
This manuscript is a preprint. The manuscript’s status is currently ‘submitted’ for editorial assessment and a peer-

review process. It has yet to be accepted for publication. Subsequent versions of this manuscript may have slightly 

different content. If accepted, the final version of this manuscript will be available via the ‘Peer-reviewed Publication 

DOI’ link. Please feel free to contact the corresponding author; we welcome feedback. 

1 

 

 

Mitigating risk of exceeding environmental limits  

requires ambitious food system interventions 

  

M. Hadjikakou1*, N. Bowles1, O. Geyik1, J.G. Conijn2, J.M. Mogollón3, B.L. Bodirsky4,5, A. 5 

Muller6, I. Weindl4, E.A. Moallemi1,7, M.A. Shaikh1, K. Damerau8, K.F. Davis9,10, S. Pfister11, 

M. Springmann12,13, M. Clark14.15, G.S. Metson16, E. Röös17, B. Bajzelj17, N.T. Graham18, D. 

Wisser19, J.C. Doelman20,21, A. Deppermann22, M.C. Theurl23,24, P. Pradhan4,25, M. Stevanovic4, 

C. Lauk23, J. Chang22,26, V. Heck4, E. Ercin27,28, L. Peng29, N.P. Springer30, A.F. Bouwman20,31, 

T.G. Morais32, H. Valin22, D. Mason-D'Croz8,33, K-H. Erb23, M. A. Popp4, M. Herrero8, 10 

P.Dumas34, X. Zhang35, T. Searchinger36, B.A. Bryan1 

1School of Life and Environmental Sciences, Deakin University; Melbourne, Australia 

2Wageningen University & Research, Agrosystems Research, Wageningen, The Netherlands 

3Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands 

4Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 15 

Potsdam, Germany 

5World Vegetable Center, Tainan, Taiwan. 

6Department of Food System Sciences, Research Institute of Organic Agriculture FiBL, 

Frick, Switzerland 

7Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia 20 

8Department of Global Development and Cornell Atkinson Center for Sustainability, Cornell 

University, Ithaca, USA 

9Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, 

USA 

10Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA 25 

11Swiss Federal Institute of Technology, ETH Zürich, Department of Civil, Environmental 

and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems 

Design, Zürich, Switzerland 

12Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LFUK 

      13Oxford Martin School, University of Oxford, Oxford, OX1 3BDUK 30 

14Interdisciplinary Centre of Conservation Science, Department of Biology, University of 

Oxford, Oxford, OX1 3SZUK 

15Smith School of Enterprise and Environment, University of Oxford, Oxford, OX1 3QYUK 

16Modelling Division, IFM, Linköping University, Linköping, Sweden 



 

2 

 

17Department of Energy and Technology, Swedish University of Agricultural Sciences, 

Uppsala, Sweden 

18Joint Global Change Research Institute, Pacific Northwest National Laboratory, College 

Park, MD, USA 

19Food and Agriculture Organization of the United Nations (FAO), Rome, Italy 5 

      20PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands 

21Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The 

Netherlands 

22Ecosystems Services and Management Program (ESM), International Institute for Applied 

Systems Analysis (IIASA), Laxenburg, Austria 10 

23Institute of Social Ecology, University of Natural Resources and Life Sciences, Vienna, 

Austria 

24Environmental Assessment & Transformation of the Economy, Environment Agency 

Austria 

25Bauhaus Earth, Berlin, Germany 15 

26College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China 

      27R2Water Research and Consultancy, Amsterdam, the Netherlands 

28Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the 

Netherlands 

29World Resources Institute, Washington, DC, USA 20 

30Institute on the Environment, University of Minnesota, St. Paul, MN, United States 

31Department of Earth Sciences–Geochemistry, Faculty of Geosciences, Utrecht University, 

Utrecht, The Netherlands 

32ARETEC − Marine, Environment and Technology Centre, LARSyS, Instituto Superior 

Técnico, Universidade de Lisboa, Lisbon, Portugal 25 

33Agricultural Economics and Rural Policy Group, Wageningen University & Research, 

Wageningen, Netherlands 

34CIRAD, UMR CIRED, Montpellier, France 

35Appalachian Laboratory, University of Maryland Center for Environmental Science, 

Frostburg, MD, USA 30 

36Princeton School of Public and International Affairs, Princeton University, Princeton NJ, 

USA 

*Corresponding author. Email: m.hadjikakou@deakin.edu.au  

 

 35 

 

 

mailto:m.hadjikakou@deakin.edu.au


 

3 

 

Abstract:  

Transforming the global food system is necessary to avoid exceeding planetary boundaries. A 

robust evidence base is crucial to assess the scale and combination of interventions required for a 

sustainable transformation. We developed a risk assessment framework, underpinned by a meta-

regression of 60 global food system modeling studies, to quantify the potential of individual and 5 

combined interventions to mitigate the risk of exceeding the boundaries for land-system change, 

freshwater use, climate change, and biogeochemical flows by 2050. Limiting the risk of 

exceedance across four key planetary boundaries requires a high but plausible level of ambition 

in all demand-side (diet, population, waste) and most supply-side interventions. Attaining the 

required level of ambition for all interventions relies on embracing synergistic actions across the 10 

food system.  

Main Text:  

The global food system is pushing several of the planetary boundaries that define the Earth’s 

biophysically safe operating space into and beyond a zone of uncertainty (1-4), with potentially 

serious repercussions for the environment and human development (5). Business-as-usual (BAU) 15 

scenarios of global food production and consumption to 2050 are almost certain to exceed 

several planetary boundaries (6-11), and it is widely acknowledged that a transformation of the 

global food system is required to avoid transgressing these environmental limits. With attention 

focusing on interventions (pathways of action) that can limit the environmental impact of food 

systems (12-15), a comprehensive and integrated assessment of the scale and combination of 20 

interventions that can keep the Earth system within planetary boundaries is urgently required to 

support policy making and to catalyze necessary on-ground actions. 

Over the past decade, global food system studies have presented a wealth of scenarios and 

estimates of the environmental benefits of a range of demand-side and supply-side interventions. 

However, the outputs and conclusions are sensitive to several analytical choices, including: 25 

modelling paradigm; input data and model parameterization; scenario specification; type and 

scale (or ambition) of interventions assessed; and the environmental indicators used (16-18). 

These choices are influenced by study aims and researcher worldview (19, 20), leading to bias 

and gaps in our understanding of the environmental impacts of food system trajectories and the 

effectiveness of interventions. Model intercomparisons of land-use change (16, 18, 21, 22) and 30 

narrative reviews of estimates for other indicators (23, 24) highlight the wide range in 

environmental impact estimates across studies. A systematic analysis of global food system 

modeling studies that can control for differences in methods and model assumptions, and 

synthesize the mitigation potential of a comprehensive suite of interventions is therefore needed.  

The quantitative environmental limits that define planetary boundaries are often set 35 

conservatively to avoid exceeding biophysical tipping points (1, 2, 25) and include a zone of 

uncertainty that accounts for incomplete scientific knowledge and variability in Earth system 

functioning (26). The share of this safe operating space available to the food system is also 

uncertain and dependent upon assumptions about the environmental impacts of other sectors (6, 

7). Given these uncertainties, a risk assessment framework can enhance the evaluation of food 40 

system interventions by determining the probability or risk of exceeding environmental limits.  

Here, we present a quantitative synthesis of 60 global food system modeling studies. Our 

analysis is underpinned by a comprehensive database with thousands of unique projections to 

identify the synergies and trade-offs of various interventions, and the combinations that keep the 

food system within the Earth’s safe operating space by 2050. We developed a quantitative risk 45 
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assessment framework and a suite of statistical meta-regression models that estimate the risk 

mitigation potential of major food system interventions across four planetary boundaries (land-

system change, freshwater use, climate change, and biogeochemical flows), controlling for a 

wide range of food system model sensitivities and uncertainties in environmental limits. Our 

analysis delivers comprehensive risk mitigation estimates of individual interventions and 5 

explores the intervention combinations and necessary on-ground actions that can keep the food 

system within planetary boundaries.  

Intervention modelling and risk assessment  

We systematically reviewed modeling studies of the global food system published since the year 

2000, with environmental impact estimates up to and including 2050, and selected 60 journal 10 

articles and major international reports based on strict inclusion criteria from an initially 

identified 1419 studies [see SM (27) Section 1.1, Fig. S1]. We then assembled a comprehensive 

dataset (Data S1) of projected future food system impacts for 10 commonly used environmental 

indicators that adequately represent the four planetary boundaries assessed in this analysis (Fig. 

1). The scope of our review encompasses terrestrial crop and livestock systems including inputs 15 

to aquaculture, but excludes environmental impacts associated with changes in demand for 

biofuels, non-food crops, and marine fisheries.  

Food system modeling studies typically construct a BAU scenario that follows historical trends 

in food demand and agricultural productivity (17). Intervention scenarios range from marginal to 

substantial deviations from the BAU (28), based on a range of supply-side and demand-side 20 

actions that can reduce environmental impacts (Table S4). Supply-side interventions include 

improved farm management, increased efficiency, and technological advances that reduce 

resource use (29, 30) and emissions (31) (e.g., yield gap closure in crop and livestock systems, or 

more fundamental agronomic interventions such as changes in feed composition). Demand-side 

interventions assume socio-cultural changes such as reduced food waste and shifts towards plant-25 

based diets (32) (Fig. 1A). Typically, studies either assess just a single intervention or storylines 

integrating multiple interventions such as the shared socioeconomic pathways (SSPs) (18, 22). 

This makes it difficult to untangle the effect size of each intervention, and the intervention scale 

and combinations are limited to those encompassed in integrated storylines instead of spanning 

the entire range of possible futures (Table S7).  30 

To enable a quantitative synthesis of food system interventions, identified 10 key environmental 

indicators representing four planetary boundaries (Table 1). We then selected and harmonized a 

set of quantitative variables representing major interventions (Table 2). We used the compiled 

data to fit linear mixed-effects meta-regression models for each of the environmental indicators, 

with intervention variables as predictors and the effect size (environmental impact relative to the 35 

base year) as the dependent variable [SM (27) Section 1.4]. We established four representative 

levels of mitigation ambition (Low, Trend or BAU, High, and Very High) for each intervention 

spanning a plausible range of ambition for 2050, based on the reviewed literature (Table 2). 

Using the meta-regression models, we simulated all plausible combinations of relevant 

intervention levels against each environmental indicator for 2050 (Fig. 1B). 40 

We then defined food-system specific environmental limits as probability density functions 

(PDFs) capturing the best estimate and uncertainty zone for each planetary boundary (Table 1, 

Table S2). Following principles of probabilistic risk assessment (33), the risk of exceeding 

planetary boundaries for each meta-regression projection was calculated by comparing Gaussian 
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distributions drawn from modeled prediction intervals against environmental limit PDFs (Fig. 

1C, Fig. S2). Finally, we identified combinations of mitigation levels across interventions that 

ensure environmental risk across all boundaries remains below two critical risk thresholds 

compatible with the calibrated uncertainty language applied in IPCC assessments for describing 

quantified uncertainty (34, 35): < 0.50 risk (exceedance about as unlikely as not) and < 0.33 risk 5 

(exceedance unlikely).   

 

 

Fig. 1. Intervention modeling and risk assessment framework. A simplified illustration of the three main stages 

of analysis [see SM (27) Section 1 for details] A. Linear mixed effects meta-regression models fitted using planetary 10 

boundary (PB) environmental indicators corresponding to four key PBs (land-system change, climate change, 

freshwater use, biogeochemical flows), and intervention-related variables extracted from selected studies. B. 

Database with mean projections and prediction intervals for each of the 10 PB environmental indicators comprising 
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all relevant intervention combinations (Table 1). C. Exceedance risk calculation combining environmental limit 

probability density functions (Table 2, Table S2) and linear mixed model scenario projections. [PB = planetary 

boundary, LUC = land-use change, N = Nitrogen, P = Phosphorus]. 

Table 1. Food-system specific environmental limits for selected environmental indicators in 2050. Includes best 

estimate, lower bound, and upper bound [see SM (27) Section 1.2 for methodology and data sources]. In italics are 5 

the additive indicators used to assess overall risk across a planetary boundary (for full details see Table S3).   

    
Planetary 
boundary 
(units) 

Indicator/Boundary Abbreviation 
Environmental limit 
best estimate (low – 
high estimate) 

Boundary description 
 

Land-system 
change 
(Mkm2) 

Total land area under crop production Cropland 
 
 
 
<33.1 (30.2 – 54.6) 

Total land area under agriculture 
(cropland + pasture) compatible 
with the 54-75% global forest 
cover requirement across major 
forest biomes (2). 

 

Total land area under permanent 
grassland  

Pasture 
 

Total agricultural area (i.e., cropland + 
pasture) 

TotalAgArea 
 

Climate change 
(Gt CO2e yr-1) 
 

Direct on-farm CH4 emissions CH4  Total agriculture emissions (direct 
CH4 + N2O + net CO2 emissions 
from land use and land-use 
change) in line with 67%/50% 
chance of remaining within 
2.0/1.5 °C respectively (36).  

 

Direct on-farm N2O emissions N2O   

Land-use change CO2 emissions CO2LUC   

Direct on-farm non-CO2 + net emissions 
from land-use and land-use change 

NonCO2+LUC <3.53 (-3.52 – 10.6) 
 

Freshwater use  
(km3 yr-1) 

Blue water (i.e., surface water + ground 
water) consumption by agriculture 

Water <2270 (685 - 4040) 

Total consumptive blue water use 
in agriculture adjusted for 
possible pathways in consumptive 
water use across other economic 
sectors, in relation to basin-level 
assessments of environmental 
flow requirements (37). 

 

Biogeochemical 
flows - Nitrogen 
(Tg N yr-1) 
 
Biogeochemical 
flows – 
Phosphorus 
(Tg P yr-1) 

Total nitrogen fertilizer application in 
agriculture 

Nfert <69 (52 - 130) Individual boundaries for Nfert, 
Nsurplus, Pfert and Pinstream based on 
latest consensus in global 
environmental limits (2, 7, 38). No 
cumulative boundary was 
possible due to the non-additive 
nature of the individual indicators. 
Instead, risk estimates were 
averaged across indicators to 
derive boundary risk metrics. 

 

Nitrogen surplus from agricultural land 
(i.e., N inputs minus outputs) 

Nsurplus <90 (50 - 146)  

Total phosphorus fertilizer application in 
agriculture 

Pfert <16.0 (6.2 – 17.0)  

Phosphorus leaching from agricultural 
land (i.e., P inputs minus outputs) 

Pinstream <2.89 (1.93 – 3.95)  

Table 2. Intervention levels and combinations analyzed in this study. Includes the levels of mitigation ambition 

across interventions used to project global food system performance against environmental indicators in 2050 and 

typical on-ground mitigation actions as synthesized from the 60 systematically selected studies [see (27) Table S4 & 10 

Data S4 for full study list and details]. Relevant boundaries include only those where a given intervention would be 

expected to be most influential. Not all interventions were fitted to all relevant indicator models due to multi-

collinearity concerns or insufficient data [see SM (27) Section 1.4]. [ASF = animal-source foods, DM = dry matter, 

FCF = food-competing feed, EI = environmental intensity, NUE = nutrient-use efficiency]. 

Interventions 

Level of mitigation 

ambition 
Units Description. Mitigation action example. 

Relevant 

boundaries 
Low Trend High 

Very 

High 

Demand-side        

Population  10.6 9.7 8.9 8.5 Billion 

people 

Global human population following the low, median and high projections in (39) 

and SSP1 (40). This intervention could be enabled through reducing fertility rates 

via promoting education and reproductive health services (41, 42).  

All 

Diet        Global daily average animal for ruminant meat, dairy, and monogastric products 

(pork, chicken, eggs and farmed seafood) and plant calorie intake per person 

(excluding waste). Changes in diet could be enabled through promoting diet 

change towards plant-based diets and reduced overconsumption of animal and 

plant calories in high-income countries via market-based incentives, e.g. taxes, 

and/or awareness campaigns such as pro-environmental dietary guidelines (43). 

All combinations between animal and plant calories guarantee a minimum intake 

of 2145 kcal cap-1 day-1 that meets minimum dietary energy requirements for 

healthy populations with body mass index values between 18.5 and 24.9 (7) and 

meets the World Health Organization recommended vitamin B12 intake of 2.4 μ  

day-1 for adults and adolescents (44). Values >2400 kcal cap-1 day-1 could be 

 

Animal 

calories  

Ruminant 

Dairy 

Monogastric 

 Rich 

 

65 

170 

320 

BAU 

 

50 

150 

260 

Low 

meat 

40 

160 

230 

Low 

ASF 

25 

115 

145 

kcal cap-1 

day-1 

 

All 
Plant calories  2350 2185 2020 1860 kcal cap-1 

day-1 
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Interventions 

Level of mitigation 

ambition 
Units Description. Mitigation action example. 

Relevant 

boundaries 
Low Trend High 

Very 

High 

considered representative of overconsumption in predominantly sedentary high-

income populations (45) (see Table S8 & Table S9). 

Waste  25 0 -25 -50 %Δ Change in household and retail waste across all food categories (meat, dairy, 

seafood, cereals, pulses, fruit and vegetables) relative to 2010. Reduction in 

household and service waste could be achieved through changes in the size or 

type of plates and education and awareness campaigns (14) (see Table S10).  

All 

Supply-side         

Crop yields  15 30 45 60 %Δ Global weighted yield increase per unit area for all crops relative to 2010. Crop 

yields could be increased via breeding and genetic technologies, agronomic 

practices optimized to local climatic and soil conditions, and enhanced nutrient 

management (e.g., precision agriculture) (46).  

All 

Feed conversion ratio 

Ruminant meat 

Dairy 

Monogastric 

 

35 

2 

4 

 

30 

1.75 

3.5 

 

25 

1.5 

3.0 

 

20 

1.25 

2.5 

kg DM / kg 

output 

Global weighted average animal feed conversion ratios (FCRs) for different 

livestock systems (ruminant meat, dairy and monogastrics). Reductions in FCRs 

corresponding to increased feed efficiency can be achieved through 

developments in animal breeding and nutrition (47) (see Table S11).  

All 

Feed composition 

Ruminant meat 

Dairy 

Monogastric 

 

5 

15 

80 

 

10 

20 

85 

 

15 

25 

90 

 

20 

30 

95 

% FCF Share of FCF (i.e., crops and fodder produced on land that could otherwise 

produce human food) in livestock feed by livestock type (ruminant meat, dairy and 

monogastrics). This two-way intervention can involve either increasing the 

amount of ecological leftovers (i.e., grass, food waste, by-products) used to feed 

livestock and the use of degraded/abandoned land for livestock production (20), 

or intensification of livestock production in feedlots (see Table S12).  

All 

Climate 

action 

(emissions 

intensity) 

EICH4 0 13 26 40 %Δ Global reduction in non-CO2 (CH4 & N2O) greenhouse gas (GHG) emissions 

intensity (emissions per unit of food produced) relative to 2010. This can involve 

shifts toward agricultural practices that minimize emissions from soils and rice 

production, improved manure management, and feed supplements to reduce 

enteric fermentation in ruminants (48). Climate 

change 

EIN2O 0 4 8 12 %Δ 

Carbon 

price 

0 25 100 200 US$2010 

tCO2eq-1 

Carbon price effects on net CO2 emissions from agricultural land use. Relevant 

actions triggered by an increase in carbon price include avoided deforestation, 

regrowth and reforestation, and farming practices that promote soil carbon 

sequestration (15, 31). 

Water-use efficiency 0 10 20 30 %Δ Increase in the ratio of crop yield to the volume of water consumed (in kg of crop 

relative to blue water consumption in m3) across all crops (including animal feed) 

relative to base year (2010) levels. Increases can be achieved through crop 

breeding and selection, soil-water conservation practices that improve the 

productive capacity of soil, and precision irrigation techniques (30, 49).  

Water 

N & P management        

Nutrient-use 

efficiency  

NUEN 0 10 20 30 %Δ 

 

 

Increase in the amount of nitrogen (NUEN) and phosphorus (NUEP) uptake by 

crops as a proportion of the total amount of N and P fertilizer applied, 

respectively, relative to 2010. Higher NUEs could be achieved through better 

nutrient management (e.g., optimizing fertilizer selection, timing, application) and 

regulation of application rates (50). For N the Very High setting corresponds to an 

increase from a global 2010 average NUEN of 0.46 (51) to 0.60 by 2050. For P 

this corresponds to a change from 0.67 (9, 38) to 0.78 in 2050.  

Bio-

geochemical 

flows 

NUEP 0 5 10 15 %Δ 

Nutrient 

recycling 
P 0 15 30 45 % 

The proportion of phosphorus from human waste and excreta recycled and used 

as agricultural fertilizer relative to 2010. This intervention requires improved 

infrastructure (pit latrines, septic tanks, enhanced sewage systems) to enable the 

recycling of nutrients from wastewater in agriculture (38, 50). 

Risk mitigation potential of individual food-system interventions  

Based on simulations of all interventions at the four levels of mitigation ambition, we present the 

absolute risk of exceeding planetary boundaries for the Trend ambition level, and the effect size 

(risk difference, i.e., risk mitigation potential relative to the Trend) for all other intervention 

levels in 2050 (Fig. 2; Fig. S4 & Fig. S5). To illustrate the results in the sections below, we use 5 

individual interventions set at the Very High level of mitigation ambition to show the maximum 

risk mitigation potential (expressed as risk difference and reduced pressure in physical units), 

and discuss potential synergies and trade-offs.  
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Fig. 2. Modeled risk of exceeding environmental limits in 2050 for four planetary boundaries under a range 

of ambition levels for selected interventions. Each panel presents average risk estimates for a specific level of 

mitigation ambition (facet columns) of a selected intervention (facet rows), as per Table 1 across land-system 

change (n = 47 = 16,384), climate change (n = 48 = 65,536), freshwater use (n = 48 = 65,536), and biogeochemical 

flows (n = 48*2 = 131,072). Data are presented as mean values (bubbles) +/- one standard deviation (SD) (vertical 5 

lines). Risk estimates encompass both model uncertainty and uncertainty in environmental limits [see (27), Section 

1.4; Figure S4 & S5 for estimates in physical units for each indicator; Data S5 for full dataset]. Black numbers at the 

top of panels indicate absolute mean exceedance risk (0-1) for the Trend (BAU) level, where a score of 1 represents 

100% probability of a planetary boundary being exceeded by 2050. Grey numbers indicate mean risk difference 

relative to the Trend for all other levels. Missing bars correspond to interventions excluded from individual models 10 

due to lack of relevance, adverse impacts on model performance, collinearity, or missing/insufficient data.  

Synergies across planetary boundaries 

Demand-side interventions show high risk reduction potential across all indicators, with some 

variability across boundaries (Fig. 2). Shifting to diets with a low proportion of animal-source 

food (ASF) (Very High ambition) could achieve the maximum risk reduction across land-system 15 

change (-0.49; -1363 Mha) and climate change (-0.20; -3.07 GtCO2eq), reflecting substantially 

reduced demand for pasture and feed crops and reduced enteric fermentation (Fig. S4). A low 

ASF diet also shows considerable risk mitigation potential in relation to freshwater use (-0.05;    

-107 km3), and biogeochemical flows (-0.10; -14.8 Tg Nfert, -2.11 Tg Pfert). Other demand-side 

interventions also result in strong risk reduction potential across boundaries, especially for land-20 

system change (up to -0.16; -539 Mha for population interventions), climate change (-0.08; -1.38 

GtCO2eq for population interventions), and freshwater use (-0.14; -307 km3 for plant calorie  

interventions) (Fig. 2; Fig. S4, Fig. S5).  

 

Among supply-side interventions, improvements to feed conversion ratios have the highest 25 

overall mitigation potential across planetary boundaries, with a strong effect on land-system 

change (-0.29; -939 Mha) and climate change (-0.12; -2.02 GtCO2eq) – owing to significantly 

reduced feed demand from both cropland and pasture (Fig. 2; Fig. S4). Targeted interventions 

such as water-use efficiency and N/P management show the highest overall potential for 

reducing the risk of exceeding the freshwater use boundary, and N and P boundaries, 30 

respectively (Fig. S5). Unlike climate change and land-system change, exceedance risk for 

freshwater use and biogeochemical flows associated with irrigation and fertilizers responds more 

strongly to targeted supply-side interventions than to demand-side interventions. 

