
status	3.		

Pairwise	CO	mpa	arisor	าร	betv	veen
the 0% a	and	3%	TP	grou	Jps,	with
increase	S	com	pare	d	to	the
control	grou	i qi	mark	ed	as	" + ",
decrease	es	as	"-",	ć	and	no
discernik	le e	ffect	' mar	ked	'as '	<i>"O"</i> .

Discussion

Author affiliation ¹Soil Sciences Department, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland ² Institute of Applied Geosciences, Technical University of Darmstadt, Darmstadt, Germany * Presenting author

[1] Kole et al. (2017). Int. J. Environ. Res. Public Health 14.

[2] Wik & Dave, (2009). Environ. Pollut. 157, 1–11.

TP exposure induced distinct microbial catabolic profiles and significant shifts in extracellular enzymatic activity, TP exposure led to adverse impacts on plant biomass.

TP led to higher Zn uptake of ~30-55 % relative to the controls \rightarrow but Zn below toxic threshold (~ 100 µg g⁻¹).