 

Trade-offs between planetary boundaries  35 

Unlike other interventions, actions to increase crop yields and change feed composition exhibit 

trade-offs (Fig. 2). Higher (+60%, Very High ambition) crop yields result in a significant 

reduction in exceedance risk for land-system change (-0.11; -357 Mha) and associated GHG 

emissions (-0.06; -0.92 GtCO2eq), because of avoided cropland expansion and forest regrowth 

substantially outweighing the increase in nitrous oxide emissions from additional fertilization 40 

(Fig. S4). However, higher crop yields could increase the overall risk of exceedance for 

freshwater use (+0.06; +131 km3) and biogeochemical flows (+0.03; +3.65 Tg Nfert, 0.80 Tg Pfert) 

(Fig. 2; Fig. S4). In the absence of any concomitant feed conversion improvements, a higher 

grain percentage in livestock feed still reduces overall risk for land-system change (-0.04; -131 

Mha), as pasture reduction (-280 Mha) more than offsets cropland increase (+149 Mha) (Fig. 45 

S4). However, this could entail increased risk for freshwater use (+0.03; +67 km3) and 

biogeochemical flows (+0.04; +17.5 Tg Nfert, +1.38 Tg Pfert) from additional inputs, along with a 
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small increase in climate change risk (+0.01; +0.22 GtCO2eq) due to emissions from cropland 

expansion and additional fertilization offsetting any negative emissions from pasture 

abandonment (Fig. 2; Fig. S4, Fig. S5).  

Intervention combinations to achieve risk mitigation thresholds 

No single intervention achieves substantial risk mitigation (risk mitigation > 0.1) across all 5 

boundaries. To effectively reduce risk across all environmental indicators, a comprehensive 

portfolio of demand-side and supply-side interventions is required. Recent work has focused on a 

limited combination of highly ambitious best-case interventions, raising concerns around 

feasibility (13, 52). Here, we mapped the performance of all intervention combinations against 

their risk mitigation and ambition level. We did this individually for each of the four planetary 10 

boundaries and together for all boundaries, encompassing the full set of 2,090,238 plausible 

combinations of intervention levels for each individual indicator across all boundaries (Table 

S14). We then selected the combinations that met two critical IPCC calibrated uncertainty risk 

thresholds (35) across all boundaries: < 0.50 risk (exceedance about as unlikely as not) and < 

0.33 risk (exceedance unlikely).  15 

 

Only 0.51% of all combinations achieve a risk <0.50 for all boundaries, with an even smaller 

subset of 0.01% combinations achieving the risk <0.33 (<0.4 for climate change) threshold (Fig. 

3A). This reflects the interplay of synergies, trade-offs, and dependencies arising from different 

interventions and ambition levels. While considerably more combinations show low levels of 20 

risk at the global level for land-system change and freshwater use, the safe operating space is 

considerably more restricted for biogeochemical flows and climate change (Fig. 3A; Fig. S6).   
 

Visualizing the combinations that meet each risk threshold highlights the required ambition 

levels for each intervention (Fig. 3). Despite significant differences between risk < 0.50 and risk 25 

< 0.33 thresholds, over 91% of all compliant combinations in both cases require Very High 

ambition for animal calories and N and P management (Fig. 3B). A predominantly High-Very 

High ambition across animal and plant calories is critical in both risk < 0.50 and risk < 0.33 

compliant combinations (Fig. 3B). In contrast, for population and waste, risk < 0.50 compliant 

combinations had small percentages of Low or Trend ambition. However, for risk < 0.33 30 

compliant combinations, more than 68% of compliant combinations require Very High ambition 

across demand-side interventions, with this percentage rising to 79% for population and plant 

calories, and 100% for animal calories (Fig. 3A). High-Very High ambition levels are required 

for N and P management, feed conversion ratios and climate action across more than 90% of all 

risk < 0.50 combinations, while over 83% of risk < 0.33 combinations require Very High 35 

ambition across these interventions. 

 

Other supply-side interventions (crop yields, feed composition and water-use efficiency) have a 

greater range of ambition levels that achieve risk thresholds (Fig. 3A). Increases in crop yields 

are critical for maintaining a low risk of exceedance for land-system change and climate change, 40 

with 75% and 92% of risk < 0.50 and risk < 0.33 combinations requiring High-Very High levels 

of ambition. Nevertheless, potential trade-offs of higher yields for freshwater use and 

biogeochemical flows (Fig. 2) mean that less than around half of all compliant combinations 

require Very High levels of ambition. For feed composition, Low-Trend ambition, indicative of 

livestock systems that use more grass or by-products (see Table 2), is required across 58% of risk 45 

< 0.50 and 69% of risk < 0.33 combinations. Maintaining a high percentage of non food-
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competing feed (53) is preferable in combinations with a High-Very High level of ambition for 

animal calories, avoiding trade-offs associated with feed intensification (Fig. 2). For water-use 

efficiency, only around half of all risk-compliant combinations have High-Very High ambition 

levels (Fig. 3A), reflecting the generally safer status of the global freshwater use boundary and 

the high water use mitigation potential of Very High ambition levels across demand-side 5 

interventions (Fig. 2) within combination sets.  

 

Fig. 3. Percentages of risk-compliant combinations and required intervention ambition levels to meet 

alternative risk thresholds. A. The horizontal bar plot displays the percentages of combinations that meet each of 

the two risk thresholds (risk < 0.50 and risk < 0.33) for each boundary and combined for all boundaries. B. The 10 
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vertical bar plots display the percentages of each of the four levels (Low, Trend, High, Very High) of mitigation 

ambition for all intervention combinations that meet each of the two risk thresholds across all boundaries.  

Actions to enable risk-compliant intervention combinations 

While substantial risk reduction for individual indicators is possible even with marginal increases 

in mitigation ambition relative to expected trends (Fig. S6), ensuring unlikely exceedance 5 

(<0.33) across all four planetary boundaries in 2050 requires at least a High level of ambition 

across all demand-side interventions in addition to most supply-side interventions. Certain 

interventions such as diet (animal calories) and N/P management require a Very High level of 

ambition. Despite the narrow option space of interventions that would allow the Earth system to 

remain within planetary boundaries, and significant feasibility challenges, such ambitious 10 

mitigation levels remain within reach – provided the numerous and diverse opportunities for 

action across the food system (Table 3, Data S3) are fully exploited.  

Table 3. Mitigation actions discussed in reviewed studies mapped to relevant interventions. The table provides 

a non-exhaustive list of actions with selected examples across the food system, as qualitatively mentioned in the 60 

systematically selected studies (for further detail see Data S3). Grey cells indicate that an action has the potential to 15 

contribute to an intervention but are not intended to be indicative of the strength of association between actions and 

interventions. Blank cells indicate a low potential association or no relationship between an action and an 

intervention. Supply-chain scope (i.e., farm-level, processing and retail, consumers, agricultural policy, research and 

development) follows the categories used in (54). Actions are listed alphabetically within each scope category.   
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Advanced agronomic technologies (e.g., precision farming)           

Advanced crop production techniques (e.g., hydroponics)           

Agronomic conservation practices (e.g., minimum/no till)           

Biochar addition to soil           

Bioenergy crop cultivation on degraded or abandoned land            

Enhanced nutrient management strategies            

Fine-tuning feed composition to improve digestibility           

Genetic modification (e.g., higher-yielding crops/animals)           

Globally optimised cropland use (shifting to efficient areas)           

Improved agronomic management (e.g., timing of sowing)           

Improved irrigation efficiency (e.g., drip irrigation)           

Improved sewage systems (e.g., separate urine collection)           

Improved water management techniques           

Increased fertiliser use in under-yielding countries           

Integration of biogas plants and manure storages           

Livestock herd management (e.g., short rotation grazing)           

Locally appropriate crops (e.g., climate-resilient cultivars)           

Nitrification and urease inhibitors           

Nutrient recovery (e.g., use of crop residuals and manure)           

Reduction in crop feed (e.g., use of grass and by-products)           

Shifting livestock production to dairy/monogastrics           

Slow-release fertilizers and fertigation           

Transition towards fodder-based livestock production           

Veterinary health measures for livestock (e.g., vaccination)           

P
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 Circular supply chain designs to recycle food waste            

Digital infrastructure (e.g., internet and GSM coverage)           

Food preservation practices that reduce spoilage           

Improved cold-chain infrastructure           

Improved inventory management and purchasing            

Improved packaging for extended shelf life           

Improved transportation, processing, and storage facilities           

Recovery and redistribution of surplus food (e.g., in retail)           
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Dietary guidelines for healthy and sustainable diets           

Education and awareness campaigns           

Family planning (e.g., education and empowerment)           

Food labeling regulations with sustainability scoring           

Government regulation (e.g., consumption mandates)           

Integrating sustainability in social protection programmes           

Market-based instruments (e.g., carbon price, health tax)           

Novel protein sources (e.g., algae, mycoprotein, insects)           

Nudges towards plant-based diets (e.g., rewards schemes)           

Nutrition counselling in maternal/childcare programmes            

Promotion of more sustainable diets in gastronomy           

Public procurement (e.g., meals in schools and hospitality)           

Transforming food environments (e.g., sustainable snacks)           
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Access to affordable credit (e.g., co-operative banks)           

Climate policies strongly linked to agricultural strategies           

Enabling farmers to make long-term investments           

Enhanced market access (e.g., better rural infrastructure)            

Establishment of productivity standards and targets            

Improved access to pollination services           

Policies to regulate agricultural runoff           

Specialization to optimize trade and resource allocation           

Payment for ecosystem services           

Strict regulation and restrictions on resource use           

Trade liberalization (i.e., reforming tariffs and subsidies)           

R
&

D
 

Increased investment in research, technology, innovation           

International working groups on sustainable consumption           

Technical assistance and capacity building           

Technology and knowledge transfer           

 

Achieving the required demand-side intervention levels  

A major barrier to achieving the required levels of demand-side mitigation is the feasibility of 

implementing transformative global-scale actions within the available timeframe (12, 48). The 

required levels of mitigation by 2050 across diets, waste, and population are at odds with current 5 

patterns in high-income countries (55), the continued growth of the global middle class with 

associated increases in ASF (41), and trends in food waste (56, 57) and population (41, 58). 

However, increasing social awareness of the environmental mitigation potential of demand-side 

actions and their significant co-benefits with health and well-being (43, 59), coupled with 

emerging options (12) to overcome systemic financial and political challenges (48), could, under 10 

the right policy settings, counter current trends. While demand-side actions tend to focus on 

consumer behavior, the broader economic and regulatory environment (Table 3) will need to 

evolve substantially to enable technological innovation and the changes in choice infrastructure 

necessary for shifting consumer behavior.  

 15 

The adoption of low ASF diets with a significantly reduced ruminant meat intake (14), is critical. 

The pace of the ongoing nutrition transition (55) demonstrates that equally rapid and widespread 

shifts towards healthier, plant-based diets could also be achievable given the right policy settings 

(60). Studies tend to concentrate on consumer-centered actions such as incorporating 

sustainability into dietary guidelines and food labels, education and awareness campaigns such 20 

as public information programs on sustainable diets, investment in healthier food environments, 

and economic incentives such as health taxes (Table 3). Promoting shifts towards more legumes, 
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nuts, and seeds in high-income countries represents a readily available option to reduce 

environmental risk while improving health outcomes (14). Novel protein alternatives (e.g., plant-

based or lab-grown substitutes, mycoprotein, and insects) could catalyze dietary shifts, 

potentially offering additional environmental and health co-benefits (61), although their 

performance across certain micronutrients and their broader social and economic implications 5 

remain uncertain (62). More equitable income distribution could further facilitate dietary 

transitions (43). Actions tailored to specific country contexts, underpinned by concerted global 

efforts such as the UN Food Systems Summit (63), can promote sustained changes to overcome 

behavioral feasibility challenges (e.g., strong social norms and taste preferences favoring meat 

consumption) (13). Models with an endogenous social acceptability component suggest that the 10 

low ASF diet is achievable by 2050 (64, 65).  

 

Highly complementary actions could achieve the necessary reduction in plant calories to address 

overconsumption and food waste. Many people in upper- and middle-income countries 

overconsume food due to lifestyles that lead to overweight and obesity (48, 55). Changes in 15 

sociocultural norms around plant-based diets can concurrently target a reduction of excess plant 

calories (particularly from highly processed carbohydrates and vegetable oils) and waste (66). A 

recent review highlights the effectiveness of interventions such as reductions in the size and type 

of servings in hospitality settings, changing nutritional guidelines in schools, and information 

campaigns (67). Additional actions include practices to reduce or reuse waste in food retail, such 20 

as improved packaging to extend product shelf life or more advanced inventory management 

(Table 3). More reliable and consistent food waste data is also of critical importance in informing 

national food waste strategies aspiring to an ambitious 50% reduction target, with some progress 

already underway in this respect (57). The significance of slowing population growth is often 

downplayed in food system studies (41, 58). Relevant actions that could ensure a maximum 25 

global population of 8.9 billion in 2050 include improved education to change social norms 

around family planning and family-size preferences, and empowering girls and women (42). 

Such measures could greatly reinforce efforts to change diets by tackling the combined negative 

effects of population growth and the nutrition transition (41, 55). More equitable redistribution of 

wealth through policies addressing inequalities in income and gender, and stronger linkages 30 

between climate, health, and agriculture policy portfolios, could also aid in providing the 

conditions for achieving the level of mitigation ambition required across all demand-side 

interventions (Table 3). 

Achieving the required supply-side intervention levels  

Equally ambitious actions are needed to achieve the required levels of supply-side mitigation. 35 

While the portfolio of proposed actions relies on technologies and management practices that 

increase the efficiency of food production at the farm scale, the broader policy, regulation, and 

research and development (R&D) context plays a crucial role in accelerating innovation and 

knowledge transfer across different geographic regions (Table 3). 

Large feed efficiency gaps currently exist across different livestock production systems (47). 40 

Key actions to enable global feed conversion ratios to converge to those in developed countries  

include better animal breeding and husbandry, improving the digestibility of feed through 

changes in feed composition and supplements, and optimizing grazing management (Table 3). 

The overall protein conversion efficiency of the system also depends on demand trends. Both 

aquaculture (68) and plant-based proteins (61) are more efficient at producing food protein 45 

compared to most terrestrial livestock. A number of other options such as microbial protein feed 
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(69) and novel protein alternatives could further increase the overall efficiency of the food 

system while providing healthy protein.  

Some actions that reduce feed conversion ratios (e.g., transitioning to grain-based livestock 

production) assume higher percentages of food-competing feed (FCF) (Table 3). The low 

ambition level in feed composition levels favors lower-FCF livestock systems that rely on crop 5 

by-products, food waste and pasture (70), and implement circularity (70) and agro-ecological 

(19, 53) principles of grazing and herd management (Table 3). However, low-FCF livestock 

systems can only provide a limited amount of animal protein due to their high pasture intensity 

(71), and are therefore contingent upon a low ASF diet. While high feed efficiencies in low-FCF 

livestock systems can be challenging (70), low-FCF grazing systems in Australia and New 10 

Zealand already achieve high efficiencies (47). Further actions such as sourcing meat from dairy 

herds (20, 54), novel feeds (e.g., microbial protein, insects), and livestock production in areas 

with higher pasture productivity (Table 3), could enable high-efficiency low-FCF livestock 

production at the global scale – provided diets remain low in ASF.  

Actions that optimize livestock productivity (e.g., feed supplements) can also reduce methane 15 

emissions from enteric fermentation (72). Additional mitigation actions (15, 48, 73) can further 

reduce non-CO2 emissions associated with crops and livestock. These include improvements in 

housing systems, manure storage, composting, and anaerobic digestion to reduce emissions from 

manure; and improved nutrient and residue management to reduce emissions from cropland soils 

and rice paddies (Table 3). A global carbon price provides an established mechanism to 20 

incentivize such actions with an additional positive effect on net CO2 emissions from land use by 

reducing land clearing and promoting sequestration through trees and soil enhancement (73). 

While a carbon price of US$200 tCO2eq-1 is higher than the US$100 tCO2eq-1 currently 

considered cost-effective (15), it is still considered feasible for 2050, with considerable technical 

mitigation potential across all greenhouse gases – especially in developing regions like Latin 25 

America and Africa (72, 73). 

Crop yields need to increase by 30-60% by 2050 relative to 2010. While a 30% increase follows 

historical (1970-2010) trends for cereal crops (46), this will still necessitate a number of on-farm 

actions, underpinned by higher investment and technology transfer (Table 3). These include 

continued improvements in management practices, advanced agronomic (e.g., precision farming) 30 

and genetic (e.g., higher-yielding and climate-resilient) technologies, and increased fertilizer 

availability and application in areas with significant yield gaps (14, 48). The anticipated impacts 

of climate change may pose challenges in certain major crop-growing regions (74). Furthermore, 

the assumed ambition levels are based solely on closing potential yield gaps in cereal crops, and 

do not reflect the challenges in achieving similar yield gains for non-cereal crops or for pasture. 35 

Trade-offs associated with higher yields (i.e., higher input requirements), can be reduced through 

synergistic actions that improve water-use efficiency (WUE) and N & P management (NUE and 

recycling) (Table 3).  

For WUE, a 10-30% increase would necessitate similar investment and advancement in crop 

production techniques and technologies to those required to increase crop yields, with additional 40 

focus on soil-water conservation practices and improved water management techniques (e.g., 

rainwater harvesting, increased reliance on rainfed agriculture and deficit irrigation) (Table 3). 

The assumed WUE increase would require considerable investment but remains feasible given 

the plethora of actions available across different geographic contexts (8, 30). However, 

translating gains in WUE to actual water savings will also require more robust water accounting, 45 

stricter enforcement of caps to prevent water misuse and misallocation, and a better 
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understanding of the socioeconomic context including behavioral responses of irrigators to 

increased WUE (49).  

Attaining the required levels of N & P management requires enhanced nutrient management in 

croplands, pasture, and all animal agriculture (Table 3). Improved placement and timing of 

fertilizers, precision irrigation, integrated weed, pest, and disease management, enhanced manure 5 

storage and spreading methods, and more effective recycling of animal manures, can all increase 

NUE (50). Soil conservation practices (e.g., cover crops, tillage management, buffer strips) 

adapted to local conditions can further enhance NUE by minimizing erosion and subsequent 

nutrient runoff (38). Shifts to more plant-based diets can also increase the overall nutrient 

efficiency of the system, as intensive livestock production results in inefficiencies in nutrient use 10 

through feed demand and the crop mix required (50). P recovery from wastewater is currently 

more established and efficient (75), with less potential for reducing N fertilizer through 

wastewater recycling (76). However, up to ~35% of inorganic N from chemical fertilizer could 

in theory be offset by recycling all nutrients from food waste and wastewater in agriculture (9).  

Multi-indicator target setting and risk assessment of food systems: challenges and future 15 

directions 

Target-setting, such as the proposed ‘net zero’ equivalent target for the food system (77), could 

provide additional impetus towards transformative actions. However, ambitious targets are also 

necessary for other environmental indicators (4, 78), and should also include an extended target 

space encompassing broader Sustainable Development Goal indicators – especially those 20 

intrinsically linked to the food system such as food and nutrition security, and livelihoods (79, 

80). While some mitigation actions are likely to show considerable co-benefits, others, especially 

those entailing high R&D investment, or if poorly implemented, could entail significant costs 

being passed on to producers with potentially adverse impacts on food prices and food security 

(15, 48). Moreover, although our risk assessment focuses on boundary-level risk metrics, 25 

indicator-level results show that certain interventions create trade-offs within boundaries (e.g., 

between cropland and pasture or between greenhouse gases). Indicator-specific targets including 

shorter-term goals and associated risk metrics are therefore also required. For example, the 45% 

methane reduction target by 2030 recommended in UNEP’s Global Methane Assessment (81) 

reflects methane’s role as a short-lived but potent climate pollutant. Similar interim targets for 30 

specific indicators are necessary to inform interventions and enable actions. Risk assessment 

frameworks such as the one developed here can then be used to synthesize available evidence 

from multiple sources using a unified, quantifiable, and actionable metric (expressed in risk 

terms) to identify optimal intervention portfolios. 

 35 

Interactions across Earth system processes are complex and often amplifying, and safeguarding 

all planetary boundaries is therefore essential (1, 2). The presence of regional risk thresholds, as 

in the cases of land-system change and biosphere integrity (11), biogeochemical flows (82), and 

freshwater use (8), highlight the importance of setting environmental limits and targets at 

different levels, from global to sub-national. Ongoing refinements to the planetary boundaries 40 

framework, such as the inclusion of green water to the freshwater use boundary (83), and 

boundary interactions between climate change and other boundaries (5, 84), point to increased 

risks across the Earth system. Our global risk estimates are partial as we do not encompass all 

planetary boundaries or potential interactions (5, 84), and do not explicitly account for regional 

or seasonal exceedances (8, 76). For this reason, additional interventions that achieve spatially 45 
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optimized outcomes (85, 86) may be required to maximize the chances of respecting both global 

and local environmental limits.  

 

Despite efforts to consider plausible intervention levels as consistent with the range in the 

published literature, as is the case for most food system scenario studies, our risk assessment 5 

framework does not explicitly consider or quantify feasibility challenges (12, 13).  Food system 

sustainability frameworks must incorporate feasibility evaluation (13, 87) to allow a comparison 

of alternative intervention levels based on technological, economic, socio-cultural, and 

institutional barriers to identify optimum action pathways. Furthermore, while risk estimates 

capture the spread in responses across underlying models, statistical meta-regression does not 10 

capture how different underlying actions could influence effect size. For example, crop yields 

could increase because of total factor productivity (42), but could also increase through 

additional irrigation and fertilization inputs. Specific actions and mechanisms of implementation 

can make a material difference to any synergies or trade-offs across indicators and may also 

entail divergent implementation challenges (12). 15 

 

Our analysis focuses on projections for 2050. Despite the large number of scenarios to ensure 

comprehensive coverage of the option space, we assume partial or full implementation of 

interventions without accounting for alternative implementation pathways in the period leading 

up to 2050. Our statistical models implicitly draw on the diverse pathways and intervention 20 

trajectories assumed in the underlying studies. Recent work (6) underlines the importance of the 

timing and pace of implementation, especially for climate change where the remaining carbon 

budget also depends on decarbonization trajectories in other key sectors such as energy and 

transport (73, 88). Studies using dynamic process-based models consider non-linearities and 

saturation effects in intervention effectiveness associated with trends in technology and 25 

consumer behavior (43, 64, 89), as well as effects associated with regional heterogeneity in key 

food demand drivers such as population, income and agricultural research and development and 

their interactions with food prices (90). Future syntheses of intervention performance could 

compare non-linearities in implementation (rather than simply control for them as we have) 

using timeseries multi-model ensembles based on diverse pathways and narratives. Improved 30 

data sharing and harmonization of scenario indicator results and food system intervention 

parameters across studies, in a similar fashion to what is currently being practiced for IPCC 

climate mitigation scenarios (36, 73), would greatly facilitate future syntheses.  

   

While we consider many possible futures, there are potentially more intervention combinations 35 

than those identified that meet risk thresholds. This includes values in between or beyond the 

four levels of ambition considered across each intervention, as well as additional interventions 

not explicitly considered in our analysis. For example, the emergence of innovation 

breakthroughs such as novel protein alternatives or other future technologies (12) could 

potentially expand the option space, with global food system models only just starting to 40 

explicitly incorporate them (20, 89). Future research efforts could more comprehensively 

consider the risk mitigation potential of available interventions and the numerous actions 

available to enable them across different contexts. Nonetheless, our work provides the most 

comprehensive synthesis and risk assessment to date on the mitigation potential of plausible food 

system intervention combinations for 2050, and clearly indicates the urgency of ambitious levels 45 

of action on both the demand and supply side of global food systems to give humanity the best 

chance of remaining within planetary boundaries. 
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Materials and Methods 

Systematic review and data collection 

We carried out a systematic literature search for scenario modeling studies of global food system 

sustainability following the Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) protocol (91). We developed a universal search string refined using an 5 

article test list of 20 highly cited articles. We then used this string to search across four major 

academic databases (ProQuest, Scopus, Web of Science, Science Direct) to identify published 

journal articles and book chapters that contained quantitative scenario projections of global 

environmental impacts explicitly associated with food production for the year 2050 (Table S1, 

Fig. S1). We also searched for key reports from major food-related organizations (FAO, World 10 

Bank, CGIAR, IFPRI, WRI, UNEP, UNCCD) with the Google search engine. The search was 

initially carried out in October and November 2017, with periodic updates through to the end of 

2021. Details of all search strings and results are available in Table S1 and Data S2. 

  

Following screening, an initial list of 1390 studies was refined to 60 studies for which we carried 15 

out data extraction, compilation, and harmonization to maximize the available data size and 

quality. We developed a comprehensive database (Data S1) of published global food system 

model scenarios for 2050 with impact estimates for 10 environmental indicators representing 

four planetary boundaries (land-system change, freshwater use, climate change, and 

biogeochemical flows). For 37 studies representing 1,878 future projections and 844 scenario 20 

storylines, we assembled a full dataset of input parameters that contained the minimum set of 28 

quantitative variables (Table S5) necessary to parameterize all interventions (Table 1). All 

quantitative variables were either extracted directly from each publication (including 

supplementary material or code), directly obtained from the lead authors of each study, or 

derived from data provided by the authors [see (27) Section 2.1]. This unique dataset provided 25 

the input for training the meta-regression models (see below). 

Defining food system specific environmental limits 

We then defined food system specific environmental limits for four planetary boundaries for the 

year 2050 based on the latest scientific consensus on global environmental limits and other 

literature [see (27) Section 1.2]. We selected 10 environmental indicators and specified 30 

environmental limits based on available model outputs in the literature, as well as on current 

scientific consensus around planetary boundaries (1-3, 7). Uncertainty in environmental limits 

was incorporated by specifying triangular (or Gaussian) probability density functions (PDFs), 

both commonly used in risk analysis (92), characterized by best estimate, minimum (or -2SD), 

and maximum (or +2SD) values. Triangular distributions were fitted to data on food system 35 

specific environmental limits (Table S2) with the R package propagate (93) using unweighted 

residual sum-of-squares as the minimization criterion. Where a best estimate was not available, 

we used the mode value calculated as 3*mean(x)-min(x)-max(x), to allow the fitting of a 

triangular distribution. For the climate change boundary, we used data from the AR6 Scenarios 

Database (36), which contained 260 scenarios with total direct emissions from agriculture (CH4 40 

+ N2O + net CO2 emissions from land use and land-use change) compatible with a 67% and 50% 

chance of remaining within 2.0 and 1.5 °C, respectively (73). After fitting alternative 

distributions and comparing their fit based on the Bayesian information criterion using the 
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propagate (93) package, we selected a normal distribution due to its better fit and ease of use and 

interpretation compared to alternative candidate distributions. 
 

For climate change, freshwater use, and Pinstream, environmental limits also account for the 

possible trajectories of non-food sectors which exert a significant pressure on those boundaries 5 

(Table S2). The PDF representing the environmental limit for climate change already 

encompassed assumptions around the emission trajectories of non-food sectors and therefore the 

underlying scenarios were compliant with global emissions targets. For freshwater use and 

Pinstream, we specified the potential impact of non-food sectors (household and industry in the case 

of freshwater use, and sewage in the case of Pinstream) via a best estimate coupled with minimum 10 

and maximum estimates, and used these to modify the relevant food system specific 

environmental limits. Our environmental limit PDFs thus encompassed the inherent uncertainty 

in defining the Earth system’s safe operating space (1, 2), as well as the range of possible 

trajectories of relevant non-food sectors and the potential share of each planetary boundary 

available to the food system in 2050 [see (27) Section 1.2].  15 

Meta-regression modeling and scenario predictions 

We developed linear mixed-effects meta-regression models to synthesize global food system 

impacts on the planetary boundaries based on the database of scenario projections assembled 

from the 60 systematically selected studies (Data S1) and used these statistical models to 

generate a comprehensive database of predictions for 2050 [see (27) Section 1.4, Data S4]. We 20 

used a random intercept model design with the model version used in each study as the random 

effect term to reduce the bias resulting from large differences in the number of published 

scenarios between studies, and control for the lack of independence between scenarios within 

each study or studies using similar runs from the same food system model. Following (94), we 

fitted 10 linear mixed-effects models (LMMs), one for each environmental indicator using a 25 

restricted maximum-likelihood routine implemented in the R package lme4 (95).  

 

To fit the LMMs for all indicators other than CO2 LUC, we used the log response ratio of 

environmental impact computed as ln (future estimate/base year estimate) as the response 

variable. The independent variables (Table S5) representing relevant demand- and supply-side 30 

interventions for each environmental indicator were specified as fixed-effect regressors. We pre-

processed independent variables to control for differences in starting values by harmonizing 

units, and calculating multipliers relative to the base year (for population, diet, crop yields, feed 

conversion ratios, emissions intensity, water-use efficiency, nutrient-use efficiency), absolute 

percentages (for waste, feed composition and nutrient recycling), and absolute values (for carbon 35 

price). For CO2 LUC, the data compiled from the selected studies (Data S1) was not sufficiently 

comparable in scope to allow harmonized predictions compatible with the AR6 Scenarios 

Database (36). We instead trained an LMM using 4729 vetted 2010-2050 observations in the 

AR6 Scenarios Database (36), with the land-system model as the random effect term, 5-year 

averaged annual CO2 LUC emissions from agriculture as the dependent variable, and carbon 40 

price, year, and 5-year averaged annual change in cropland, pasture, and forest cover as 

independent variables (Table S14).  

 

We carried out model selection and validated prediction accuracy through cross-validation, 

following best practice for predictive models (96). We used repeated cross-validation, repeating 45 

the cross-validation 5 times with alternative fold numbers (over the range 3:k, where k was the 
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number of random factors minus 1), implemented in the R package cvms (97) which explicitly 

controls for the random effect structure in LMMs. We first formulated alternative model 

structures ranging from the least parsimonious (all relevant variables used as independent 

predictors, e.g., population and per capita demand for ruminant meat), hybrid (partial 

aggregation of predictors, e.g., per capita caloric demand for ruminant meat multiplied by 5 

population) to the most parsimonious (based on a process-based logic using aggregates of 

independent predictors, e.g., total feed demand for ruminant meat) [see (27) Section 2.3]. The 

parsimonious models outperformed the other models based on the root mean square metric and 

hence, were selected and screened for further analysis. We used variance inflation factors to test 

for collinearity and likelihood-ratio tests to further refine the selection of fixed-effect predictors. 10 

During this stage we also tested the addition of an initial condition delta as per (16) which 

improved the fit for the cropland, blue water, methane, nitrous oxide and Nfert models. Further 

tests and outlier handling were performed to exclude any bias in the model coefficients due to 

violations in the homogeneity of residual variance or influence from outliers in the models using 

the robustlmm (98) and LMERConvenienceFunctions (99) packages [see (27) Section 1.4 & 15 

Section 2.4].  

 

We then generated predictions using the fitted LMMs encompassing combinations between all 

relevant interventions at each level of ambition (Fig. 1B, Table 1). Mean predictions and 

prediction intervals were calculated using a simulation function in the R package merTools (100) 20 

that draws a sampling distribution for random and fixed effects and then estimates the fitted 

value across that distribution, providing an efficient approximation to a parametric bootstrap. We 

used 2000 samples to calculate the 95% prediction interval around the mean, incorporating 

uncertainty of random and fixed effects, as well as residual variance from the model. We then 

averaged the prediction intervals to derive normal distributions for each prediction. Predictions 25 

in log response ratios were converted to percentage change and multiplied by 2010 base year 

values (Table S25) to derive projections in absolute units for 2050. 

Risk assessment  

Mean predictions of the impact of interventions across each of the 10 environmental indicators 

were used to calculate the risk of exceedance of environmental limits for all combinations of 30 

interventions and levels of ambition (i.e., predictor variables) (Fig. 1A). Combining uncertainty 

in both the predictive models and the environmental limit PDF, the risk of exceedance was 

calculated as: 

𝐸𝑅𝑖,𝑗 = 𝑃(𝑌𝑖,𝑗  𝑋𝑗) 

where Y is the normal distribution of the modelled prediction interval for each intervention 35 

combination i and indicator j, and X is the PDF of the environmental limit for each boundary (in 

the case of land-system change, climate change, and freshwater use) or indicator (for Nfert, 

Nsurplus, Pfert, Pinstream) j. We then calculated intervention-level averages by summarizing (mean 

and standard deviation) risk across each planetary boundary (Fig. 2), and percentage deviation 

and predictions in physical units for each indicator (Fig. S4, Fig. S5).  40 

 

To identify intervention combinations that met IPCC-calibrated uncertainty risk thresholds (35), 

we mapped the performance of all intervention combinations against their risk mitigation and 

ambition level. We did this both individually, for each of the four planetary boundaries, and 

combined across all boundaries, yielding a total of 2,097,152 plausible intervention level 45 
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combinations across boundaries (Fig. S6). We then selected the scenarios that met the < 0.50 risk 

(exceedance about as unlikely as not) and < 0.33 risk (exceedance unlikely) thresholds 

compatible with the calibrated uncertainty language applied by the IPCC in its assessments (34, 

35). We finally analyzed the selected intervention combinations to identify the option space 

available in terms of the type and level of ambition of interventions required to reduce the risk of 5 

exceedance of the Earth's safe operating space.  
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1 Materials and Methods 

1.1 Systematic review and meta-analysis protocol 

1.1.1 Protocol 5 

A systematic procedure for study identification and data collection is essential to the 

development of a meta-analytic forecasting model (1, 2). We followed the guidelines for 

systematic reviews and meta-analysis in ecology and environmental management (3-7), based 

on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 

protocol (Fig. S1). The PRISMA protocol is a set of established principles and guidelines 10 

aimed at minimizing bias and ensuring scientific validity and reproducibility (8-11). Evidence 

of all search strings, search results, and data extraction associated with each selected study 

and its characteristics is provided in Data S1 and S2.  

 

Fig. S1. Summary of the literature search and the study identification and screening process following 15 
the PRISMA protocol (8) (for study details see Data S2). 

1.1.2 Problem formulation and scope 

The systematic literature search supported all three primary objectives of this study:  
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1. To determine the key environmental indicators, interventions, and scenario 

drivers (quantitative variables) employed in modeling studies with quantitative 

estimates of future environmental impacts of the food system with a time horizon 5 

of at least up to 2050. 

2. To develop a meta-regression model to robustly quantify the technical risk 

mitigation potential of the future global food system exceeding the four planetary 

boundaries of land-system change, climate change freshwater use, and 

biogeochemical flows (12, 13) under different food system scenario intervention 10 

combinations. 

3. To extract qualitative information on the necessary actions that enable different 

food system interventions. 

Given the wide scope, diverse methods, and thematic heterogeneity of studies assessing 

future environmental impacts of global food system scenarios, our meta-regression model 15 

synthesizes and draws broad generalizations from a large number of studies to provide robust 

effect sizes of intervention impact compared to those that can be ascertained from any 

individual primary study (6). Framing of the research question was defined using the 

Problem-Intervention-Comparator-Outcomes (PICO) framework (6, 14): 

• Problem: the future environmental impact (for four planetary boundaries) of the 20 

global food system (food production) with a time horizon of at least up to 2050. 

There is considerable variation between studies with respect to the scope of the 

system (i.e., most studies concentrate on agricultural impacts but some also cover 

the food supply chain), handling of crop and livestock systems, and coverage of 

terrestrial and marine domains. We limited the scope of this study to studies that 25 

estimate global-scale environmental impacts relevant to planetary boundaries 

associated with land-based food production, including inputs to aquaculture but 

excluding their marine impacts.   

• Intervention(s): any policy, measure or management strategy taken to reduce the 

environmental impacts of food production at a level of ambition that exceeds 30 

business-as-usual (BAU). These were broadly categorized as either Supply-side 

(e.g., improved productivity, resource-use efficiency, supply-chain efficiency), 

Demand-side (e.g., reduction in aggregate food demand, changes in consumption 

patterns), and Integrated (combinations of Supply-side and Demand-side 

interventions).  35 

• Control or Comparator: the business-as-usual (BAU) or reference scenarios, as 

defined by each study, serve as the control group that defines whether a certain 

policy can be classified as an intervention. These tend to be based on status quo or 

trend projections of population growth, or agricultural efficiency and diets. Several 

studies use FAO projections (15, 16) for their BAU scenarios.  40 

• Outcomes: meta-regression models capable of estimating the effect size and risk 

mitigation potential of 10 key food system interventions for 10 individual planetary 

boundary indicators representative of four planetary boundaries (17-19). 

1.1.3 Literature search 

We identified primary research published as peer-reviewed journal articles and grey 45 

literature (major reports) containing quantitative estimates of future food system 

environmental impacts of relevance to planetary boundaries. We restricted our search to 

studies written in English that were global in scope and published on or after January 2000. 
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Studies focusing on qualitative assessment of the future food system that did not involve 

primary research were not used as a source of quantitative data (Section 1.1.4).   

The search strategy was refined from August to September, 2017, using the ProQuest 5 

Natural Science Collection, selected because it includes the US Department of Agriculture’s 

Agricola database. The final search string was then adapted to another three databases 

(Scopus, Web of Science – Core Collection, Science Direct – All Sciences) and implemented 

from October to November, 2017. The use of multiple reputable online databases ensures 

comprehensiveness (20). Alerts were also set up using the final search string and study co-10 

authors were also engaged to ensure that relevant articles published during the write-up of the 

review for which the data was obtainable have also been included. This allowed for periodic 

updates through to the end of September 2021. The initial part of the search was restricted to 

peer-reviewed scholarly journal papers, conference proceedings, and book chapters.   

A test list of 20 highly cited articles was established covering prominent global food 15 

system modeling research groups and authors (Data S2). This was used to establish an initial 

search string and to progressively refine the search strategy by assessing the extent to which 

the search strategy correctly retrieved articles in the test list (9). The search was based on four 

concepts: 

1. Relevant to some aspect of the food system; 20 

2. Includes future scenarios; 

3. Assessed environmental impact relating to planetary boundaries, and; 

4. Global in scope.  

Several keywords and phrases were developed for each of these concepts and these were 

linked by an OR Boolean operator in the search strategy to capture the potential for different 25 

usage, wording, and spelling, and thereby ensure a comprehensive coverage. In turn, the four 

concepts were combined by an AND Boolean operator to ensure to studies captured all four 

concepts (see Table S1 for search strings and Data S2 for full search history). 

Search results were exported from ProQuest as spreadsheets and the percentage of test 

list articles retrieved in each search was assessed in order to optimize the search string. An 30 

initial 20% retrieval rate using ProQuest alone was improved to >50% when using the final 

search string. Ultimately an 80% retrieval rate (16/20 test list articles found) was achieved 

after search results from all four databases were combined (Data S2). No further refinements 

to the search string were made after this point to prevent a significant increase in the number 

of retrieved studies (over 5000) with little improvement to the overall retrieval rate of 35 

relevant articles. A total of 2548 studies (journal articles plus book chapters) were exported to 

Endnote for abstract screening (Fig. S1). 

An anticipated challenge was to ensure adequate coverage of the grey literature given its 

importance in this research space (21). Further literature searches were conducted to retrieve 

relevant grey literature from reputable institutions using a simplified version of the final 40 

search string in the Google search engine. Further searches were conducted by adding a URL 

domain restriction such as those belonging to specialist organizations such as the FAO, 

World Bank, CGIAR, IFPRI, WRI, UNEP, UNCCD. A recent review article (22) was also 

used to identify additional reports from the grey literature. A total of 17 such reports were 

retrieved and exported to Endnote for further screening (Fig. S1).   45 
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Table S1. Main concepts and refined universal search string used to retrieve peer-reviewed 

publications (only original peer-reviewed articles not including reviews) published on or after 1 

January 2000 (all = all fields, ab = abstract only, ti = title only). Full search history and article test list 5 
are available in Data S2.   

Search concepts Search string Justification 

Concept 1 
“Food system” 

ti(food OR "agricultur*" OR "diet*" OR "feed*" OR 
"fish*" OR "aquaculture" OR "livestock" OR "meat*" 
OR "crop*") 

Allows capturing all key 
elements of food 
production 

Concept 2  
“Future”  

ti("future" OR "project*" OR "scenario*" OR "outlook*" 
OR "forecast*" OR "trend" OR "demand*" OR 
"trajector*" OR "2050" OR "2100" OR "2025" OR 
"2030" OR "2035" OR "2040" OR "2045") 

Specifies the preference 
for studies with future 
predictions as opposed to 
current impacts  

Concept 3 
“Environmental 
impacts/indicators” 

ti("environment*" OR "sustainab*" OR "footprint*" OR 
impact* OR "resource*" OR "water" OR "land*" OR 
"nitrogen" OR "N" OR "phosphorus" OR "P" OR 
"carbon" OR "greenhouse gas" OR "soil" OR "bio*" 
OR "ecolog*" OR "ocean*" OR "marine" OR "climat*" 
OR "ozone" OR "planetary boundar*") 

Lists all commonly used 
environmental indicators 
which relate to the 
planetary boundaries 

Concept 4 
“Global, not regional” 

ab(“glob*” OR “international*” OR “region*” OR 
“planet*” OR “human*” OR “world”) 
NOT ti(“Chin*”  OR  “USA”  OR  “US”  OR  “United 
States”  OR  “Europe*”  OR  “Mediterr*”  OR  “UK”  
OR  “United Kingdom”  OR  “Ind*”  OR  “Braz*”  OR  
“Afric*”  OR  “Asia*”  OR  “Americ*”  OR  “Middle 
East*”  OR  “Austr*”  OR  “Jap*”  OR  “Nig*”  OR  
“Russ*”  OR  “Bang*”  OR  “Canad*”  OR  “Germa*” 
OR “Pak*” OR “Thai*” OR “Malay*”) 

Excludes regional/local 
studies. Any studies with 
country or region name in 
the title have been 
eliminated (only possible 
in Scopus and Web of 
Science; not possible in 
ProQuest or 
ScienceDirect) 

1.1.4 Article screening 

After removal of duplicates, the titles and abstracts of the remaining 1407 studies (1390 

journal articles and book chapters plus 16 reports from the grey literature) retrieved during 

the initial database search stage were examined for relevance to the review question based on 10 

the a priori inclusion criteria (Fig. S1). The exclusion criteria for the first stage of elimination 

included:  

• articles focusing on climate change or other environmental processes and their 

effects on food production;  

• articles without future projections;  15 

• articles focusing on non-environmental aspects of the food system (e.g., food 

security, pest management), and; 

• articles that did not have a global scope (Fig. S1, Data S2).  

140 studies out of those identified in the initial database search were selected for full 

text screening. During full text screening, the reference lists of selected studies, with an 20 

emphasis on the more recent articles and reports (23, 24), were used to identify other relevant 

articles through citation and reference scanning (9, 10). Over the course of the entire study, 

full text screening was carried out for a total of 173 studies including selected studies from 

the initial database search (140), and studies (journal articles, book chapter or reports) 

identified through reference scanning (20) and journal alerts (13) (Fig. S1). Studies were 25 

assigned randomly for screening by four co-authors, with each article screened independently 

at least twice. The exclusion criteria for the second stage of elimination included:  
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• narrow agriculture (e.g., focused on aquaculture or specific crop) or spatial scope 

(i.e., region- or country- specific); 

• other non-food system agricultural focus (e.g., biofuels, fiber crops, yields, 5 

economy, health); 

• no quantitative environmental impact results or no estimates extending up to 2050 

(Fig. S1, Data S2). 

A third and final elimination process was carried out on the remaining 90 studies to filter 

those for which we were not able to obtain the required data, either because the authors did 10 

not respond to repeated email requests, or appropriate data was simply not available or 

extractable (Fig. S1). The exclusion criteria were:  

• data not suitable or compatible (i.e., lack of clearly defined intervention scenarios, 

input variables used not available or consistent with other studies); 

• data could not be obtained or already covered by a more recent study 15 

• studies focused on a narrower thematic scope such as a specific domain of the food 

system (e.g., livestock, fisheries) or the timeframe did not extend to 2050 (Fig. S1, 

Data S2). 

The last elimination stage resulted in a total of 60 studies that met all the inclusion 

criteria necessary to be deemed appropriate for the database (Data S1). All 60 studies were 20 

included in the qualitative synthesis, but only 40 provided training data for the meta-

regression models following data quality considerations in the model selection and fitting 

stage (Section 1.3.2).    

1.1.5 Quantitative and qualitative data extraction 

Studies that met all criteria for inclusion were used to extract relevant quantitative 25 

scenario input (moderator) and output (outcome) estimates (Data S1), in addition to 

qualitative data on actions underpinning different interventions (Data S3). For each scenario 

within each study we extracted environmental impact estimates reported for one of 10 

environmental indicators representing the four planetary boundaries (13, 25) (see Section 1.2 

for choice of boundaries and indicators). This process entailed a thorough scan of the main 30 

published study as well as any appendices and supporting information that contained scenario 

variable/output data. Quantitative data extraction focused on the environmental variables of 

interest as well as quantitative scenario variables that defined the key interventions (see Data 

S1 for the full compiled database). This process was iterative since the primary objective was 

to establish a consistent set of interventions and their associated quantitative input variables 35 

(Section 1.3.2). The final list of quantitative variables extracted took into consideration both 

the prominence of each related intervention as well as data availability. This followed 

extensive email correspondence with study authors.   

The data extracted from each article and any necessary post-processing was checked and 

validated in close collaboration with study authors. Where necessary (e.g., where specific 40 

data was only available in figures or was not available in the text or supporting information), 

lead/corresponding authors of studies were contacted by email using a standard email 

template to provide clarification or additional data. Several of the authors who expressed a 

strong interest to provide additional data (i.e, input variables or intermediate results not 

shared as part of the original study) and also aided in the validation of other data and 45 

calculations, were subsequently invited to co-author our study. Notwithstanding, in a small 

number of cases some data gaps remain in the final dataset either because of no response 
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from authors, data were not available due to confidentiality reasons, or authors were unable to 

retrieve old or missing data (Fig. S1, T4 in Data S2). In close collaboration with invited co-

authors, we also carried out additional calculations in order to harmonize the highly diverse 5 

data types (see Section 2.1, Data S1). This included the following steps: 

• Calculating global weighted averages for spatially disaggregated variables or results 

• Calculating weighted averages for crop and livestock productivity metrics    

• Unit harmonization based on standard conversion factors 

• Filling in any missing data based on sources directly cited in the manuscript or 10 

directly supplied by study authors  

Important qualitative information was also collected from selected studies to enhance 

coding and classification, and to extract the list of actions that enable each of the 

interventions considered (Data S3). Qualitative data extraction included the recording of 

basic study information (e.g., title, authors, year of publication, journal/report name) the 15 

modelling framework and the exact version used, and the type of scenarios and interventions 

employed (see Section 1.3). When assembling the quantitative database (T1, Data S1) we 

followed the convention in systematic reviews by assigning each scenario to a single row 

with categories or ‘structural dimensions’ as columns, including coding to indicate 

partitioning of studies into appropriate subgroups (4, 20, 26). The extracted quantitative and 20 

qualitative data (Data S1) served as inputs to the meta-regression models (Section 1.4). 

1.1.6 Study selection bias 

Primary studies were selected on the basis of whether they met the inclusion criteria 

(Section 1.1.4). To accommodate the diverse modelling approaches and storyline 

assumptions, we considered all selected studies to be of high quality and the range of 25 

available scenarios was taken as representative of the range of uncertainty in plausible food 

system futures. While some studies provide many more scenario variants than others, our 

choice of statistical modeling method aimed to minimize any bias towards studies with more 

scenarios through the use of random effects (21) (Section 1.4). We also present sensitivity 

results that assess the impact of different models on pooled effect size estimates (Section 30 

2.3.3). 

Several sources of bias remain in the study selection and data collection processes. First, 

some degree of publication bias is inevitable. Typically, studies with larger than average 

effects are more likely to be published, resulting in upward bias effect size estimates (27). 

Indexing bias was tackled through the use of multiple search engines (Fig. S1), while 35 

language bias was unproblematic since it is unlikely that global food system scenario studies 

would be published in languages other than English. Other typical forms of bias in systematic 

review such as selection, performance, detection and attrition bias (4) were not of concern 

because studies typically distinguished clearly between BAU and intervention scenarios, 

especially since this could also be ascertained on the basis of the storylines and quantitative 40 

variables provided (Table S5). However, reporting bias is likely to be significant in our study. 

While some studies did not report (28, 29) key input or output variables, other studies 

explicitly shared comprehensive supplementary information and multiple scenarios resulting 

from sensitivity analysis. While this source of bias could not be completely eliminated, we 

minimized data information loss by directly contacting study authors and working closely 45 

with them to reconstruct input datasets (see Data S1).  



10 

 

1.2 Defining food system specific environmental limits  

We specified environmental limits for planetary boundary indicators which quantify the 

food system’s share of the Earth’s safe operating space (highlighted in 30) for the year 2050, 5 

allowing, where appropriate, for the potential (and uncertain) environmental impacts of the 

rest of the economy (Table S2). For the purposes of this analysis we concentrated on the four 

planetary boundaries for which outputs were available, namely Climate Change, Land-

System Change, Freshwater Use, and Biogeochemical Flows (13, 25, 31). The choice of ten 

planetary boundary control variables (hereafter referred to as indicators) reflects current 10 

scientific consensus (13, 17-19, 30) and the nature and availability of information from 

conventional models and forecasting tools for our target year (2050). In each case we sought 

to extract as many indicators as possible to maximize the coverage of each planetary 

boundary while ensuring adequate sample sizes to allow statistical analysis.  

For each planetary boundary indicator, we identified the best estimate for the safe global 15 

limit, along with minimum and maximum values based on a literature review of recent 

published estimates. To capture the considerable scientific uncertainty in published values for 

environmental limits, we used the minimum, maximum, and best estimate to specify 

triangular probability density functions. Triangular distributions provide an intuitive way to 

represent uncertainty in a process with central tendency (i.e., best estimate) constrained by 20 

finite bounds (i.e., minimum/maximum estimates) and are often employed to quantify 

uncertainty in risk analysis (32-34). In the case of the Climate Change boundary, where a 

large number of scenario runs compliant with a boundary were available through the AR6 

Scenarios Database (35), we trialed alternative distributions and settled on a normal 

distribution instead of a triangular distribution.   25 

Distributions were fitted to the best available data on food system specific 

environmental limits (see Table S2 for sources) with the R package propagate (36) using 

unweighted residual sum-of-squares as the minimization criterion. We carried out sensitivity 

analysis by varying the bin number and setting the number of bins as defined by the 

Freedman–Diaconis rule (37, 38). The final parameters (min, mode, max for the triangular 30 

distributions and mean, standard deviation for the normal distribution) were selected from 

the distribution that displayed the best goodness-of-fit as indicated by the lowest Bayesian 

Information Criterion value (37, 38). Where a best guess (mode) value was not available, we 

used the actual minimum and maximum along with either the mode estimated as 3*mean(x)-

min(x)-max(x), or simply using the mean value as the mode (in cases where the mode 35 

calculation yielded results outside the min-max range), to allow the fitting of a triangular 

distribution (Table S2).     

For time-sensitive planetary boundaries for which an agriculture-specific environmental 

limit for 2050 had not been previously established (19), and for which non-agricultural 

sectors of the economy would also be expected to have a significant time-dependent 40 

environmental impact trajectory, we also accounted for the uncertainty in the food system 

share. This was the case for Land System Change, Climate Change, Freshwater Use and 

Biogeochemical Flows (P). This share accounted for the range of possible future trajectories 

for both the agri-food sector and for all relevant non-agricultural sectors such as energy, 

transport, and manufacturing in the case of Climate Change, household and industry in the 45 

case of Freshwater Use, and household waste and sewage in the case of Biogeochemical 

Flows (P). In the case of Climate Change we did not have to explicitly calculate a share 

because we were able to filter out the Agriculture component of Agriculture, Forestry, and 

Other Land Use (AFOLU) of scenarios compliant with emissions trajectories with a >50% 

chance of limiting warming to 1.5°C or >67% chance of limiting warming to 2.0°C from 50 
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(35),  that are in harmony with storyline assumptions about the necessary decarbonization of 

the broader economy (39, 40).  

While we acknowledge that the values underpinning the global environmental limits for 5 

planetary boundary indicators remain the subject of considerable research and refinement 

(41), here we only considered their global limits (see Section 2.4). Despite significant 

regional heterogeneities and uncertainties in proposed thresholds (42, 43), adherence to 

global limits is a central premise of the planetary boundary framework (17, 44, 45). Our food-

system specific environmental limit estimates encompass the uncertainty in current scientific 10 

knowledge of the safe operating space for each indicator (13, 17, 19), as well as uncertainty 

in the possible future trajectories of environmental impacts of society and the economy 

(Table S2).  

Table S2. Food system-specific environmental limits for planetary boundary indicators in 2050. 

Includes the mode (best estimate), minimum, and maximum values defining the probability density 15 
functions used to represent uncertainty in environmental limits and a description of literature sources 

and assumptions. 

Indicator 

Env. limits 
(best 

estimate, 
low, high) 

Sources Rationale 

Land-System Change 

TotalAgArea 
Total 
agricultural 
area (i.e., 
cropland + 
pasture) 

<3309 Mha 
(3019 - 

5460)  

(17, 46)  The total land area under agriculture (i.e., cropland and pasture) serves as the 
overall control variable for the food system as it relates strongly to the amount of 
forest cover remaining, with major forest biomes having a key role in land surface-
climate coupling (13, 17, 47). Following (46), limits for total agricultural area are 
based on the premise that 54-75%  (3466-4790 Mha) of global forest cover must be 
maintained, based on the weighted average potential area across the three major 
forest biomes (tropical, temperate, boreal) (17). For consistency with the majority of 
the studies in our database and existing estimates (46), we source all figures from 
FAOSTAT (48), while acknowledging that other widely used cropland and pasture 
estimates (49) would yield slightly different boundary estimates. Since the total area 
of agricultural and forest land equalled 8926 Mha in 2010, and assuming the 
remainder of the planet’s land area (4093 Mha), also termed ‘Other land’ in 
FAOSTAT, is unsuitable for afforestation and/or agriculture, the environmental limit 
for total agricultural area calculated as the sum of cropland and pasture was 4136 
Mha (which matches the value proposed by 46), with a 75-54% (41.35 – 54.60 Mha) 
zone of uncertainty as suggested in (17). In line with our overall methodology of 
deriving ‘flexible’ agriculture PB shares in future to accommodate for uncertainty in 
the trajectories of other sectors in future storylines, an allowance for additional 
constraints on forest cover from other non-agricultural drivers of deforestation (50), 
namely mining, infrastructure and urban expansion, should also be considered in 
deriving limits for agriculture. We did not consider the more detailed biome-level 
boundary (17) as our analysis was global in scope.     
 
Following a review of the literature on the relative influence of key deforestation 
drivers, we sourced values for the shares of deforestation attributable to agriculture 
(cropland and pasture expansion) (24, 50-53). In line with recent studies (13, 28, 29, 
54, 55), we included both commodity-driven (commercial) and subsistence 
agriculture, even though the latter may often only lead to temporary forest loss, as 
determined by Curtis et al. (50) using satellite imagery covering the period 2001 to 
2015. The often-cited figure of 80% of deforestation driven by agriculture is based on 
FAO data for Africa, Latin America and Asia for 2000-2010 and originates in (52), 
and is consistent with older estimates from the 1980s and 1990s (53). Based on 
similar data, Hosonuma et al. (51) calculate 73%, with the remainder attributed to 
mining (7%), infrastructure (10%), and urban expansion (10%). The more recent 
estimates in Curtis et al. (50) did not explicitly distinguish between commodity-driven 
deforestation for agriculture and other sectors (mining and energy infrastructure) and 
have therefore not been used in the determination of possible boundary shares. 
Considering future projections, some future storylines consider that deforestation for 
reasons other than agricultural expansion will decrease to zero in 2020, as is the 
case in SSP1 in (24). We therefore defined the maximum share as 100%. The mode 
of the triangular distribution (best estimate) was calculated by multiplying 4136 Mha 

by the widely used 80% estimate (3309 Mha), while the minimum used the same 
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Indicator 

Env. limits 
(best 

estimate, 
low, high) 

Sources Rationale 

area estimate and the more conservative 73% share (3019 Mha). The high estimate 
assumed 100% of the remaining boundary would be afforded to agriculture.    

Freshwater Use 

Water 
Blue water 
(i.e., surface 
water + 
ground 
water) 
consumption 
by agriculture 

<2274 km3 

yr-1 
(685 - 
4044)  

(13, 17-
19, 24, 
56-62) 

Consumptive blue water use for agriculture (irrigation and livestock) provides a metric 
of net use of water that directly matches the Freshwater Use control variable. Based 
on future water resources projections across economic sectors, we adjusted the 
overall limit to accommodate non-food societal needs, a notion also compatible with 
(63). The range in projected water consumption by other higher value water users 
such as industry and households (24, 56, 60) considerably reduces the safe 
operating space for agriculture. Unlike previous studies (19, 64), in specifying the 
food system’s share of the planetary boundary for water, we accommodate the range 
of possible futures in demand from industrial and domestic uses, expected to more 
than double by 2050, relative to a 2000 baseline (65). Note that this estimate (65) 
and other earlier estimates (66) refer to water withdrawals as opposed to 
consumptive water use, hence they were not employed directly in the derivation of 
food system environmental limits. While a considerable number of studies have 
estimated future non-agricultural water withdrawals (61, 65-68), only a few studies 
have carried out scenario projections of non-agricultural blue water consumption (24, 
56-61, 69). Using a total of 9 study-averaged agriculture share estimates (derived 
from a total of 36 individual scenarios) for 2050 from the aforementioned studies in 
addition to (19) and a widely cited projection for 2025 (62) used in (19), we calculated 
minimum, average and maximum shares of total blue water consumption 
(min=62.3%, max=89.9%, mode=81.2%). These were then multiplied by the 
triangular distribution of the conservative total Freshwater Use boundary (min = 
1100, max = 4500, mode = 2800) proposed in (19, 64, 70) to yield a most likely 
estimate of 2274 km3yr-1 (with a range of 685 to 4044).  

Climate Change 

DirNonCO2  

Direct on-farm 
non-CO2  
(CH4+ N2O)  
GHG emissions 

<4.74 
GtCO2e 

yr-1 

(SD = 
1.88)  

Estimated 
using 
AR6 

GWP100 
factors 

 

(35) The food system is an important driver of humanity’s overall impact on the Climate 
Change planetary boundary but given current reliance on fossil fuels, it is not the 
main driver (13). Thus, the Climate Change planetary boundary must be shared 
between the food system and other sectors, notably energy and transport, and the 
food system’s share of the total GHG emissions budget could increase over time in 
scenarios where other sectors decarbonise more rapidly (71, 72). Recent studies 
have proposed agriculture-specific or food system specific 2050 targets in line with a 
2oC temperature change target by 2100 (19, 46, 71). Only non-CO2 (CH4 and N2O) 
emissions were considered in these estimates. Here we derived estimates compatible 
with the recently proposed 1.5oC warming target (73). By selecting a total of 260 
target-compliant scenarios from the AR6 Scenarios Database (35) we fitted a normal 
distribution to all compliant scenario projections to establish a direct non-CO2 annual 
GHG emissions range for agriculture in 2050.  
 
Similar sub-boundaries could be calculated for CH4 (mean=114.7 Mt, SD = 37.5Mt) 
and N2O (mean=4.16 Mt, SD = 1.17 Mt) based on the same 260 scenario runs but we 
did not directly used these in the analysis. We use standard AR6 GWP100 CO2e in 
our calculations, with a value of 27.2 and 273 for CH4 and N2O respectively.  

DirNonCO2LUC  
Direct on-farm 
non-CO2 GHG 
+ net emissions 
from land-use 
and land-use 
change 

<3.53 
GtCO2e 

yr-1  
(SD = 
3.52) 

Estimated 
using 
AR6 

GWP100 
factors  

(35) The food system is the key driver of CO2 emissions associated with land-use change 
processes such as deforestation and destruction of peatlands for agricultural 
purposes (74). These can be either positive due to conversion of different biomes to 
agriculture and consequent loss of terrestrial carbon stocks, or negative resulting 
from carbon sequestration via afforestation/reforestation (75-77). Many models and 
studies calculate net CO2 emissions from land-use change alongside direct non-CO2 
emissions (DirNonCO2), with their sum (DirNonCO2LUC) constituting a major 
component of the AFOLU classification of national GHG inventories (78). We 
therefore included the land-use change component in our definition of the Climate 
Change planetary boundary. Using the same 260 scenario runs compatible with 
>50% chance of limiting warming to 1.5°C or >67% chance of limiting warming to 
2.0°C  from the AR6 Scenarios Database (35), we fitted distribution of total agriculture 
AFOLU emissions (direct CH4 + N2O + net CO2 emissions from land use and land-use 
change). The higher range in DirNonCO2LUC compared to DirNonCO2 reflects the 
higher uncertainty in current and future emissions from land use change including 
multiple negative emission scenarios and the critical role of afforestation/reforestation 
in most compliant scenarios (79-81). 
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Biogeochemical Flows 

Nfert  
Total nitrogen 
fertilizer 
application in 
agriculture 

<69 TgN  
yr-1  

(52 - 130)  

(19, 64) A global environmental limit for nitrogen (N) fertilizer application, as suggested in (19) 
and (64), is a considerable upward revision of the previous N fertilizer boundary 
estimates (17, 46, 85) which also included biological fixation. In accordance to the 
precautionary principle, we selected the lower and best estimate boundary based on 
updated modeling (19) but also made an allowance for potentially higher application 
of N based on the higher estimate in (64), that allows for the increased use of N 
fertilizer if N is globally redistributed and efficiency of use is improved. As these limits 
are already food-specific, given also that agriculture’s share of total global 
anthropogenic N is currently estimated at 85% (2), no further adjustment was 
performed. 

Nsurplus  
Nitrogen 
surplus from 
agricultural land 
(i.e., N inputs 
minus outputs) 

<90 TgN 
yr-1  

(50 - 146) 

(19, 46, 
86, 87) 

Nsurplus, calculated as the difference between total N inputs (i.e, N fertilizers, N-fixation, 
animal manure, crop residues, and seeds) and total N outputs (i.e, harvested crops 
and crop residues), complements the more established Nfert control variable by 
providing a more direct impact indicator of potential N loss from agricultural 
production systems and the eutrophication risk for natural water bodies that is more 
responsive to future improvements in nutrient-use efficiency (29, 46, 88). Several 
scenario studies that employ nutrient budget models provide estimates for Nsurplus. The 
zone of uncertainty for the N loss environmental limit proposed was originally 
proposed as 50-100 Tg N yr-1 based on the lower bound for crop production (87) and 
the maximum for total agriculture suggested by (86). As our maximum limit we used 
the upper range estimate of 146 Tg N yr-1 (19).  

Pfert  
Total 
phosphorus 
fertilizer 
application in 
agriculture 

<16.0 
TgP yr-1  

(6.2 – 
17.0) 

(17, 19, 
89) 

Similarly to Nfert, the P fertilizer boundary was also revised upwards following recent 
modeling (19, 64). We adopted the mode and maximum limits directly from this newly 
proposed boundary. In line with the precautionary principle, we also chose to maintain 
the older lower limit (17, 46), proposed in response to the critique of Carpenter and 
Bennett (89) of the original limits for P (18) to more comprehensively account for P 
impacts on both ocean anoxia and freshwater eutrophication. This also closely 
matches the lower boundary in (64) for a worst-case scenario where improved 
production practices and redistribution are not adopted. As is the case for Nfert, this 
boundary is inherently agriculture-specific, with as much as 96% of all mined P used 
for fertilizer production (2, 16).   

Pinstream 
Acceptable P 
load in 
freshwater (i.e.,  
critical 
concentration *  
global 
freshwater 
discharge into 
oceans) 

<2.89 
TgP yr-1              
(1.93 – 

3.95) 
 

(17, 18, 
90-92) 

Unlike Nsurplus, Psurplus is less meaningful as an indicator of environmental impact given 
the low fraction of surplus that eventually becomes runoff into waterways. It is the 
latter that represents the major cause for concern due to its association with algal 
blooms and water column hypoxia (93). The P boundary is associated with it in the 
form of P flow from freshwater systems into the ocean (17), in order to provide a 
specific indicator of the associated risk for large-scale anoxic events (13, 18, 94). The 
total global environmental limit defining the safe operating space for Psurplus is set at 11 
Tg P yr-1 with an uncertainty range of 11 – 100 Tg P yr-1. These limits are not 
agriculture-specific, which creates an incompatibility with study estimates from 
agriculture-specific Psurplus (28, 29, 93, 94). While we also considered an agriculture-
specific planetary boundary by comparing the percentage of P export from rivers to 
the ocean that comes from agriculture based on recent data (92), we opted instead 
for an environmental limit in relation to critical P concentrations in freshwater. This is 
justified in the basis that P-related eutrophication issues are most prominent in 
freshwater, with recent studies recommending loss/runoff to surface water as suitable 
control variable (46).   
 
To derive critical P instream loads in freshwater, we first sourced estimates of 
discharge volume from waterways to the ocean for different SSPs from (92) who use 
an integrated nutrient and hydrological model. We then considered the range in 
critical concentration of 50-100 mg P m-3 (19), taking 75 mg P m-3 as the mode of a 
triangular distribution. We estimated min, max and mode and by multiplying these by 
the min, max and mode (assuming a triangular distribution) of the discharge 
distribution estimates to yield an estimate of 2.89 Tg P yr-1 (1.93 – 3.95 Tg P yr-1). 
 
Since none of the studies other than (92) report a value for Pinstream load, we converted 
model predictions from Psurplus to Pinstream by applying the following formula:  

We acknowledge that our definition of the Climate Change boundary based on 
DirNonCO2LUC only covers direct emissions associated with agricultural production. 
The food system is responsible for considerable additional emissions including 
indirect (upstream) emissions from energy and transport, and other inputs to food 
production such as on-farm energy use from machinery and vehicles (54). A number 
of studies in our database (Data S1) that use GHG data from life-cycle assessments 
(40, 82-84) cover these additional upstream emissions. However, by using an 
emissions distribution from scenarios with >50% chance of limiting warming to 1.5°C 
or >67% chance of limiting warming to 2.0°C, we also implicitly assume that 
decarbonization targets of relevant upstream sectors such as energy and transport 
are also met.   
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P𝑖𝑛𝑠𝑡𝑟𝑒𝑎𝑚 = ((Psurplus ∗ frPsurplus) + (Psurplus ∗ frPsurplus ∗ frPmouth))/2 

 
where frPsurplus (min = 0.344, mean = 0.435, max = 0.510) is the fraction of Psurplus that 

becomes runoff and frPmouth (min = 0.403, mean = 0.413, max = 0.418) is the fraction 
of P river load that becomes P export at the mouth of the river (92). Dividing by 2 
assumes that the value most comparable with the Pinstream critical load is the average 
of P runoff into the waterway and P export to the ocean.    
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1.3 Systematic review of scenarios and interventions 

1.3.1 BAU and broad intervention scenario families  

Global food system studies typically quantify plausible future food demand, agricultural 5 

production, and associated environmental impacts, using scenario analysis and computer-

based simulation models of food system futures. Food system studies and scenarios tend to be 

complex and highly heterogeneous, often with many underlying driving variables (or drivers) 

(95-97). Quantification of scenarios is based on assumptions about common drivers. Previous 

reviews (95, 96, 98-100) have identified the main drivers including a range of demand-side 10 

(i.e., population size, dietary preferences) and supply-side (i.e., crop yields, livestock 

productivity, resource-use efficiency, environmental intensity, global trade regime) variables. 

Scenario typologies proposed for global environmental assessments such as the Shared 

Socio-economic Pathways (SSPs) have also been employed in classifying food system 

scenarios (21, 95, 96). Via a qualitative assessment of selected studies (Data S1), we 15 

identified four intervention scenario families (Table S3) described in more detail below. 

Table S3. Summary of the main characteristics of broad scenario families as defined for the purposes 

of this study. Note that “Various” could represent an increase, decrease, or no change in mitigation 

ambition. 

Intervention family 
Level of mitigation ambition 

Supply-side interventions Demand-side interventions 

BAU Trend/Constant Trend/Constant 

Supply-side Higher than BAU Trend/Constant 

Demand-side Trend/Constant Higher than BAU 

Integrated Higher than BAU Higher than BAU 

Business-as-usual (BAU) or Trend 20 

BAU or Trend scenarios are typically those where the future is characterized as a 

continuation of recent historical trends in both demand-side and supply-side interventions 

(15, 22, 96, 98). For example, scenarios such as the IPCC Special Report on Emissions 

Scenarios (SRES) B2 scenario, the Adapting Mosaic from the Millennium Ecosystem 

Assessment (MEA), SSP2, and Agrimonde GO all have strong BAU elements (24, 96, 99). 25 

We therefore consider scenarios as BAU where agricultural production efficiency, food 

consumption patterns, and their associated environmental impacts follow past or current 

trends in the absence of any interventions to improve agricultural efficiency or shift diets. 

These scenarios are typically constructed with intermediate assumptions for non-agriculture 

specific drivers such as gross domestic product (GDP), or trade openness (95, 99). While the 30 

concept of a BAU or Trend scenario is consistent across studies, underlying parameter 

assumptions and model sensitivity can vary substantially, giving rise to significantly different 

environmental outcomes (97, 101). 

Supply-side 

Supply-side intervention scenarios assume changes in agricultural practices or the food 35 

system supply-chain that translate into higher productive efficiency, resource-use efficiency, 

and environmental intensity relative to the BAU. This includes technological and 

management interventions that translate into higher crop yields, higher animal feed 

efficiency, higher nutrient/water use efficiency, lower GHG emissions intensity, or more 

open and efficient global trade. Food demand (i.e., population, diet) usually remains at or 40 

close to BAU levels (as defined in each study) in this set of scenarios. 
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Demand-side 

Demand-side intervention scenarios focus on the impact of changes in population and 

food consumption patterns which influence the amount and type of agricultural commodities 5 

produced via changes in aggregate demand. These interventions test the effectiveness of a 

reduction in aggregate food demand via lower population growth, reduced overall caloric 

demand due to changes in diets or reduced waste, and/or a lower proportion of animal 

products in the diet (76, 102, 103). There is considerable diversity in dietary shift scenarios, 

ranging from a small (e.g., 10%) reduction in ruminant meat (with or without substitution of 10 

other protein sources) to a complete elimination of animal products (e.g., a vegan diet) (94, 

104-106). Production efficiency usually remains at or close to BAU levels (as defined in each 

study) in this set of scenarios.  

Integrated 

Integrated intervention scenarios combine supply-side and demand-side interventions. 15 

They usually entail some improvement in agricultural efficiency in combination with changes 

in food demand (e.g., a reduction in the share of animal products in global diets). While in 

many studies integrated scenarios represent ‘all-in’ scenarios that stack several interventions 

at the highest levels of mitigation ambition, this may not be the case. They usually entail 

some improvement in agricultural efficiency in combination with changes in food demand 20 

(e.g., a reduction in the share of animal products in global diets). As with the Supply-side and 

Demand-side scenarios, there is a considerable range in the scale and intensity of 

interventions (19, 23, 46, 76).  

1.3.2 Key interventions and associated quantitative variables 

An important prerequisite for training meta-regression models for each environmental 25 

indicator (Section 1.4) was compiling a comprehensive dataset of interventions as predictor 

variables and their impact on different environmental indicators (Table S4.). This extends the 

more aggregated classification of intervention family (i.e., BAU, Supply-side, Demand-side, 

Integrated).  

To identify the major interventions and predictors for meta-regression models, we first 30 

reviewed and mapped all on-ground mitigation actions suggested in the 60 systematically 

selected studies (Section 1.1, Table S4.). We started with a detailed scan, extracting all 

suggested interventions (those specifically parameterized in each model plus those mentioned 

qualitatively in the discussion) using the authors’ original terminology. Each paper was 

scanned twice by different authors to ensure a comprehensive coverage of mitigation actions. 35 

This initial collation produced a varied set of actions, of varying specificity. Where vague 

interventions were made with a reference to the literature, we consulted that reference for 

additional detail. We then summarized the more than 200 specific on-ground mitigation 

actions to 59 by combining overlapping ones such as reduced tillage and residue retention 

into a more comprehensive action (e.g., soil conservation). We grouped the final set of on-40 

ground mitigation actions into five categories according to their supply-chain scope as 

defined in (82) (Data S3). 

While it was not possible, given the global scope of the analysis, to capture the entire 

range and diversity of available on- and off-farm mitigation actions with our chosen set of 

predictors, we considered those most influential and commonly assessed in food system 45 

scenario studies (22, 95, 96, 99). We used the list of detailed on-ground actions to identify  

major interventions, each of which could be modelled based on quantitative predictor 

variables (Table S4., Data S1). We then assessed whether relevant variables could be 
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extracted from available material (main paper, supplementary information, or code) or 

sourced directly from the study authors, that would allow the effect of each intervention to be 

quantified. By comparing and harmonizing extracted data across studies we established a 5 

minimum set of 28 aggregated quantitative variables that could serve as proxies for modeling 

all major interventions (Table S5). Several studies had more detailed data that were 

subsequently aggregated to match the minimum set specified in Table S5. Interventions that 

could not be fully parameterized were organic agriculture, trade openness, and disruptive 

technology (Data S1). These interventions had insufficient data to allow their consideration 10 

as unique quantitative predictors but their potential influence could be partly controlled for 

through other variables such as crop yields, diet, feed efficiency, nutrient-use efficiency, and 

nutrient recycling.    

Table S4. All selected studies, environmental indicators (Section 1.2), and interventions (Section 

1.4.2). ‘Y’ = included in meta-regression models, ‘N’ = excluded from meta-regression models. ‘T’ = 15 
Trend/BAU projection, ‘X’ mitigation in excess of trend, ‘V’ = mitigation in excess of trend including 

vegan/vegetarian (Diet column only). Climate action (EI) refers to reductions in non-CO2 (CH4 & 

N2O) greenhouse gas (GHG) emissions intensity, while climate action (LUC) indicates explicit 

modelling of efforts to protect and restore natural ecosystems. See Data S1 for additional details and 

quantitative information.  20 
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1 Davis et al. (2016) Y    Y Y  Y Y    T V  T X T X  X X  

2 Lassaletta et al. (2016) N         Y   T -  T      X  

3 Schader et al. (2015) N    Y Y  Y  Y  Y T X  T  X      

4 Bajzelj et al. (2014) Y Y Y Y Y Y Y  Y    X X X X X X X  X X  

5 Alexandratos & Bruinsma (2012) N    Y Y  Y Y  Y  T T  T T    T T  

6 Bennetzen et al. (2016) N   Y         T -  X X  X     

7 Bodirsky et al. (2014) Y    Y    Y Y   X X X X X X    X X 

8 Bodirsky et al. (2012) N    Y    Y Y   X X  X X X    X X 

9 Bouwman et al. (2013) Y        Y Y Y Y T -   T T    T X 

10 Damerau et al. (2016) Y       Y     T X          

11 de Fraiture & Wichelns (2010) Y    Y Y  Y     T -  X     X   

12 Lwin et al. (2017) N          Y  T -         X 

13 Odegard & van der Voet (2014) Y    Y Y   Y  Y  X V X X  X   X X  

14 Pfister et al. (2011) N    Y Y  Y     T X X X     X   

15 Conijn et al. (2018) Y Y Y  Y Y Y  Y Y Y Y T X X X X T X   X X 

16 Tilman et al. (2011) N    Y    Y    T   X      X  

17 Springmann et al. (2016) N            T V     T     

18 Springer & Duchin (2014) N    Y Y  Y     T X  X X    X   

19 Tilman & Clark (2014) Y    Y        T V X X X       

20 Roos et al. (2017) Y Y Y  Y Y       T V X X X X      

21 Heck et al. (2018) Y    Y Y Y Y     T X  X        

22 Mogollon et al. (2018a) Y        Y Y   X X  X X X    X  

23 Mogollon et al. (2018b) Y          Y Y X X  X X X    X X 

24 Powell & Lenton (2012) N    Y Y       T X X T       X 

25 Muller et al. (2017) Y Y Y Y Y Y  Y  Y  Y T X X X  X      

26 Stehfest et al. (2009) Y Y Y Y Y Y       T V  X X T X     

27 Metson et al. (2012) N          Y  X V          

28 Popp et al. (2010) N Y Y          T X   X  X   X  

29 Valin et al. (2013) Y Y Y Y Y Y Y      T T  X X T      

30 Ronzon (2014) N    Y Y Y      X X  X        

31 Pradhan et al. (2013) N            T X   X   X     

32 Pradhan et al. (2015) Y        Y  Y  T X  X X  X   X  

33 IAASTD (2009) N    Y Y  Y     T -  X        

34 Wood et al. (2004) N        Y    - T        X  

35 PBL (2012) N    Y Y Y  Y Y Y Y T X X X X     X X 

36 Bouwman et al. (2009) Y        Y Y Y Y X X  X X X    X X 

37 MEA (2005) N    Y  Y  Y Y   X X  X X     X  

38 CIRAD (2016) Y    Y Y Y      T X X X X T     X 

39 Popp et al. (2017) N    Y Y       - -          

40 UNCCD (2017) N    Y Y Y Y Y    X - X X X    X   
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41 Ercin & Hoekstra (2014) Y       Y     X X   T T   X   

42 Doelman et al. (2018) Y Y Y Y Y Y Y      X X X X X X X X    

43 Van Vuuren et al. (2010) N          Y Y X X  X X X    X X 

44 Hejazi et al. (2014) N       Y     X -          

45 Graham et al. (2018) Y       Y     X T  X T    X   

46 Springmann et al. (2018) Y    Y   Y Y  Y  X X X X T  X  X X X 

47 Willet et al. (2019) Y    Y   Y Y Y Y  T V X X T  X  X X X 

48 Tallis et al. (2018) N    Y Y Y      T T  X     X   

49 Weindl et al. (2017a) Y   X Y Y Y      T X  X X X  X X   

50 Weindl et al. (2017b) Y       Y     T X  X X X   X   

51 Bahadur et al. (2018) N    Y Y       T X X T        

52 Searchinger et al. (2018) Y Y Y Y Y Y       T X X X X X X X X X  

53 Stevanovic et al. (2017) Y Y Y Y Y Y Y      T X X X X X X X    

54 Zhang et al. (2015) N         Y   T -  T T    T X  

55 FAO (2018) Y Y Y  Y    Y  Y  T X X X X X X     

56 FOLU (2019) Y Y Y Y Y Y Y      X X X X X T X X    

57 Theurl et al. (2020) Y Y Y Y Y Y       T V  X X X    X  

58 Clark et al. (2020) Y Y Y Y Y        T V X X T X X     

59 Chang et al. (2021) Y Y Y  Y Y Y  Y Y   T X X T T T X   X X 

60 Beusen et al. (2022) Y        Y Y Y Y X X X X T T X   X X 

* Pinstream is calculated from Psurplus as described in Table S2.  

Table S5. Minimum set of quantitative variables required to derive necessary predictors across all 

meta-regression models (see Section 1.4). For complete list of data and variables see Data S1. [FCR = 5 
feed conversion ratio, FCF = food-competing feed]. 

Intervention Variables (#) Variable names and description Unit (s) 

Population 1 Global population Billion 

Diet 6 Ruminant meat, other meat, seafood, dairy, eggs, plants food supply (kcal/cap/day) 

Waste 6 Ruminant meat, other meat, seafood, dairy, eggs, plants % waste  

Crop yields 1 Cereal yield (global average yield for all cereals) t DM/ha 

Feed efficiency 3 FCR (ruminant meat, monogastric meat, dairy) kg DM/kg  

Feed composition 3 FCF (ruminant meat, monogastric meat, dairy) % for each livestock type 

Climate action 3 CH4 intensity, N2O intensity, Carbon price %Δ CH4/N2O, $/tCO2e 

Water-use efficiency 1 Blue water consumption/water withdrawals kg/m3 

N efficiency 1 Nutrient-use efficiency (outputs/inputs) NUE (dimensionless) 

P efficiency 1 Nutrient-use efficiency (outputs/inputs) PUE (dimensionless) 

N recycling 1 N inputs from recycled sewage & household waste %  

P recycling 1 P inputs from recycled sewage & household waste %  

 

1.3.3 Alternative food system sustainability narratives 

Studies often combine interventions to create scenarios in a way that represents one or 

more of the prevailing sustainability worldviews (23, 107). Some worldviews and even 10 

individual interventions (e.g., reduction in food loss and waste, disruptive technologies like 

novel proteins) may often combine demand- and supply- side elements (Table S6). Some 

studies intentionally focus on comparing scenarios that represent competing or 

complementary worldviews around food system sustainability (23, 107, 108). Even studies 

that adopt a similar worldview (e.g., sustainable intensification) may parameterise their 15 

scenarios and intervention levels very differently depending on the focus (e.g., the 

environmental indicators of interest) of the study.  
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Table S6. A summary of dominant food system sustainability narratives and associated combinations 

of supply- and demand- side interventions. Also presented are key studies and examples of on-ground 

actions/solutions and their most representative of the narratives.  5 

Food system 
sustainability  
narrative 

Interventions 
 Supply chain 

stages 
impacted 

Typical on-ground 
action example(s) 

Supply-side Demand-side 

Sustainable 
intensification  
(109-111) 

- Yield gap closure 
- Feed efficiency  
- Nutrient-use 
efficiency 
- Water-use efficiency 

 Production to 
distribution 

- Nitrification inhibitors 
- Digital or precision 
agriculture 

Circular economy  
(112-114) 

- Nutrient recycling 
- Feed composition 
(reduction in food-
competing feed) 
- Waste/loss reuse 
reduction 

 Production to 
distribution 

- Livestock raised on 
waste or by-products  

Agroecology  
(28, 112) 

- Organic production 
- Nutrient recycling 
- Ecological leftovers 
 

Less but better meat  
Reduced waste 

Production to 
consumption 

- Crop rotations 
- Agro-forestry 

Healthy and sustainable 
diets  
(19, 64, 83) 

 Reduction in animal 
protein  
Waste reduction 
Increased intake of 
fruits and vegetables 

Retail and 
Consumption 

- Taxes on ruminant 
meat 
- Education campaigns  
 

 

Technological 
breakthroughs  
(23, 113, 116) 

- Yield gap closure 
(novel crop breeds) 
- Feed conversion 
efficiency 
- Nutrient-use 
efficiency 

Novel proteins for 
food and feed  

Production to 
consumption 

- Cellular meat 
- Bacterial protein 

Degrowth 
(108, 117) 

- Regenerative/organic 
production 
- Sufficiency 

- Ethical consumption 
- Sufficiency 

Production to 
consumption 

- Fairer income 
redistribution  

1.3.4 Gaps in intervention coverage across studies and planetary boundaries 

As a result of complex narratives giving rise to integrated scenarios, the coverage of 

interventions across studies and different environmental indicators (and planetary boundaries) 

is highly heterogeneous (Table S7). A strong emphasis on diet change (72% of studies) and 

crop yields (68%) occurred across all studies. Feed efficiency (47%) and food waste 10 

reduction (38%) followed in terms of study coverage, although a considerable percentage of 

studies focusing on freshwater use and biogeochemical flows did not consider these 

interventions. Around 70% of studies across all boundaries did not explicitly model 

interventions associated with changes in feed composition and their interaction with feed 

efficiency (118, 119). Similarly, more than 72% of studies did not consider population 15 

estimates beyond BAU trends, an issue recently highlighted in (103, 120). There is also a low 

general coverage of resource-use efficiencies with the exception of biogeochemical flows 

where nutrient-use efficiency is a key intervention (87).  
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Table S7. Coverage of all identified interventions across planetary boundaries. Cells show the 

percentage (shades of blue for >50% and shades of orange for <50%) of studies covering a planetary 

boundary that contain scenarios where an intervention is explicitly considered (i.e., set at a level 5 
above or below the BAU level) as a mitigation action. For more details and indicator-specific results 

see T2 Data S1.  

 Planetary boundaries → Climate 
change 

Land-
system 
change 

Freshwater 
use 

Biogeoche-
mical flows 

All 
boundaries  

Interventions ↓ 

Demand-
side 

Population 13% 23% 29% 42% 28% 

Diet change 92% 79% 59% 79% 72% 

Waste reduction 67% 56% 29% 42% 38% 

Supply-
side 

Crop yields 79% 82% 59% 67% 68% 

Feed efficiency (FCR) 63% 54% 18% 46% 47% 

Feed composition 38% 36% 12% 42% 30% 

Climate action * 79% 36% 18% 29% 33% 

Water-use efficiency 0% 0% 53% 0% 23% 

Nutrient-use efficiency 42% 0% 0% 71% 40% 

Nutrient recycling 21% 23% 12% 54% 25% 

 # Studies 24 39 17 24 60 
 % of reviewed studies 40% 65% 28% 40% 100% 

* Climate action includes all actions that result in gains in the emission intensity of crops and livestock (e.g., 

livestock supplements, nitrification inhibitors, carbon price). FCR = feed conversion ratio. 

  10 



21 

 

1.4 Meta-regression modeling and risk assessment 

1.4.1 Overview 

The overall aim of the study was to statistically quantify the influence of individual and 5 

combined food system interventions on reducing the risk of exceeding environmental limits. 

To achieve this aim, we first developed meta-regression models for each of the 10 

environmental indicators (see Section 1.2). The fitted meta-regression models were then used 

to create projections for all combinations of interventions across ambition levels (Section 

1.4.2). The projections in physical units (e.g., Gt CO2e) from the meta-regression models 10 

were subsequently compared to the PDFs representing each of the planetary boundaries 

identified during the systematic review process (Section 1.2) to compute the risk of exceeding 

each planetary boundary. Our analysis comprised the following steps: 

1. We used our quantitative input database (Data S1) compiled from the studies 

selected in our systematic literature search (Section 1.1) and the insights gained from 15 

reviewing these studies and the wider literature to create a study-indicator-

intervention matrix (Table S4) and a detailed table of actions (Data S3). These were 

then used as a basis to establish a set of key intervention strategies (Table S7) with 

the necessary underpinning quantitative variables to describe them (Table S5).  

2. We fitted 9 independent linear mixed models (LMMs) for cropland, pasture, 20 

methane, nitrous oxide, blue water consumption, nitrogen fertilizer, nitrogen surplus, 

phosphorus fertilizer, and phosphorus surplus), with the log response ratio (LnR, 

logarithm of the ratio of future prediction/base year prediction) of each 

environmental indicator as the dependent variable. LnR is commonly used as the 

response variable in meta-regression analysis (121-124). For each LMM, we tested 25 

alternative random effects structures using random intercepts and also slopes for the 

main fixed effect predictors, and settled on the use of a simple random intercept 

model design with model ID as the random effect (125, 126). The exception were 

the meta-regression models for blue water consumption and nitrous oxide where a 

more complex random slope and random intercept were used to accommodate more 30 

strongly divergent model assumptions established during correspondence with study 

authors. Key predictors (calculated as per #1 above) were selected as fixed effects 

terms for each environmental indicator (Section 1.4.4). Relevant fixed-effects 

predictors for each meta-regression model were calculated as indices (% change 

relative to the base year) from this minimum set of quantitative variables, thus 35 

achieving a greater degree of harmonization across all studies.   

3. Following best practice for selecting predictive models (127, 128), we carried out 

repeat K-fold cross-validation (129) of alternative random and fixed effect model 

structures ranging from the least parsimonious (all variables used as independent 

predictors), hybrid (selected aggregation of predictors e.g., per capita caloric demand 40 

estimates multiplied by population), and most parsimonious process-based 

(aggregates of independent predictors e.g., total feed demand by livestock type), and 

selected the model with the best prediction skill (with the lowest RMSE) for each 

environmental indicator.  

4. Plausible levels of implementation settings ranging from low to very high mitigation 45 

ambition were then defined for each intervention strategy. We used the LMM with 

the highest predictive accuracy (lowest RMSE) to calculate make predictions for the 

average group using the mean of the distribution μgroup (126) along with associated 

prediction intervals using the ‘predictInterval’ function in merTools (130) for each 
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of the 9 indicators under all possible combinations of intervention levels for 2050. 

This resulted in a database of intervention combinations with internally consistent 

2050 storylines across all indicators. Predictions were converted from LnR to % 5 

change using the formulae 100 * (exp(LnR) - 1), and then to physical units (Mha, Mt 

CO2e, km3, and Tg N/P) by multiplying the corresponding 2010 base year values 

(Table S25). To address the considerable variation in scope across land use change 

CO2 emissions estimates in the reviewed studies (see Data S1), we used data from 

the AR6 Scenarios Database (35), to fit an additional LMM to estimate emissions 10 

associated with land-use change (see Section 2.2.2). The land-use change model was 

then used to predict emissions associated with land-use change for the same 

consistent 2050 storylines using the projections from the cropland and pasture 

models as inputs.  

5. We calculated aggregated boundary distribution estimates for land-system change 15 

and climate change [total agricultural area = cropland + pasture, Total emissions = 

CH4 + N2O + CO2 (LUC)] by adding together the means and variances from 

individual indicator prediction intervals, as per the normal sum theorem (131). We 

then computed the risk of exceeding environmental limits across the four planetary 

boundaries associated with each projection by combining uncertainty in LMM 20 

predictions and uncertainty in environmental limits as represented by each 

corresponding probability density function (Section 1.4.5). For water no further 

calculations were required since the freshwater use boundary is only represented by 

a single indicator. In the case of biogeochemical flows, we calculated risk estimates 

for each of the indicators (Nfert, Nsurplus, Pfert, Pinstream) as the distributions cannot be 25 

added together in the same way as for land-system change and climate change. We 

then calculated average risk metrics for N and P by combining all indicator risk 

estimates, and, finally, we combined averaged N and P estimates to calculate an 

aggregate risk metric for the entire biogeochemical flows boundary.         

6. Based on risk estimates for all intervention combinations, we calculated average risk 30 

of exceedance and risk difference (an indication of risk mitigation potential for each 

intervention level, calculated as risk of exceedance at each level minus risk of 

exceedance at Trend level) for each intervention-level combination across each 

planetary boundary. We also carried out a similar calculation to estimate absolute 

change in physical units for each indicator (see Fig. S4, Fig. S5). 35 

7. We finally mapped the performance of all intervention combinations against their 

risk mitigation and ambition level. We did this for each of the four planetary 

boundaries, and for all boundaries combined, yielding a total of 2,097,152 plausible 

intervention level combinations across all boundaries (Fig. S6). We then selected the 

scenarios that met two critical IPCC-calibrated uncertainty risk thresholds (36) 40 

across all boundaries: < 0.50 risk (exceedance about as unlikely as not) and < 0.33 

risk (exceedance unlikely), and categorized them in terms of the type and level of 

each intervention required to achieve each threshold indicator.   

1.4.2 Setting ambition levels for all intervention variables  

Population  45 

The total number of people on the planet in 2050 is a key determinant of aggregate food 

demand and associated environmental impact (103, 132). While many of the studies reviewed 

held population constant across scenarios, they still used different projections for 2050 

depending on their data sources and their date of publication. Other studies have used 
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established storylines such as SRES, MA, and the SSPs, all of which include scenarios with 

significantly different population projections. More environmentally sustainable scenarios 

were generally associated with lower population growth (132, 133). We selected a range of 5 

population levels to encompass various assumptions about key parameters likely to affect the 

extent of this intervention such as fertility, mortality, migration, and education centered 

around the 2019 United Nations Department of Economic and Social Affairs (UN DESA) 

medium population estimate for 2050 (134). We used the following 4 levels (in order of 

increasing mitigation ambition): 10 

• Low (10.588 billion) – This high population estimate for 2050 corresponds to the 

2019 UN DESA high fertility variant (134). It is higher than the ~10 billion that 

corresponds to average SSP3 estimates (133), reflecting a very low level of ambition 

in fertility trajectories.  

• Trend (9.735 billion) – This corresponds to the 2019 UN DESA median (50 percent) 15 

prediction interval (134), reflecting the most likely trends in fertility, mortality, 

migration and education.  

• High (8.907 billion) – This estimate corresponds to the low fertility variant from the 

2019 UN DESA trajectory. This trajectory results in a slightly lower 2050 estimate 

compared to SSP2 (133). Several studies use a similar population estimate in 20 

variants of the SSP2 scenario (31, 86, 135). 

• Very high (8.500 billion) – This corresponds to an average projection for the SSP1 

scenario, used in several of the reviewed studies. It assumes a rapid acceleration of 

the demographic transition due to very high educational and health investments 

(133, 136).  25 

Diet 

In addition to population, aggregate demand for agricultural commodities is highly 

sensitive to assumptions around per capita dietary intake and diet composition. Changes in 

diets are a key demand-side mitigation strategy in global food system scenario studies, with 

several highly cited food system modeling studies published in the last decade focusing on 30 

the mitigation potential of healthy and sustainable diets (19, 64, 76, 83). Diet scenarios vary 

widely in their formulation across studies. Commonly modeled diets include:  

- Omnivorous BAU – Diets containing all types of animal source foods (ASFs) in 

average proportions with no assumed substitution. This diet type is by far the most 

common in the reviewed studies and ranges from very high animal calorie 35 

consumption to very low animal calorie consumption such as flexitarian diets (19, 

64). 

- Substitution – Diets where ruminant meat is partially substituted with monogastric 

meat, most commonly by 10 – 20% (31, 94, 137, 138).  

- Mediterranean – Diets rich in vegetables, fruit, seafood, grains, sugars, oils, eggs, 40 

dairy, and moderate amounts of meat (83, 105). 

- Dairy-based – Diets containing a much higher than average percentage of dairy 

products, some of which are assumed to replace ruminant meat (23, 64). 

- Pescatarian – Diets where animal protein is sourced predominantly from marine 

sources but still contain modest amounts of dairy/eggs (23, 64, 83, 105) 45 
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- No meat – Vegetarian diets containing no meat (23, 64, 83, 84, 105, 139-141) 

corresponding to vegetarian diets, or vegan diets with no animal calorie intake.  

While a higher level of agricultural commodity detail was offered by some studies that 5 

distinguished between the many different animal and crop products consumed, many studies 

did not provide this level of detail (see Section 2.4.4 for discussion on aggregation bias). Here 

we used a combination of four continuous predictor variables to broadly define the global 

dietary change intervention in terms of food supply (intake plus waste at the household and 

retail level) (142). These estimates were either available in the reviewed literature, could be 10 

calculated using regional production estimates and assumptions related to waste, or calculated 

using production data in combination with FAOSTAT conversion factors for 2010 (142), 

with contribution of corresponding authors (Section 2.1, Data S1).  

The modeled diet variants encompassed the plausible range in plant, ruminant meat, 

dairy, and non-ruminant calories (including eggs and aquaculture products) that could satisfy 15 

minimum nutrition requirements but also represent overconsumption across scenarios from 

the literature (19, 76, 106) (Data S1). The minimum caloric intake meets minimum dietary 

energy requirements for healthy populations with body mass index values between 18.5 and 

24.9 (19), while values >2400 represent overconsumption (143). While not explicitly defined 

due to the use of only a single plant calorie predictor, we implicitly assume a healthy 20 

diversity in plant calories as defined in all underlying study scenarios used to fit the statistical 

models.  

Given the critical role of ASF in supplying adequate dietary vitamin B12 (144), we also 

considered this dimension in the formulation of the diets. Assuming caloric shares of the 35 

most commonly consumed animal products that reflect global average base year (2010) totals 25 

in the FAOSTAT Food Balance Sheets (142) along with nutrient content estimates from the 

USDA food composition database Standard Reference 28 (145), we also estimated total daily 

vitamin B12 availability of each ASF variant and compared this to recommended nutrient 

intakes. All ASF variants meet the World Health Organization 2.4 μg day-1 recommendation 

for adults and adolescents (146) but the Low ASF variant falls short of the European 30 

Commission’s 4 μg day-1 recommendation (147), and suggests that this diet variant could 

require additional supplementation and fortification of plant foods to ensure adequate vitamin 

B12 intake.    

To enable the consideration of reduced overconsumption, we model plant calories as a 

variable with four levels that covers the plausible range of 1860-2350 kcal cap-1 day-1 35 

ensuring that all modeled diets, including the Low ASF + 1860 combination that corresponds 

to the flexitarian variant in the EAT-Lancet Commission (64), contain sufficient plant 

calories. We did not consider diets with zero meat or animal calorie intake due to their lower 

feasibility.  

  40 
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Table S8. Calorie sources under four modelled diets combining assumptions around animal and plant calorie 

intakes. (ASF = animal-sourced foods).  

ASF 
variant 

Diet pattern Ruminant Monogastric Dairy 
Animal 

total 
Plant total Grand total 

Rich Rich + 2350 65 320 170 555 2350 2905 

BAU BAU + 2350 50 260 150 460 2350 2810 

Low meat Low meat + 2350 40 230 160 430 2350 2780 

Low ASF Low ASF + 2350 25 145 115 285 2350 2635 

Rich Rich + 2185 65 320 170 555 2185 2740 

BAU BAU + 2185 50 260 150 460 2185 2645 

Low meat Low meat + 2185 40 230 160 430 2185 2615 

Low ASF Low ASF + 2185 25 145 115 285 2185 2470 

Rich Rich + 2020 65 320 170 555 2020 2575 

BAU BAU + 2020 50 260 150 460 2020 2480 

Low meat Low meat + 2020 40 230 160 430 2020 2450 

Low ASF Low ASF + 2020 25 145 115 285 2020 2305 

Rich Rich + 1860 65 320 170 555 1860 2415 

BAU BAU + 1860 50 260 150 460 1860 2320 

Low meat Low meat + 1860 40 230 160 430 1860 2290 

Low ASF Low ASF + 1860 25 145 115 285 1860 2145 

 5 

Table S9. Estimates of total daily vitamin B12 supplied by each ASF diet variant compared to international 

recommendations for adults. (WHO/FAO = World Health Organization/Food and Agriculture Organization. EC 

= European Commission).   

ASF 
variant 

Total daily vitamin 
B12 (μg day-1) 

Meets WHO/FAO 
requirement              

(2.4 μg day-1) 

Meets EC requirement 
(4.0 μg day-1) 

Rich 5.76 Yes Yes 

BAU 4.74 Yes Yes 

Low meat 4.35 Yes Yes 

Low ASF 2.85 Yes No 

 

We modeled the following ASF variants: 10 

• Rich – A global dietary pattern representative of scenarios that assumes levels of 

animal product demand (consumption) increasing beyond projected trends (15, 107). 

This pattern corresponds to current diets with a high share of calories from ASF such 

as those consumed in many developed countries (135, 148-150).    

• BAU – This pattern assumes increased consumption in ASF in line with past and 15 

current trends consistent with BAU diets in the database (Data S1) of reviewed 

studies (15, 19, 64, 83, 107). This assumed ASF intake is representative of a 

nutrition transition (151) towards more affluent diets with higher shares of ASF 

compared to the current global average.   

• Low meat – This diet patterns is representative of some SSP1 scenarios (24, 152), as 20 

well as other scenarios which assume more healthy and sustainable diets with 

reductions in ASF (76, 107, 135, 153, 154). This ASF pattern is also potentially 

representative of pescatarian or Mediterranean diets which are also commonly 
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associated with reduced animal calorie intakes compared to a BAU diet (64, 83, 

105).  

• Low ASF – The highest possible mitigation levels modeled in our database in terms 5 

of diet change, compatible with the flexitarian diet variants proposed by the EAT-

Lancet Commission (19, 86). Other studies also model healthy and sustainable diets 

with a similar ASF profile (40, 46) that roughly corresponds to a halving (-50%) of 

current meat consumption while maintaining a modest intake of dairy.  

Waste reduction 10 

Food loss and waste are a major source of environmental impact, with current global 

estimates of around one-third of food produced being wasted (155). Significant reductions in 

food loss and waste are embedded in the SDGs. SDG 12 specifically recommends halving 

food waste relative to present levels by 2030, a possibility commonly modelled by authors in 

waste mitigation scenarios for 2050 (19, 23, 46, 76). Recent studies argue that such targets 15 

present a major challenge, with expectations that waste may increase under a BAU trajectory 

due to higher incomes and reduced food prices in major developing economies (156).  

Most studies (including all of those reviewed here) consider waste (and loss) as part of 

the aggregate demand for food commodities. Waste reduction is therefore modeled as a 

reduction in aggregate demand (at varying rates depending on the perishability of each food 20 

commodity and the magnitude of the assumed reduction). This then translates into a direct 

reduction in the amount that needs to be produced, with environmental benefits accruing due 

to forgone production. While we acknowledge that a direct reduction in food waste may not 

necessarily result in concomitant reductions in production due to price changes and rebound 

effects (157), we follow the same convention as in the reviewed studies by modeling change 25 

in waste as a change in aggregate demand.  

As in most reviewed studies, we focus on the food waste portion, as this is more directly 

related to consumption-based food waste reduction interventions achieved through actions at 

the retail, food service and household level (158, 159). Food supply, as reported in the 

FAOSTAT Food Balance Sheets (151), refers to the food which is available food available 30 

for consumption at the retail level, and is therefore inclusive of household and retail food 

waste. Waste reduction (or change) is therefore modeled as a reduction in total food supply 

(per capita supply multiplied by population). Estimates from few studies reporting food 

consumption exclusive of waste were adjusted for waste based on data obtained directly from 

the authors and from FAOSTAT (155) (Section 2.1, Data S1). 35 

Here we modeled waste implications via a reduction/increase in required food supply to 

meet each of the diet variants, based on weighted global average waste percentages from (19, 

155) for each commodity category. The underlying assumption is that we implicitly assume 

that the composition of plant foods and non-ruminant protein consumed does not change 

significantly compared to the base year. While this could introduce some error when 40 

modelling potential shifts to diets with a higher percentage of perishable items such as 

seafood and fresh fruit and vegetables, this assumption is necessary and justified by the 

degree of commodity aggregation used in our diet variants.  
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Table S10. Per capita food supply (kcal person-1 day-1) across diet-waste scenario combinations. Waste fractions 

calculated as weighted averages from data sourced from (19).  

Diet Category 
Current  

waste  
Current 
supply 

BAU-
High 

BAU-
Low 

Half Intake 

Rich Dairy 5.7% 180 183 177 175 170 

Rich Non-ruminant 12.0% 360 371 349 338 317 

Rich Ruminant meat 7.9% 70 71 69 67 64 

Rich Plant 19.1% 2300 2410 2190 2080 1860 

Rich Plant 19.1% 2500 2619 2381 2261 2022 

Rich Plant 19.1% 2700 2829 2571 2442 2184 

Rich Plant 19.1% 2900 3039 2761 2623 2346 

BAU Dairy 5.7% 160 162 158 155 151 

BAU Non-ruminant 12.0% 295 304 286 277 260 

BAU Ruminant meat 7.9% 55 56 54 53 51 

BAU Plant 19.1% 2300 2410 2190 2080 1860 

BAU Plant 19.1% 2500 2619 2381 2261 2022 

BAU Plant 19.1% 2700 2829 2571 2442 2184 

BAU Plant 19.1% 2900 3039 2761 2623 2346 

Low Meat Dairy 5.7% 160 162 158 155 151 

Low Meat Non-ruminant 12.0% 230 237 223 216 202 

Low Meat Ruminant meat 7.9% 40 41 39 38 37 

Low Meat Plant 19.1% 2300 2410 2190 2080 1860 

Low Meat Plant 19.1% 2700 2829 2571 2442 2184 

Low Meat Plant 19.1% 2900 3039 2761 2623 2346 

Low Meat Plant 19.1% 2500 2619 2381 2261 2022 

Low ASF Dairy 5.7% 120 122 118 117 113 

Low ASF Non-ruminant 12.0% 165 170 160 155 145 

Low ASF Ruminant meat 7.9% 25 25 25 24 23 

Low ASF Plant 19.1% 2300 2410 2190 2080 1860 

Low ASF Plant 19.1% 2900 3039 2761 2623 2346 

Low ASF Plant 19.1% 2500 2619 2381 2261 2022 

Low ASF Plant 19.1% 2700 2829 2571 2442 2184 

Crop yields 5 

Interventions involving increases in crop yields that result in yield gap closure are one of 

the most common manifestations of improved productivity in the agricultural system (160, 

161) and thus feature prominently in the reviewed studies (Table S7). A number of actions 

ranging from plant breeding to create higher-yielding crop varieties, improved fertilization 

and/or irrigation (e.g. through precision technologies), and agronomic practices optimized to 10 

the local context, can all boost yields (160). Studies often refer to the yield gap, defined as the 

difference between the observed crop yield and the crop’s maximum attainable (potential) 

yield in a particular location given optimal agricultural practices and technologies (160, 162-

164). A challenge encountered in harmonizing yield data across different studies was that 

some studies reported actual crop yield in tonnes of dry matter per hectare (t DM ha-1), while 15 

others report the percentage increase (simple or compound over the period between the 

baseline and 2050), the extent of yield gap closure (%), or yield gap closure relative to the 

present or a past base year (%). Several reference or worst-case scenarios also assume that 

yields stagnate (remain constant) at base year levels (Data S1).  
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In our analysis, we have addressed the issue of different yield metrics by sourcing the 

original crop yield data in t DM ha-1. We then carried out any necessary aggregation to 

calculate global weighted average cereal yields. We focused on cereal yields as a proxy for 5 

yields since cereals account for most crop production for food and feed and are better 

researched, with several studies concentrating on major cereals as a proxy for overall yields 

(15, 165, 166). Other crop yields are also available in the database (see Data S1) for most 

studies but these were not used in the training of the models. In accordance with our general 

approach, to ensure better harmonization between studies with different base years, we use 10 

percentage change relative to the base year as the predictor variable instead of the alternative 

of harmonizing yield estimates relative to a 2010 base year based on timeseries of global 

average cereal yields from FAOSTAT (167). We selected this approach following 

comparisons with FAOSTAT yield data and discussions with study authors. It also allowed 

us to include studies (40, 105) that assumed aggregate crop yield increases across all crops 15 

including cereals, studies (31, 83) that assumed cereal yield increases expressed in caloric 

(kcal ha-1) terms, and all studies (75, 86, 135, 153) that use the MAgPIE model in which 

yields are calculated endogenously on the basis of a technological change rate (168). 

To capture the reported range in yields in the reviewed studies and to encompass the 

diverse impacts of different productivity assumptions and climate change impacts on yields, 20 

we modelled the following four levels of crop yield increase by 2050 relative to the 2010 

base year: 

• Low (15%) – Yields increase relative to their present level but at half the rate of the 

historical average of 30% that would be expected by 2050 as per (15). This 

represents a worst-case-scenario that could also be considered as indicative of 25 

potentially negative impacts of climate change on crop yields (28, 29, 169).    

• Trend (30%) – Yields follow a BAU trajectory. Calculations based on data in the 

reviewed studies (T1 in Data S1) and (166) established a range of 25% to 35% 

increase in yields across most BAU scenarios.  

• High (45%) – Yields increase at a rate 50% higher than the most commonly 30 

specified BAU trajectory. Calculations based on data in the reviewed studies (Data 

S1) established an increase in yields of around 40 to 50%, corresponding to a high 

yield increase across most major studies (56, 83, 94, 132). This also aligns with 

assumptions under the SSP 1 storyline (152, 166) and a 90% yield gap closure for 

major cereals (160).  35 

• Very high (60%) – Yields increase is highly ambitious at double the BAU trajectory 

and is representative of optimistic yield gap closure scenarios (19, 64, 76, 166), 

corresponding to a 100% yield gap closure for most major cereals (160). 

Feed efficiency (feed conversion ratio) 

One of the largest contributors to the higher volumes of global food production 40 

alongside crop yields in recent decades has been the significant gains in livestock 

productivity (15). Past increases in livestock productivity have been driven largely by 

scientific and technological developments in breeding, nutrition and animal health, and this 

trend is expected to continue in the future, particularly in developing countries where the 

current productivity gap remains high (170, 171). The reviewed studies use several different 45 

metrics to describe livestock productivity. This partly relates to the fact that each system of 

animal production (e.g., feedlot, rangelands, grass-fed, mixed crop-livestock) has different 
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inputs and efficiency levers (172), and productivity can therefore be measured in a number of 

different ways. 

The most frequently reported indicators of livestock productivity are feed efficiency 5 

(i.e., the ratio of outputs to inputs, e.g. kg of animal product/protein per kg of feed in DM, or 

also reported as Joules of animal product per Joule of feed) and its inverse, the feed 

conversion ratio (FCR), which is the ratio of inputs to outputs, e.g. kg DM per kg of animal 

product/protein. The feed efficiency of different livestock commodities ranges widely both 

between different animal and commodities but also for the same commodity produced under 10 

different farming systems (23, 118, 137, 152).  

In addition to improved feeding and feed-use efficiency, a number of other livestock 

efficiency variables such as improved feed digestibility, protein, and mineral contents 

achieved through changes in feed composition or feed additives; breeding, and; herd 

management (29, 94, 173) also significantly impact overall livestock productivity. Pasture 15 

productivity can also be a key metric for grass-fed ruminants (83). Stocking density (i.e., 

head of stock per unit area) is also used as a relevant metric for livestock fed on pasture (76). 

Some studies refer to separate livestock productivity gaps for ruminants and monogastrics 

expressed as a percentage in a similar way as for crop yield gaps (135). The relative 

importance of different feed efficiency variables also depends on the environmental indicator 20 

of interest. For instance, feed additives that reduce enteric fermentation in ruminant livestock 

may significantly reduce GHG emissions (19, 132, 174), but this will not necessarily reduce 

resource use (i.e., land, water, nutrients) if feed efficiency remains unchanged or feeding 

levels increase (174). Similarly, N and P excretion could be reduced by changing feed 

composition through increasing the use of concentrates or by increasing N conversion rates 25 

(94). However, this could result in increased cropland and/or water requirements. Another 

commonly used metric of livestock productivity that is especially important in terms of GHG 

emissions is yield per animal, is explicitly considered in a few of the reviewed studies 

employing assumptions (28, 75, 135, 153). 

Unlike crop yields where a weighted global average yield index serves as an all-30 

encompassing proxy, adequately capturing feed efficiency ideally requires multiple separate 

livestock productivity-related indicators for each major livestock commodity. Following an 

audit of all studies and the available data, we determined that the FCR, expressed as kg DM 

per kg of animal product, was the most ubiquitous metric of feed efficiency. As with crop 

yields, we sourced the original FCR data for each livestock commodity considered in each 35 

study and we harmonized this to match our ASF categories (see Diet) by calculating a 

weighted global average FCR across three livestock types: ruminant meat (beef, goat and 

mutton), dairy, monogastric products (pork, poultry, eggs and seafood). Similarly to crop 

yields, our use of percentage change relative to the base year as the predictor variable also 

allowed the inclusion of studies that considered only the crop portion of livestock feed intake 40 

(19, 64), studies that used a protein conversion ratio(83), and studies where feed efficiency 

was approximated by an index of livestock productivity (28, 107).    

 

Table S11 summarizes the ambition levels related to this intervention and the 

assumptions underlying those choices for each of the livestock categories. To control for the 45 

fact that studies can have different base year FCRs depending on the sources they use, as with 

all predictors in the models, we model all changes as percentage change relative to our 

assumed base year values, which correspond to the Low setting (see Table S11), with the 

Very High setting representing a ~40% reduction in FCRs across livestock categories.  
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Table S11. Feed conversion ratio scenario assumptions across each of the three livestock categories for 2050. 

The assumed range is drawn from data in the reviewed studies (see Data S1).  

Livestock 
category 

Low Trend High 
Very 
High 

Justification 

Ruminant meat 35 30 25 20 

The assumed range spans the current global average (152) to 
highly efficient but predominantly grassfed dominated systems 
such as those in Australia and New Zealand (175). The High 
setting represents SSP1 scenarios (152). While some grain-
dominated systems (40, 150) or dairy systems were meat is a 
by-product (23) can achieve FCRs much lower than 20, we did 
not consider these values to ensure compatibility with our feed 
composition storylines and assumptions. The scenarios are 
based primarily on beef cattle as opposed to smaller ruminants 
(e.g., sheep and goats), since beef accounts for ~80% of the 
caloric and mass share of ruminant meat in global diets (142).        

 

Dairy 2 1.75 1.5 1.25 

The assumed range spans the current global average (176) to 
that already achieved in efficient but predominantly grassfed 
systems such as those in Australia and New Zealand or 
western Europe (137). Similarly to ruminant meat, highly 
efficient systems can achieve FCRs closer to 1 (or below) is 
some cases (152, 175), but such FCRs are more 
representative of grain-dominated systems (150). The Trend 
setting represents an average of BAU scenarios across 
studies assuming mixed production systems (42, 46), while the 
High setting assumes continued intensification as per SSP1  or 
other moderate efficiency scenarios (23, 40, 132).   

 

Monogastric 4 3.5 3.0 2.5 

The Low setting is representative of the current global 
weighted average for monogastric meat dominated by pork 
and poultry (142), in addition to eggs, and aquaculture 
products in industrial production systems (23, 40). The Trend 
and High settings assume further global intensification and 
reductions in FCRs consistent with SSP2 and SSP1 trends 
respectively. The Very High setting assumes universal 
adoption of highly productive intensive systems (23, 132). It 
also potentially accommodates a higher share of aquaculture 
products human diets. Most aquaculture products have 
average FCRs below 2 with commonly eaten species such as 
salmon and tilapia being closer to 1 (177). An increased 
percentage of calories from aquaculture products consistent 
with pescatarian or frequently modelled flexitarian diets such 
as the EAT-Lancet (64), would therefore result in a reduced 
FCR for monogastric products.   

Feed composition   5 

In addition to the FCR, another important and closely related parameter of livestock 

production with significant environmental implications is the composition of feed. Several 

recent studies (23, 28, 29, 114, 119, 178) highlight the potential environmental benefits 

associated with reducing the proportion of human-edible biomass (e.g., cereal crops) termed 

food-competing feed (FCF) (29) consumed by livestock and increasing the proportion of 10 

ecological leftovers (i.e., grass, waste, by-products) or low-opportunity-cost biomass (179) in 

livestock diets. A continuation of the recent historical trend towards higher demand for 

animal calories and more intensive livestock production with higher feed efficiencies is 

typically associated with an increased proportion of FCF under most BAU scenarios (76). 

Most reviewed studies (Data S1) make implicit assumptions around feedlot intensification 15 

with a higher contribution of FCF across scenarios with higher feed efficiency (i.e., lower 

FCRs) (135, 153). On the other hand, several studies (23, 28, 29, 94, 150, 180, 181) explicitly 

modelled scenarios with reduced FCF and higher proportions of grass and by-products as 

representative of circular economy and agroecology sustainability narratives (Table S6).    

Our choice of livestock categories was also motivated by the fact that feed composition 20 

for ruminant meat, dairy and monogastric products is, on average, distinctly different. As 

with FCR, we therefore control for this by using three different percentages of FCF that 
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accompany each of the three FCRs (Table S11) to model the effect of this intervention 

strategy on all indicators related to resource use (i.e., land, water, nutrients) and emissions 

(GHGs). FCF percentages were either sourced directly from authors or calculated based on 5 

detailed feed composition data where available. In order to harmonize the figures across 

studies, we distinguished between FCF estimates that had accounted for the use of residues 

and by-products (23, 28, 29, 105) and those who did not, as several studies (40, 46, 105) only 

distinguished between grass and non-grass feed crops. Where the feed composition data did 

not explicitly quantify the use of residues and by-products, we used disaggregated data for 74 10 

crops from FAOSTAT Commodity Balances - Crops Primary Equivalent (182) in addition to 

the classification of residues and by-products as per (28, 29), to calculate a base year (2010) 

FCF percentage across all crops (107). Based on these calculations, we adopted a value of 

93.6% (see T9, Data S1) as an adjustment factor for those studies that did not explicitly 

account for residues and by-products.  15 

For ruminant meat and monogastric products, additional aggregation was necessary so 

we calculated these as the weighted mean percentage of total FCF by weight (in kg or tons of 

dry matter) relative to total feed intake (including grass and by-products), as follows: 

 𝐹𝐶𝐹𝑟 =
 ∑ 𝐹𝐶𝐹𝑟 ∗ (𝐹𝐶𝑅𝑟 ∗ 𝑃𝑟)𝑛

𝑟=1

∑ 𝐹𝐶𝑅𝑟 ∗ 𝑃𝑟
𝑛
𝑟=1

 

  

 

 

 

 

 

(Eq. S1) 

 𝐹𝐶𝐹𝑚 =
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𝑚=1

∑ 𝐹𝐶𝑅𝑚 ∗ 𝑃𝑚
𝑛
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(Eq. S2) 

where r are ruminant meats (beef, mutton and goat), and m are monogastric products 

(chicken, pork, eggs, and aquaculture), FCF is the percentage of feed from crops in direct 20 

competition with food, FCR is the feed conversion ratio, and P denotes the production 

quantity in kg tonne-1 of product r or m, respectively.  

Both an increase or a reduction in FCF could be considered an intervention depending 

on the scenario narrative (Table S6). To ensure compatibility with BAU trends towards 

livestock intensification and higher FCRs (Table S11), we consider higher levels of ambition 25 

to correlate with higher percentages of FCF. However, we still ensure that our chosen levels 

allow FCF and FCR settings that remain realistic based on the plausible range in the reviewed 

data (Data S1). 
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Table S12. Food-competing feed settings across each of the three livestock categories for 2050. The assumed 35 
range is drawn from data in the reviewed studies (see Data S1).  

Livestock 
category 

Low Trend High 
Very 
High 

Justification 

Ruminant meat 5 10 15 20 

The assumed range spans the current global weighted 

average for beef cattle and small ruminants  towards 

production systems with significant FCF percentages such as 
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Livestock 
category 

Low Trend High 
Very 
High 

Justification 

those in North America (118).  The Trend setting assume 

intensification following trends consistent with SSP2 scenarios 

(135, 153), while the High and Very High settings are typical of 

the degree of intensification seen in  SSP1 scenarios (92, 

152). Some predominantly grass-fed production systems such 

as in Australia and New Zealand can achieve Very High FCRs  

at the Low FCR setting (175).       

 

Dairy 15 20 25 30 

The assumed range spans the current global weighted 

average for dairy cattle towards production systems with 

significant FCF percentages such as those in North America 

(118). The Trend setting represents an average of BAU 

scenarios across studies assuming mixed production systems 

(28, 46, 132, 135, 153), while the High or Very High setting 

assumes significant intensification as per SSP1 (152), or other 

high productivity scenarios (23). Similarly to ruminant meat, 

highly productive grass-based systems such as in Australia 

and New Zealand can achieve Very High FCRs at the Low 

FCR setting (175).   

 

Monogastric 80 85 90 95 

The Low setting is representative of production systems with 
high percentages of residues and fodder typical of developing 
countries (176), or more circular systems (23). The Trend and 
High settings assume further global intensification and 
increases in FCFs consistent with BAU/SSP2 (135, 153) and 
high productivity/SSP1 (23) trends respectively. The Very High 
setting assumes almost 100% crop-based feed as seen in 
highly productive industrialised systems (23, 105). The 
assumed range resulting from all combinations between FCR 
and FCF accommodates for different shares of monogastric 
products (pork and chicken, eggs, and aquaculture), in 
addition to varying levels of productivity and degree of 
circularity and use of by-products in the system.  

Climate action (emissions intensity and land-use mitigation) 

Effective GHG mitigation across the food system requires a broad range of interventions 

such as technical options targeting non-CO2 emissions reduction from crop and livestock 5 

production (77, 183-185), in addition to CO2 savings related to energy and transport in the 

food supply chain both upstream and downstream (78, 105, 186), and concerted global efforts 

to eliminate cropland and pasture expansion and maximize land-based GHG sequestration 

(187-189). This intervention specifically concerns reductions in direct GHG emissions (CH4, 

N2O, CO2 LUC) at the production stage beyond those associated with demand-side 10 

interventions (diet change and/or waste reduction) or productivity improvements already 

captured by other supply-side interventions such as crop yields, feed conversion ratios and 

feed composition. They specifically involve complementary technologies and mitigation 

actions (see Data S4 and detailed reviews in 73, 74, 190), that reduce the non-CO2 emissions 

intensity (emissions per unit of food produced) of crop and livestock production. Influential 15 

actions include feed supplements that reduce enteric fermentation in ruminant livestock (174, 

191), improved manure management and infrastructure (192), improved nutrient and residue 

management in crop production and rice paddies, where practices such as alternate wetting 

and drying and careful selection of rice varieties can significantly reduce CH4 emissions (183, 

186).  20 

A global carbon price provides an established mechanism to incentivize reductions in 

non-CO2 emissions intensity while also reducing net CO2 emissions from land use by 

reducing land clearing and promoting sequestration through trees and soil enhancement (73). 

Several of the reviewed studies (75, 152, 193, 194) explicitly considered the influence of a 

carbon price on climate change mitigation relative to a future baseline, most commonly 25 
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calculated using the cost of GHG mitigation derived from non-CO2 marginal abatement cost 

curves (MACCs) (183, 186). However, most studies did not directly incorporate a carbon 

price, with only five of the selected studies (75, 132, 152, 153, 194) modelling ecosystem 5 

conservation and restoration efforts such as payments for ecosystem services (e.g., REDD). 

Many studies and scenarios assumed either constant GHG intensities into the future (e.g., 28, 

83, 165), or considered potential GHG intensity reductions based on either past trends (84, 

105) or mitigation potentials from the literature associated with technological advances or 

improved management (19, 23, 40, 132). While most studies assumed simultaneous (but 10 

often different) intensity reductions for both CH4 and N2O, a few studies (42, 46, 150) only 

concentrate on N2O intensity reductions arising from increased nutrient-use efficiency.  

To adequately model the impacts of this intervention across all three GHG indicators 

(CH4, N2O, CO2 LUC) in a way that also encompasses all the information from across the 

reviewed studies (Data S1), we used three separate metrics: CH4 intensity (expressed as 15 

percentage change in CH4 emissions per unit of food produced relative to 2010), N2O 

intensity (expressed as percentage change in N2O emissions per unit of food produced 

relative to 2010), and a harmonized carbon price in $/tCO2eq (in 2010 USD) as an established 

predictor of mitigation ambition for CO2 LUC mitigation consistent with the IPCC AR6 

database (35). Where CH4 and N2O emissions intensity was not explicitly provided in the 20 

study supplementary data (19, 40, 64), we calculated percentage change in emissions 

intensities by comparing emissions across relevant CH4 and N2O sources between scenarios 

with identical food supply that only differed in terms of GHG intensity, in order to control for 

the influence of other factors already encompassed in other interventions such as diet, waste, 

crop yields and feed efficiency and composition. While our statistical approach did not 25 

explicitly quantify complex interactions between nitrogen-use efficiency, feed efficiency, 

feed composition and non-CO2 emissions intensity (due to changes in enteric fermentation 

and manure CH4 and N2O) that could occur due to changes in feed digestibility (174), the 

assumed mitigation levels are meant to, at least partly, encompass such interactions.   

In selecting different mitigation ambition levels for CH4 and N2O intensities we have 30 

also considered their broad compatibility with carbon price assumptions based on studies (75, 

152) that have explicitly modeled non-CO2 mitigation associated with different carbon prices 

to ensure that there is consistency between the assumed ambition levels. While several 

studies assume comparable mitigation opportunities for CH4 and N2O, we take into 

consideration the fact that N2O intensity reduction potential is considerably smaller compared 35 

to that for CH4 according to studies employing MACCs (75, 152).  

The following predictor levels were used (% applies only to CH4/N2O intensities, carbon 

price in 2010 USD applies to CO2 LUC emissions): 

• Low (0/0%, 0 $ t CO2
-1) – GHG intensities remain constant at base year levels 

assuming no changes in technology or farming practices (e.g., 28, 83, 165), and 40 

there are no active efforts to curtail LUC emissions.   

• Trend (13/4%, 25 $ t CO2
-1) – 13/4% reduction in in CH4/N2O intensities represents 

an average mid-point for BAU scenarios from (84, 105, 195). The carbon price 

corresponds to a BAU mitigation effort in terms of LUC emissions that corresponds 

to SSP2 (75, 152).  45 

• High (26/8%, 100 $ t CO2
-1) – 26/8% reduction in CH4/N2O intensities represents an 

ambitious improvement well above past efficiency trends (105). This percentage is 

also consistent with a high mitigation scenario for livestock in (107, 191) that 

assumes that the emissions of the 10th percentile of the lowest-emitting countries in 
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the base year could be reached by other countries by 2050. For LUC, the carbon 

price corresponds to a coordinated mitigation effort that is considerably more 

ambitious than BAU and assumes a concerted but feasible and cost-effective global 5 

mitigation effort between 2020 and 2050 (75, 132, 190).  

• Very high (40/12%, 200 $ t CO2
-1) – At around two to three times the rate estimated 

from the highest BAU trend (105) and comparable to the highest assumed intensity 

reductions assumes across studies for CH4 (40, 132, 152), a 40/12% reduction in 

CH4/N2O intensities from 2010 to 2050 represents an ambitious intensity reduction 10 

but one that is still well within technical constraints (73, 183, 186, 196). For LUC 

emission mitigation efforts, 200 $ t CO2
-1 corresponds to scenarios with stringent 

land-use change regulation and ambitious global sequestration efforts that remain 

feasible in terms of cost of implementation by 2050 (73, 190).  

Water-use efficiency  15 

As the most significant water user, accounting for ~88% of global blue water 

consumption from 1996 to 2005 (197), and given the anticipated increase in food demand, 

agriculture exerts significant pressure on the freshwater use boundary (13, 65). Boosting 

water-use efficiency (WUE) through improvements in technology and agricultural practices 

that enable reductions in runoff, soil evaporation, and drainage could optimize the amount of 20 

water retained in soils and available for plant growth (198). There is currently significant 

potential to increase WUE in agriculture, with most water-related studies in our dataset 

making projections of increased WUE as a key intervention strategy, although the best 

policies to enable such improvements are still under debate due to concerns around potential 

unintended consequences and management challenges associated with increase efficiency 25 

(199). 

WUE is an important factor in the sustainability of water resources and environmental 

flows and is a major component of SDG 6, with Target 6.4 specifying the need to 

substantially increase WUE across all sectors by 2030 (200, 201). However, several WUE 

metrics expressed in different units are used across studies. The most common definition for 30 

WUE in the irrigation literature, also commonly referred to as water productivity (164, 199), 

is the ratio of crop yield (or biophysical crop production) to the volume of water consumed 

(‘crop per drop’) (199). This definition, which also corresponds to the inverse of the blue 

water footprint (197) that is expressed in m3/kg, is more consistent with the general notion of 

process efficiency which considers the ratio between the obtained product (the numerator) 35 

and the energy or resource invested in the process (denominator) (202). Another commonly 

used WUE metric in the reviewed literature is field irrigation efficiency, defined as the ratio 

between crop water requirements (i.e., consumptive blue water use) and irrigation water 

withdrawals (15, 199, 203), with several reviewed studies reporting this metric. Some studies 

(105, 152) also used area-based metrics such as irrigated area unit of production as a proxy 40 

for WUE. Finally, WUE can also be expressed as the economic value added (e.g., in USD) 

per unit volume of water withdrawn across water-using sectors (i.e., agriculture, industry, 

households) (204). 

We selected water productivity (i.e., ratio of crop yield to the volume of water 

consumed) as our default WUE metric. While most reviewed water studies (61, 135, 164, 45 

205) directly reported or provided information (water consumption and water withdrawals) 

that could be used to calculate field irrigation efficiency, the required data for calculating 

water productivity was not readily available. We therefore carried out additional calculations 

to ensure that our selected WUE metric was available across all water studies as well as to 
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control for the significant spatial variation in crop production across scenarios that gives rise 

to differences in total water consumption due to high variability in regional WUEs across 

agricultural sectors (206). For each study we calculated base year global weighted average 5 

blue water footprints (in m3/kg) for each agricultural commodity (the level of commodity 

resolution varied across studies) and then multiplied these static commodity footprints by the 

total production amount in tons for each commodity in order to simulate total water 

consumption assuming base year productivities for each future scenario (see Eq. S3). To 

further harmonize across studies, we then compared the simulated water consumption with 10 

base year productivities to the actual water consumption of each scenario to estimate the 

percentage change in WUE relative to the base year for each future scenario, as per Eq. S4.  

𝑆𝑊𝐶𝑠 = ∑
𝐵𝑊𝐶𝑏𝑐

𝑃𝑏𝑐
∗ 𝑃𝑠𝑐

𝑛

𝑐=1

 

  

 

 

 

 

 

(Eq. S3) 

𝑊𝑈𝐸𝑠 = [1 − (𝐴𝑊𝐶𝑠 − 𝑆𝑊𝐶𝑠)] ∗ 100 

 

(Eq. S4) 

where SWC stands for static water consumption (assuming base year water footprints), BWC 

is global blue water consumption by commodity (in m3), P is the global commodity 

production (in tons), and AWC is the actual water consumption as per the published results 15 

reported by study authors. The indices s, b and c denote scenario, base year and commodity. 

For studies with scenario variants with identical food supply, we calculated WUE in a similar 

way to the process outlined above for Climate action, i.e. by comparing total (as opposed to 

commodity-specific) blue water consumption between scenarios with identical food supply 

that only differed in terms of GHG intensity, in order to control for the influence of other 20 

factors already encompassed in other interventions such as diet, waste, crop yields and feed 

efficiency and composition.  

Study base years were all in the 2000-2010 range which ensured consistency given that 

it is broadly accepted that improvements in WUE at the global level were limited during this 

period (15). While virtual water trade (207) is not explicitly modeled as an intervention (see 25 

Section 1.4.3), the assumed intervention levels could be considered to incorporate the water-

saving potential of concentrating production to more water-efficient locations (206, 208). In 

some scenarios (149) the reallocation of global production to cater for increased regional 

populations in combination with self-sufficiency requirements led to reductions in global 

WUE. Similarly, the selected WUE metric considers all production (rainfed and irrigated) 30 

and therefore also implicitly controls for assumptions around the efficiency or extent of 

rainfed production that is another strategy that features in several scenarios (60, 135, 164, 

205). For two of the studies (164, 205), WUE calculations were based solely on changes in 

cereal production as this was consistent with the analysis.   

The following predictor levels were used: 35 

a) Low (0%) – WUE remains constant at baseline levels. This setting reflects several 

studies or scenarios that did not make any assumptions with respect to WUE 

improvements (28, 29, 31, 149) into the future.  

• Trend (15%) – We took the efficiency increase estimate from (164) as indicative of a 

BAU improvement in irrigated areas, as has been adopted in several studies (see 40 

above) or can also be indicative of rainfed or pasture expansion scenarios (205) 
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• High (30%) – WUE increases at twice the BAU rate. This level of increase 

corresponds to that assumed in SSP1 scenarios (61, 152) and in Tech+ scenarios in 

(19, 64). 5 

• Very high (45%) – This rate of increase is three times the BAU rate and corresponds 

to a highly optimistic global effort to improve WUE in agriculture. According to 

(201), to maintain or even reduce the global population suffering from water scarcity 

by 2050 and beyond, WUE needs to improve by more than 20-50% globally. We use 

a value of 30% which is within this range while also corresponding to the highest 10 

WUE increases (60, 105) in our database.  

Nutrient-use efficiency  

Nutrient-use efficiency for nitrogen (NUEN) and for phosphorus (NUEP) is defined as 

the percentage of nutrient inputs (organic + inorganic) harvested as product (87, 88). It is a 

key indicator of fertilizer application efficiency as it determines the fraction of applied 15 

fertilizer that is directly used by crops to grow versus that which is lost to the atmosphere, 

soils, and waterways through different biogeochemical processes (92). Future increases in 

food production from highly productive agricultural systems are expected to exacerbate 

nutrient-related environmental issues. Increased NUE is therefore likely to be one of the most 

effective means of increasing yields and food production while limiting environmental 20 

degradation (87, 88, 201).  

Several alternative metrics are used across studies. The most common definition is a 

unitless ratio of outputs to inputs (i.e., NUE = total nutrient output / total nutrient input) 

(209). However, the concepts of apparent fertilizer use efficiency or partial factor 

productivity which represent the production in kg dry matter per kg of N or P fertilizer are 25 

also frequently used (15, 210). Other indicators such as soil N uptake efficiency (86, 211) and 

fertilizer efficiency gain (141, 212) are also used as a measure for NUE in some models. 

Irrespective of metric, NUEN and NUEP are subject to different processes and vary 

significantly between countries as a result of strong differences in crop mix and varieties, 

attainable yield potential, soil types, rates of application, and both past and current nutrient 30 

management practices (46, 88, 210). Hence, we included NUEN and NUEP as two distinct 

predictor variables in the N (Nfert and Nsurplus) and P (Pfert and Psurplus) statistical models 

respectively. 

As in the case of previous interventions, we harmonized the different metrics presented 

in the reviewed studies by calculating NUE as the established unitless ratio of outputs/inputs 35 

(as defined above), based on supplementary data supplied by authors on nutrient surplus and 

uptake in agriculture. To maximize compatibility across reviewed studies, we used NUE for 

the soil nutrient budget of the agricultural system (cropland and grassland) as opposed to 

whole-system or full-chain efficiency (46, 88, 210). In two cases where this metric could not 

be calculated due to a lack of available data (76, 105), scenarios with underlying NUE 40 

productivity assumptions were not considered in further statistical analysis. Additional 

efficiencies associated with recycling of nutrients originating outside the agricultural system 

are captured by the Nutrient recycling predictor variables (see Nutrient recycling). 

Given the uncertainty in base year NUE values (209), and consistent with our general 

modelling approach, we use relative change compared to the base year value of each study as 45 

the numerical predictor. The following predictor levels were determined for NUEN / NUEP 

based on the reviewed studies: 
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• Low (0/0%) – NUEN / NUEP remains stagnant or oscillates around base year. This 

setting represents several studies or scenarios that used static N or P footprints (105, 

140), or assumed current application rates and use intensities (28, 29, 107).  5 

• Trend (10/5%) – NUEN / NUEP increases at an average historical rate assumed 

across a range of BAU scenarios in reviewed studies (86, 93, 180, 210, 213).    

• High (20/10%) – NUEN / NUEP increases at twice the BAU rate. This rate of 

increase corresponds to ambitious scenarios in studies such as (19, 46, 64, 93) and is 

identical for NUEP but only slightly above the 15% assumed for NUEN in SSP1 10 

scenarios in (92). 

• Very high (30/15%) – NUEN / NUEP increases substantially. For NUEN, this level is 

compatible with the ‘Tech+’ scenario in (19, 64, 94) and Technogarden in (94), as 

well as the combined mitigation scenario in (42), but is slightly lower than the 

sustainable pathway target (38% assuming a baseline NUEN of 0.46) in (201) for 15 

NUEN.  Only two studies (86, 213) in the database (Data S1) assume considerably 

higher values but evidence from the field suggests that despite decades of 

investments in research and development, there are has been limited success in 

increasing NUEN (87, 214). For NUEP this corresponds to the most efficient 

scenarios in (46, 93).  20 

Nutrient recycling 

The recycling of nitrogen and phosphorus is a highly complementary strategy to 

boosting nutrient-use efficiency in agriculture, as it has the potential to reduce overall 

demand and application of chemical N and mined P (19, 46, 93, 210). Reducing losses and 

increasing phosphorus recycling are seen as key to achieving a more closed-loop 25 

anthropogenic phosphorus system (88, 215). While recycling of N or P within the agricultural 

system (e.g., from animal manure in grasslands or crop residues) is already incorporated in 

NUEN and NUEP estimates, any recycled P from sources outside this system, such as from 

imported manure, waste, and human excreta, could also be used to offset requirements for 

mineral P fertilizer. The recycling of human waste for the purposes of rice cultivation has 30 

been practiced for centuries in Asia (94). The extent to which this particular P source is likely 

to have a significant global impact in reducing P fertilizer use and P surplus in agriculture has 

been debated (215). Even though  it has been estimated that the complete recycling of all 

wastes and human excreta would have a relatively limited overall effect (up to ~30% overall 

reduction) on replacing mineral P fertilizer (46), we considered this intervention strategy 35 

important enough to warrant the inclusion of dedicated quantitative predictors (one for N and 

another for P) in our statistical meta-regression models.  

The Adapting Mosaic scenario from the Millennium Ecosystem Assessment exemplifies 

a storyline where this form of nutrient recycling features prominently (90, 210). This 

intervention is also explicitly modelled in (42, 46, 86, 92, 93, 213). While some studies and 40 

authors explicitly provide the percentages of increased nutrient recycling in their scenarios 

(19, 46, 86, 92, 94), other scenario storylines provide information that allowed an estimation 

of the percentage recycling of N or P. To consistently control for different levels of 

implementation of this intervention across studies, we calculated the percentage of nutrient 

inputs in the agricultural system originating from the recycling of human waste and sewage 45 

as a proxy for the overall offset of other forms of nutrients applied to cropland and grassland 

from within the agricultural system (manure and fertilizer) provided by nutrients recycled 

from human waste and sewage. A separate metric was calculated for N and P, as follows: 
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𝑁/𝑃𝑟𝑒𝑐 =  
𝑁/𝑃ℎ𝑢𝑚𝑎𝑛

(𝑁/𝑃ℎ𝑢𝑚𝑎𝑛 + 𝑁/𝑃𝑚𝑎𝑛𝑢𝑟𝑒 + 𝑁/𝑃𝑓𝑒𝑟𝑡)
  

 

(Eq. S5) 

Where N/Prec is the percentage of recycled N or P contribution to overall N or P in cropland 

and grassland, N/Phuman is the amount (in Tg yr-1) of recycled N or P from human waste and 

sewage used in the agricultural system, and N/Pmanure and N/Pfert are the amounts (in Tg yr-1) 5 

of manure and chemical or mined fertilizer applied. While ambitious P recycling scenarios 

are often (19), substantial amounts of N recycling from human waste and sewage only feature 

in a qualitative storyline in (46), with other studies (42, 86) finding that the recycling of 

removed N from wastewater would make a small contribution towards reducing overall 

fertilizer demand.  10 

Some scenarios also consider efforts to increase manure recycling. Applying manure 

as an organic fertilizer is a common practice in many parts of the world. In future scenarios, 

the extent to which this variable can be influential depends on whether there are increased 

numbers of animals in confined operations (211), or whether the storyline dictates that all 

manure must be recycled (93, 213), as in some SSP1 scenarios. We collected data that 15 

allowed us to calculated the % of N and P of total available manure N and P recycled on 

pasture and cropland as a proxy for how much of the total manure gets re-used in the field 

(both intensive and extensive cropland and grassland systems) minus any losses through 

volatilization in the case of N, following (94, 210). However, this metric could not be 

adequately harmonized across studies and was therefore not subsequently used as a predictor 20 

in the meta-regression models.  

In terms of intervention strategies, we focus here on the potential use of recycled P to 

offset mined P due to its higher recovery potential (216) compared to N whose potential to 

offset chemical N appears more limited (42). We established the following percentage levels 

of recycled P from household waste and sewage in agriculture based on the reviewed 25 

literature: 

• Low (0%) – This is consistent with most scenarios that assume no additional 

recycling of household waste and human excreta relative to the current situation and 

therefore no material contribution of this P source to an extent that offsets mined P 

(86). This setting is also applicable to all studies where nutrient recycling is not 30 

explicitly modelled as an intervention (28, 93, 140, 141, 217). 

• Trend (15%) – This is compatible with increased recycling of household waste and 

sewage as seen in SSP2 scenarios (86, 92, 211).  

• High (30%) – This setting is midway between the percentage offset in fertilizer 

deemed possible in (46) and the highly ambitious Tech+ scenario in (19, 64) which 35 

originates from (215). 

• Very high (45%) – This percentage is just below the 50% recycling rate assumed in 

the Tech+ scenario in (19, 64).   

1.4.3 Other unmodelled interventions in reviewed studies 

Organic agriculture 40 

An intervention modelled in some studies is that of conversion from conventional to 

organic agriculture (28, 150, 178). Only 1.4% of current total global farmland is under 

organic production (218). Organic agriculture has the potential to reduce environmental 

impacts because it avoids the use of off-farm inputs such as synthetic fertilizers and 
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pesticides and promotes locally adapted systems focusing on promoting crop rotations, soil 

health and biodiversity (56, 162). From a planetary boundaries risk perspective, while it does 

have the potential to significantly reduce fertilizer and pesticide use, organic agriculture tends 5 

to require more land than conventional agriculture and there are concerns around reduced 

productivity (28, 178).  

Recent studies have modelled scenarios that include different contributions from organic 

agriculture to the overall food production system (28, 178). The extent of organic production 

is typically defined as the percentage of area or food production under organic agriculture 10 

(28). To control for this intervention we specifically excluded scenarios that featured organic 

agriculture (28, 107) in N/P fertilizer and surplus-meta regression models but statistically 

controlled for the potential impacts of organic agriculture by using the percentage of cropland 

under organic production in the N2O in order to boost the sample size (Table S19). All other 

non-organic scenarios were assigned a 0% value under the assumption that they do not 15 

include a significant contribution from organic agriculture given no mention of this aspect in 

their storylines and the very low overall contribution from organic agriculture in study base 

years.     

Trade openness 

Global food trade is considered a lever for efficient redistribution of commodities, with 20 

many studies considering how boosting production in locations where agriculture is most 

efficient or where post-harvest losses are lowest could help reduce the overall environmental 

impacts of the food system (163, 206). Scenario storylines with more open trade regimes and 

economic liberalization are commonly associated with stronger global co-operation on 

environmental issues and lower overall environmental intensities (60, 152, 219). However, 25 

this premise is not universally accepted and also depends on the environmental indicator 

under consideration, with some studies showing potential environmental benefits from more 

self-sufficient and localized food production systems (180). Several studies in our dataset 

consider alternative trade regimes as deviations from the status quo, either towards more self-

sufficiency (i.e., regionalization) or through increased trade (i.e., globalization). While a few 30 

studies explicitly specify changes in trade openness as a percentage deviation from the 

baseline or BAU (106, 154), other studies only define the overall trade regime in qualitative 

terms (e.g., regional or self-sufficient versus more globalized or open). In many cases this is 

dictated by the underlying SRES, MA, or SSP scenario assumptions (60, 76, 141, 180).  

Due to the lack of sufficient and consistent information across studies, we did not 35 

include a specific predictor for trade in our models. Instead, we controlled for the effects of 

changing trade regimes and locations of production through the calculation of globally 

weighted average productivity metrics, namely waste fractions, crop yields, FCR and feed 

composition, GHG intensities, WUE, and NUE. In the case of (83) we also calculated a mean 

estimate of the dependent variable (cropland) across alternative trade scenarios to derive an 40 

average trade scenario.    

Disruptive/breakthrough technologies 

The overwhelming majority of scenarios in the reviewed studies focused on 

conventional food production interventions (i.e., currently available technologies and 

improved management practices) to achieve higher production efficiency through increases in 45 

crop yields, livestock feed efficiency, or other efficiency metrics. While significant efficiency 

gains achieved through these conventional means reflect changes to current practices that are 

transformational in nature (e.g., new highly productive crop breeds, technological innovation 

in water resource management), they all fall under the umbrella of sustainable intensification 
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(220-222) and are readily quantified by assumptions of future changes in the predictor 

variables described above (especially crop yields, FCR, WUE and NUE).  

Examples of food system technologies that are truly disruptive or breakthrough are 5 

those that entail large-scale consumption of so-called ‘future foods’ such as cellular or 

cultured meat, mycoprotein, insects, algae, and mussels (115); significant global transition to 

aquaculture-sourced protein (23); or alternative animal feed supply routes such as those based 

on industrial production of microbial proteins (113). These foods are characterized as 

disruptive as they rely on different production systems and supply chains that are less 10 

environmentally intensive compared to conventional food production systems (115) and 

because of their potential to become an important element of future sustainable food systems, 

Only two recent modeling studies have considered truly disruptive or breakthrough 

technologies. These include artificial meat (23) and technologies and feed supplements that 

can significantly reduce methane emissions in ruminant livestock or capture carbon emissions 15 

(132). As our chosen predictor variables could not fully capture the advantages or efficiencies 

of these systems, this variable was not included in any of the models. However, similarly to 

trade openness, we did not have to exclude the disruptive scenarios (23, 132) from all 

statistical models as their effect on resource use indicators was partly controlled for by Crop 

yields, FCRs and feed composition.  20 

1.4.4 Model fitting and selection   

LMMs for each planetary boundary indicator 

An LMM that follows the standard form of the random intercept model (in matrix 

notation, as proposed in 223) was fitted for each indicator (see Table S2), as follows: 

 𝑦𝑗,𝑠 = 𝑋𝑗,𝑠𝛽𝑗 + 𝑍𝑗,𝑠𝑏𝑗,𝑠 +  𝜀𝑗,𝑠 

 

(Eq. S6) 

where the response variable 𝑦𝑗,𝑠 is an 𝑛𝑗,𝑠-length vector of log response estimates for 25 

indicator j (e.g., log (future prediction/base year prediction)) where 𝑛𝑗,𝑠 is the number of 

scenario projections for indicator j in each study s. 𝑋𝑗,𝑠𝛽𝑗 is the fixed term where 𝑋𝑗,𝑠 is an 

𝑛𝑗,𝑠 × 𝑝𝑗 design matrix of the values of the 𝑝𝑗 predictor variables for indicator j all 𝑛𝑗,𝑠 

scenarios in each study s, and 𝛽𝑗 is a 𝑝𝑗-length vector of the fixed-effects regression 

coefficients for each predictor variable. The number of predictor variables 𝑝𝑗 differs for each 30 

indicator as each LMM includes only the relevant predictors. 𝑍𝑗,𝑠𝑏𝑗,𝑠 is the random term 

where 𝑍𝑗,𝑠 is the 𝑛𝑗,𝑠 × 𝑞 random effects design matrix containing values for q random effects 

for all 𝑛𝑗,𝑠 scenarios in each study s. 𝑏𝑗,𝑠 is a q-length vector of the random effects. Here, q = 

1 since model ID is the only random effect in our 10 LMMs. 𝜀𝑗,𝑠 is the error term represented 

by a 𝑛𝑗,𝑠-length vector of the residuals. The model assumes that the random effects 𝑏𝑗,𝑠 and 35 

the errors 𝜀𝑗,𝑠 are normally distributed (224). All response variables are continuous with 

Gaussian distributions, resulting in LMMs with LnR as the response variables to achieve 

normality and homogeneity of variance. This is similar to the approach recently followed by 

(21) who used percentage change relative to the base year as the response variable. All 

LMMs were fitted using the R package lme4 (225). 40 

We used a random intercept as opposed to the more flexible random slope model design, 

as some studies contribute many scenarios whereas others only a few, resulting in unequal 

and sometimes small lower-level sample sizes (126, 226, 227). We made an exception in the 

case of the water and N2O model where we also allowed a random slope for the yield fixed 

effects to control for significant differences in the dynamics of models with some explicitly 45 
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controlling for, while others disregarded, the impact of closing yields gaps on blue water 

consumption and N2O emissions respectively. Likelihood ratio tests performed using the 

anova function in base R were used to confirm the suitability of including both random 5 

slopes and intercepts in the random effect model structure for these indicators. Following the 

example of (228), we used model ID (as opposed to the more conventional study ID used in 

meta-analysis) as a random intercept to control for non-independence of scenarios across 

studies that report runs from a given model type or setup (e.g., GLOBIOM, IMAGE, 

MAgPIE) characterized by unique modeling assumptions and processes/feedbacks included. 10 

This approach also allowed predictions for the mean intercept (model) using the global mean 

value of the distribution of random effects (229). For example, where studies used the same 

model but report results for different scenarios (19, 64), they were assigned the same group 

model ID. Where models have undergone considerable change through time, we consulted 

lead authors and modelers about whether a new group model ID was required, e.g. in the case 15 

of several studies using different versions of the IMAGE or MAgPIE models.    

 During data collection we ensured that there were always five or more levels of the 

random grouping variable, considered as the minimum for achieving robust estimates of 

variance (230). While a more maximal random effect structure (231) with two random 

intercepts, one at the study and another at the model level, was used in a recent study (21), 20 

this reduced model fits while in our case, while resulting in over-parameterized models and 

loss of power given available sample sizes, as argued in (232). While some inevitable bias 

and instability may still be present in the LMMs due to the highly variable number of 

scenarios (some of which had timeseries while others only had 2050 projections) within each 

study, our chosen model design causes individual study estimates to drift towards the overall 25 

mean through shrinkage (an inherent property of mixed-effects models), a phenomenon that 

is strongest for studies with fewer scenarios (126, 230).   

Model selection, cross-validation and prediction 

While our goal when specifying models was to capture as much relevant information as 

possible, we chose only pertinent predictors and also carried out necessary aggregation (to 30 

derive process-based model variants – see Section 2.3.1) in order to avoid over-

parameterization. We selected between alternative fixed effect predictor structures on the 

basis of model prediction performance. The predictors and their respective levels, detailed 

above, were selected following discussions with study authors to understand the role of 

different scenario drivers and their anticipated influence on different indicators. We ensured 35 

that all variables for which adequate quantitative data was available either directly from the 

study, supplied by the authors on request, or calculated as continuous predictors in order to 

avoid information loss and ensure parsimony (233, 234). We fitted the global models using 

the following procedure: 

a. Visual inspection of the distributions of response variables was performed on 40 

the basis of Cullen and Frey graphs and quantile-quantile plots using the R 

packages fitdistrplus (235) and car (236). We also compared Akaike 

Information Criterion (AIC) values of fitted normal, lognormal, and gamma 

distributions. In all cases, normal distributions had the lowest AIC. We 

therefore assumed Gaussian distributions and fitted all models as linear mixed 45 

models (LMMs), with lnR as the response variables to improve normality and 

homogeneity of variance. The only exception was the Pasture model where, 

following (21), we used percentage change as the response variable as this 

produced a more normal distribution. All continuous predictor variables were 

standardized to improve model stability and the accuracy of parameter 50 
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estimates given large differences in scale between variables (e.g., between 

diet-related and productivity predictors) (237). 

b. We considered alternative fixed and random (in the case of blue water and 5 

N2O) effect structures ranging from the least parsimonious (all variables used 

as independent predictors), hybrid (selected aggregation of predictors e.g., per 

capita caloric demand estimates multiplied by population), and most 

parsimonious (process-based aggregates of independent predictors e.g., total 

feed demand by livestock type), and evaluated these options through cross-10 

validation, following best practice for predictive models (128). This included 

the testing the addition of an initial condition delta relative to 2010 base year 

values (see Table S25) following (101), The initial condition delta improved 

the fit for the cropland, blue water, methane, nitrous oxide, and Nfert models 

and was therefore kept as a fixed effect predictor in the selected models for 15 

these indicators. We used repeated cross-validation, repeating the cross-

validation 5 times with alternative fold numbers (over the range 3:k, where k 

was the number of random factors minus 1), implemented in the R package 

cvms (238) which explicitly controls for the random effect structure in LMMs. 

We finally selected the model with the best prediction skill (based on RMSE) 20 

for each environmental indicator to carry forward to the next stages of model 

selection and refinements described below.  

c. We screened predictors for collinearity based on variance inflation factors 

(VIFs) adjusted according to degrees of freedom (239). Predictors with a VIF 

> 5 were considered as potentially problematic (126). In cases where one or 25 

more predictors had a VIF approaching 5 we tested alternative models, where 

each time one of the predictors were omitted and the resultant models 

compared based on the AIC criterion using a likelihood-ratio test 

(Satterthwaite’s method) with the drop1 function in the R package stats (240). 

We then selected the predictor combination with the lowest AIC and 30 

recalculated the VIFs. If the selected model violated our VIF criterion this step 

was repeated until an appropriate model with the lowest possible AIC but with 

all VIFs below 5 was identified. 

d. The specified global model was fitted as a LMM with restricted maximum 

likelihood estimation using the R package lme4 (225). To test for homogeneity 35 

of residual variance, we examined normalized residuals versus fitted values for 

the entire model, for each study, and for selected explanatory variables (126, 

224). To test for normality of the residuals, we used QQ plots and plots of 

Pearson residuals. Where the fitted model did not fully meet the assumption of 

normalized residuals, we also used Cook’s distance metrics (using the car 40 

package) to establish the observations most responsible for introducing error to 

the model. For models that slightly violated such assumptions but were 

established to have the highest predictive accuracy through repeat cross-

validation, a robust version of the LMM was fitted to confirm that the model 

coefficients were not being biased by residuals or heteroscedasticity using the 45 

robustlmm package (241), following the example of (242). Recent work 

highlights that LMMs are often robust to such violations (243).  

e. To further improve the fit and to achieve a more normal distribution of 

residuals, we compared the fitted model coefficients in the LMM with those in 

the robust version and then excluded outliers with a standardized residual 50 
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greater than 2.5 or 3.0 standard deviations using the romr.fnc function in the R 

package LMERConvenienceFunctions (244) to better match coefficients in the 

LMM to those in the robust version, as per (245). This ensured that the largest 5 

possible number of data points was maintained while improving model fit to 

ensure that underlying model assumptions we not violated. Decisions made 

during this stage were also guided by marginal (i.e., variance explained by 

fixed effects) and conditional (i.e., variance explained by fixed and random 

effects) R2 estimates based on the method of (246) and calculated using the R 10 

package MuMIn (247). Model performance metrics of the final selected 

models are presented in Table S13. Full global model summaries, produced 

using the R package sjPlot (248), are presented in Section 2.3.3. 

f. We finally parameterized all relevant interventions spanning all levels of 

ambition (Section 1.4.2) according to the fixed effects structure of each 15 

selected indicator model. We then generated 2050 projections and associated 

prediction intervals using the ‘predictInterval’ function in the R package 

merTools (130) that draws a sampling distribution for random and fixed effects 

and then estimates the fitted value across that distribution, providing an 

efficient approximation to a parametric bootstrap. We used 2000 samples to 20 

calculate the 95% prediction interval around the mean, incorporating 

uncertainty of random and fixed effects, as well as residual variance from the 

model. We finally averaged the prediction intervals to derive normal 

distributions and standard deviations for each prediction.  

Table S13. Model performance metrics following repeat cross-validation with for selected meta-25 
regression models implemented in the R package cvms (238). [RMSE = root mean square error, AIC 

= Akaike Information Criterion, AICc = Akaike Information Criterion corrected for small sample 

sizes, R2m = marginal R-squared value, i.e., the percentage of variance explained by fixed effects, R2c 

= conditional R-squared value variance, i.e., the percentage of variance explained by fixed and 

random effects].  30 

Indicator Model type RMSE AIC AICc R2m R2c Effect size metric 

Cropland Process-based 0.13 -2699.28 -2699.12 0.68 0.88 LnR 

Pasture Process-based 0.19 -291.407 -291.247 0.78 0.85 % change 

CH4 Process-based 0.11 -1338.89 -1338.38 0.80 0.96 LnR 

N2O Process-based 0.19 -768.263 -767.359 0.61 0.92 LnR 

CO2 LUC Process-based 1655 69841 69841 0.62 0.80 Mt CO2e yr-1 

Blue water Process-based 0.15 -1619.3 -1618.87 0.79 0.94 LnR 

Nfert Process-based 0.15 -1116.21 -1115.72 0.80 0.88 LnR 

Nsurplus Process-based 0.16 -1091.57 -1090.97 0.80 0.92 LnR 

Pfert Process-based 0.22 -1150.45 -1149.84 0.82 0.96 LnR 

Psurplus/Pinstream Process-based 0.21 -162.131 -158.336 0.84 0.95 LnR 

1.4.5 Calculating exceedance risk for modelled projections 

To derive exceedance risk estimates for each model prediction in a way that 

encompassed both uncertainty in environmental limits (Section 1.2) and the uncertainty in the 

statistical model predictions given by the prediction intervals, we used a simulation-based 

approach. We calculated the risk of exceeding (ERj,l) each indicator j for all combinations of 35 

predictor variable levels l (see Table 2 in main manuscript) as: 
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 𝐸𝑅𝑗,𝑙 = 𝑃(𝑌𝑗,𝑙 > 𝑋𝑗) 

  

 

 

 

 

 

(Eq. S7) 

where Yj,l is a random draw from the normal distribution of the LMM estimate (mean = 

prediction estimate and SD = standard deviation of prediction estimates (see step f. in Section 

1.4.4). Xj is a random draw from the probability density function representing the uncertainty 5 

in environmental limits for each planetary boundary (Table S2). Both Yj,l and Xj are expressed 

in native units. We approximated both distributions by taking 10,000 random draws using the 

R packages stats (240) and extraDistr (249). Fig. S2 illustrates the ER calculation for the 

land-system change planetary boundary in the case where all interventions are set to their 

Trend level (see Table S25 for all Trend level projections).  10 

 

Fig. S2. Illustrative example of the ER calculation method to account for uncertainty in LMM 

predictions and environmental limits. ER for land-system change is calculated as the probability of a 

random value from the normal distribution of prediction estimates (Mean = 5441 Mha, SD = 487 

Mha) exceeding a random value from the triangular distribution of land-system change environmental 15 
limits (a = 3019 Mha, b = 3309 Mha, c = 5460 Mha), based on 10,000 random draws from each 

respective distribution. ER = 0.98 in this case. 

1.4.6 Establishing risk-compliant combinations 

To enable the final mapping of the performance of all intervention combinations against 

their risk mitigation and ambition level we merged all risk results for each planetary 20 

boundary into one integrated dataset based on matching intervention levels across all the 

common interventions (available across all indicator statistical models): population, diet 

change (animal and plant calories), waste reduction, crop yields, feed efficiency (FCR), and 

feed composition. The resulting dataset spanned 2,097,152 plausible intervention level 

combinations across all boundaries (Table S14).  25 

Table S14. Modelled interventions and total intervention-level combinations for each planetary boundary and 

combined for all planetary boundaries.  

Planetary boundary 
Interventions 

included 
Total 

combinations 
Common interventions (+additions)  

Land-system change 7 47 = 16,384 
Animal kcal, Plant kcal, Waste, Crop yields, FCR, 
FCF. 

Climate change 8 48 = 65,536 + Climate action 

Freshwater use 8 48 = 65,536 + WUE 

Biogeochemical flows 8 48*2 = 131,072 
+ NUE/PUE. Both were allowed to vary independently 
of each other to create two pooled risk datasets for N 
& P respectively. 
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Planetary boundary 
Interventions 

included 
Total 

combinations 
Common interventions (+additions)  

Integrated dataset 11 2,097,152 

The four individual planetary boundary indicator results 
were merged on the basis of common interventions 
starting from land-system change. This resulted in a 
total of 16,384*4*4*4*2 combinations.  

Using the integrated dataset with all intervention-level combinations across all 

boundaries, we then filtered the scenarios that met two critical IPCC-calibrated uncertainty 

risk thresholds (250) across all boundaries: < 0.50 risk (exceedance about as unlikely as not) 5 

and < 0.33 risk (exceedance unlikely) and categorized them in terms of the type and level of 

each intervention required to achieve each threshold. The selected scenarios can be presented 

in Pareto plots in Fig. S6 that illustrate the trade-off between intervention level (calculated as 

the average ambition level across all relevant interventions) and exceedance risk (calculated 

as per Fig. S2). carried out additional analysis to calculate. 10 
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2 Supplementary Text 

2.1 Additional calculations and data harmonization 

Our priority when extracting and compiling the data was to maximize sample sizes 5 

across all indicators while ensuring the highest quality datasets with the most complete set of 

input variables. A primary means for achieving this was to maximize the number of studies 

and scenarios included in our final dataset (Data S1). Many published articles or reports did 

not report all relevant parameters (see Table S5) for each scenario. This required significant 

additional efforts to source and harmonize data to ensure compatibility between studies.  10 

Several additional calculations and unit conversions based on established conversion 

factors, were necessary to ensure a harmonized dataset compatible with planetary boundary 

indicators (see notes in T1 Data S1). All data containing original values supplied by the study 

authors along with any additional R scripts containing additional calculations carried out 

during the compilation of the input database (Data S1) are available on request. 15 

2.1.1 Global weighted averages 

A disaggregated regional analysis was not possible due to the heterogeneous definitions 

of regions used between studies. For this reason, where input parameters (see Table S5) were 

reported or directly supplied by study authors as regional per capita averages (Data S1), we 

calculated the population- or production- weighted global averages. The equation below 20 

presents an example for calories, as follows: 

 𝑥𝑊𝑂𝑅𝐿𝐷2050 = ∑ (𝑥𝑖2050 ∗
𝑃𝑜𝑝𝑖2050

𝑃𝑜𝑝𝑊𝑂𝑅𝐿𝐷2050
)

𝑛

𝑖=1

 

 

 

 

 

 

 

(Eq. S8) 

where 𝑥𝑊𝑂𝑅𝐿𝐷2050 is the weighted global average caloric intake for 2050, n is the number of 

regions used in the study (n varies depending on the study as studies tend to use different 

regional classification), and 𝑃𝑜𝑝𝑖2050 and 𝑃𝑜𝑝𝑊𝑂𝑅𝐿𝐷2050 are the regional and global 

populations, respectively.  25 

In studies that provided food consumption excluding waste (19, 23, 64, 76), an 

additional regional weighting factor was added to convert food consumption to food supply 

as per the FAOSTAT Food Balance Sheet definition, using cumulative waste estimates 

encompassing all stages of production and final consumption (155). In cases where food 

demand was expressed in mass units, we used mass-to-calorie conversion factors calculated 30 

from (142) to ensure all food supply data was expressed in comparable caloric terms. These 

converted food supply estimates were shared with the respective study authors who approved 

their use. This procedure ensured compatibility across all studies inclusive of waste.  

Where only regional or country-level data were provided, we calculated production-

weighted global averages for all efficiency metrics such as crop yields, FCR and feed 35 

composition, GHG intensities, WUE, and NUE, in order to control for spatial reallocation in 

production as well as to control for other unmodelled parameters such as trade (see Section 

1.4.2).   

2.1.2 Handling of scenarios with changes in biofuel and other non-food demand 

Given our focus on food and feed demand, our study scope and search strategy 40 

excluded studies with a focus on changes in future demand for biofuels and other crops (i.e., 

fibre and industrial crops) not used for food or feed (see Fig. S1 and Section 1.1.4). However, 
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several studies (or selected scenarios within studies) included storyline elements that 

involved future demand changes with significant implications that needed to be controlled for 

in the analysis. In accordance with our priority to maximize study sample sizes and scenario 5 

numbers, we followed a workflow (Fig. S3) to control for any additional crop demand 

associated with biofuels and non-food crops on a study-by-study basis.  

 

Fig. S3. Workflow diagram illustrating the steps followed to control for biofuel and non-food crop demand in 

relevant scenarios across all selected studies. 10 
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Following Fig. S3, the 35 studies that contained the full suite of necessary input and 

output data (see Data S1) and were therefore eligible for training the meta-regression models 

(see Table S4 & Table S5) were classified as follows: 5 

a) Eight (8) studies (19, 23, 40, 64, 83, 141, 150, 217) employed food systems 

models or approaches that completely excluded biofuel and non-food crops from 

their base year or future scenarios. In this case we made no adjustments to any of 

the output (indicator) or input variables.  

b) Fourteen (14) studies (28, 31, 42, 46, 76, 86, 94, 105, 132, 135, 140, 153, 164, 10 

165) considered base year impacts (e.g., cropland area used for biofuel and non-

food crops) but held demand and associated impacts from biofuel and non-food 

crops constant into the future, reflecting their absence from any of the scenario 

storylines. Some studies note that for base years at or before 2010 the amount of 

global cropland area used by biofuel and non-food crops was very low compared 15 

to food and feed crops (109, 164).  

c) Eight (8) studies (75, 92, 93, 107, 152, 193, 194, 213) included scenario storylines 

(e.g., SSPs) that assumed changes in future biofuel demand that make a material 

contribution to differences in environmental impact but also provided 

disaggregated results. In these cases, we used future environmental impact 20 

estimates that only accounted for the additional demand in food crops along with 

compatible food-specific input variables (e.g. caloric totals). Studies also assume 

that demand for non-food competing second-generation biofuels (cellulosic 

ethanol feedstocks and wasted vegetable oils and fats) is likely to grow further, 

whereas biomass feedstock for first-generation biofuels is expected to decline (75, 25 

152, 194).       

d) Three (3) studies (60, 61, 154) also assumed changes in future biofuel and non-

food crop demand with important implications on aggregate environmental impact 

but did not provide disaggregated results of these additional impacts. However, 

production totals of the crops used exclusively for non-food uses were available 30 

through supplementary data that allowed estimates of caloric demand using crop-

specific mass-to-calorie conversion factors calculated from (142). We note that in 

(61) there may have been some unaccounted-for demand for non-food crops due 

to inherent limitations in the version of GCAM used in that study that did not 

allow a complete partitioning of crop demand according to its use.  35 

e) Two (2) studies (149, 210) had scenarios with strong biofuel assumptions but we 

were unable to disaggregate any input or output data to allow us to control for this 

additional demand as per the studies in c) or d) above. We therefore eliminated 

these scenarios from the analysis. Specifically, in the case of (210) we eliminated 

the Technogarden 2050 projection as this entailed >500Mha of cropland used for 40 

energy crops but we did not have estimates of the amount of N and P associated 

with these crops. In (149) we did not consider the scenario variant that entailed a 

major expansion of first-generation biofuels. These scenario eliminations had 

minimal impact on sample sizes as, in both cases, we included all other scenarios 

that assumed zero or negligible non-food demand changes.  45 
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2.2 Greenhouse gas emissions 

2.2.1 Non-CO2 GHG emission categories 

The following direct emission categories were included in the analysis (see Data S1 for 5 

full GHG emissions breakdown) consistent with IPCC Agriculture in AR6 (35, 73) and with 

FAOSTAT ‘within the farm gate’ emission categories (251, 252): 

• CH4 from enteric fermentation.  

• CH4 from rice cultivation.  

• CH4 from manure management 10 

• N2O from manure management 

• N2O associated with agricultural soils including synthetic fertilizers, biological 

fixation, manure left on pasture, manure applied to crops, crop residues and cultivated 

organic soils. Many studies only included a single aggregated category while others 

included slightly more detailed classifications distinguishing between manure and 15 

fertilizer categories.  

All estimates were sourced in their respective native units (see Data S1) and were fully 

harmonized using the revised AR6 global warming potential (GWP-100) factors of 27.2 for 

biogenic CH4 and 273 for N2O (253). CH4 and N2O associated with crop residue and 

savannah burning and indirect N2O emissions from aquatic ecosystems were not included in 20 

the analysis as these emission categories were not provided in most papers and only account 

for a <10% of total agriculture emissions (251).  

2.2.2 Modelling CO2 associated with land-use change 

Agriculture emissions from land use and land-use change activities are highly uncertain 

(78, 254), with studies often adopting different assumptions with respect to the biophysical 25 

processes and emission sources included (54, 255). This is also the case for the studies in our 

database as determined following an audit of all 11 studies that included CO2 LUC estimates 

(Data S1). We also ascertained that training a statistical model based on the LUC estimates 

from published studies would produce estimates that would not be compatible with our 

climate change planetary boundary (Table S2) or our cropland and pasture storylines and 30 

predictions. For this reason, we did not fit a model using the LUC data presented in our 

database, which have nevertheless been compiled for completeness, with notes indicating the 

processes included or excluded (see T4, Data S1). 

Similarly to (40), our agricultural land use estimates (cropland and pasture in our case) 

are global totals which creates a challenge in estimating land use change emissions because 35 

agricultural land expansion and abandonment occurs at national and subnational scales, with 

spatial patterns of land use change the key determinant of the ecosystems and respective 

carbon stores being impacted (76, 109). Using our estimates of cropland and pasture, we 

calculated annual change (ha yr-1) for the period 2010-2050 by subtracting the base year 

estimates from the 2050 projection estimates. We assumed a constant clearing rate during this 40 

period, as per (109). 

We then explored two alternative approaches. The first was based on average figures of 

emissions and sequestration per hectare associated with cropland expansion (+333 tonnes 

CO2) and abandonment (-211 tonnes CO2) from the period 2006 to 2010 using spatial 

estimates of carbon stores in living biomass and soil coupled with patterns of land clearing 45 
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over the previous decade (40). While this approach produced figures of annual CO2 LUC 

emissions comparable to the literature (40) when coupled with our cropland predictions, it did 

not account for emissions associated with pasture expansion (76) and could also not be 5 

integrated with other intervention settings such as carbon price to ensure storyline 

compatibility with assumptions round non-CO2 GHG intensity. We therefore adopted an 

alternative approach.  

Using a large sample of 4,835 CO2 LUC estimates spanning the period 2010-2050 

representing all land use models runs used in IPCC AR6 (73, 255) available in the Integrated 10 

Assessment Modeling Consortium (IAMC) AR6 Scenario Database (35) for models already 

represented in our database, we fitted an additional LMM with annual change in CO2 LUC 

emissions (delta LUC emissions, or ‘Emissions|CO2|AFOLU’ as per the AR6 nomenclature) 

as the dependent variable, and annual change in cropland (delta cropland), pasture (delta 

pasture), carbon price, afforestation beyond regrowth associated with agricultural 15 

abandonment/expansion (delta afforestation), and year as fixed effect predictors. Following 

the example of (228), we assigned Model ID as the random factor to account for the 

association of data associated with each model, thus controlling for the variation between 

models. We followed the same sequence of steps for model selection, and tests for 

collinearity and outliers as previously described in Section 1.4.4 (see also Table S13 for 20 

cross-validation statistics and Table S20 for final model summary). To generate predictions, 

we used our annualized estimates for cropland and pasture expansion/abandonment along 

with the four carbon price settings (0-$200 t CO2
-1). In our predictions we also set delta 

afforestation equal to zero as we do not consider CO2 sequestration associated with 

afforestation efforts beyond regrowth in abandoned areas, and the year to 2030 to reflect the 25 

possible locations of land-use change occurring during the mid-point of the 2010-2050 

period. Our 2050 BAU mean projection of 3.52 (SD = 1.16) Gt CO2e associated with 2029 

(SD = 156) Mha of cropland and 3412 (SD = 462) Mha of pasture area is comparable to the 

MAgPIE BAU projection of ~3.75 Gt CO2e (108, 256) while the upper estimate (mean + 

2*SD) is comparable to the IMAGE estimate of ~6 Gt CO2e (256).   30 

A number of important assumptions and caveats need to be acknowledged. As per (40), we 

only considered CO2 GHG emissions associated with land use change and we allocate all 

emissions to the year of agricultural expansion/abandonment. We assumed independence and no 

collinearity between fixed effects terms, as confirmed by VIFs <3. Our statistical approach 

also assumes that, on average, the emissions and sequestration associated with each hectare 35 

of cropland/pasture expansion and abandonment are the same despite known differences 

between deforestation and reforestation carbon exchange parameters (76, 109). Carbon 

sequestration associated with biomass supplied for bioenergy coupled with carbon 

sequestration (BECCs) is outside the scope of the analysis as this is attributed to the energy 

sector as opposed to the agriculture sector in IPCC AR6 land use models (255).   40 

2.3 Model variables and summaries 

2.3.1 Model parameterization and variable selection 

As previously described (Section 1.4.4), for each indicator we tested alternative fixed 

effects structures ranging from the least parsimonious (all relevant variables used as 

independent predictors) to more parsimonious (process-based aggregates of variables used as 45 

independent predictors). As per Table S13, the selected models were those that used process-

based composite variables as predictors due to both due to their superior inference and 

improved prediction skill. The following sub-sections summarize the parameterization logic 
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behind the choice of composite variables (see Section 2.3.2) used in each statistical model 

(see Section 0). 

Land-system change 5 

We assumed that cropland extent is determined by the total demand (consumption + 

waste) for food crops (see Eq. S9) in addition to feed requirements for monogastric and 

ruminant livestock products (109). Crop yield increases can reduce overall cropland demand 

whereas higher feed efficiencies or changes in feed composition (i.e., reductions in the food-

competing feed fraction) across each livestock type can offset their respective demands for 10 

feed. We excluded studies where cropland was not an explicit output of the modelling (86, 

164, 205), studies that had very limited crop coverage (141, 165), and also scenarios in (23) 

that assumed no feed from pasture.  

We assumed that pasture extent is determined by the total demand (consumption + 

waste) for grazing animals, namely ruminant meat (beef cattle, sheep and goats) and dairy 15 

cattle (see Eq. S20). Higher feed efficiencies or changes in feed composition (i.e., increases 

in the food-competing feed fraction) across each livestock type can then offset demand for 

pasture-derived feed. Similarly to cropland, we excluded studies where pasture was not an 

explicit output of the modelling (164), as well as studies (28) and scenarios (23) that kept 

pasture area constant.  20 

Freshwater use 

We assumed that blue water consumption is primarily driven by irrigation requirements 

for growing food (Eq. S9) and feed crops (Eq. S17), the latter of which is a product of the 

amount and type of animal products consumed along with their respective feed efficiency and 

feed composition (257). We allowed a random slope for the yield fixed effects to control for 25 

the heterogeneity that exists between the underlying models in terms of the relationship 

between crop yields and water (see Section 1.4.4). Higher feed efficiencies and changes in 

feed composition (i.e., reductions in the food-competing feed fraction) across each livestock 

type were assumed to reduce demand for crop feed and associated irrigation requirements 

(135). Total plant calories (Eq. S9) and water-use efficiency (defined as the ratio of crop 30 

yield to the volume of water consumed, see Section 1.4.2) were also added as fixed effects 

predictors. We excluded studies that had limited crop coverage (205) or did not model the 

relationship between crop yields and water demand (105). 

Climate change 

To model CH4, we defined composite predictors to cover the three key sources: enteric 35 

fermentation, manure management, and rice cultivation (see Section 2.2.1). We assumed that 

ruminant meat and dairy supply acts as the key determinant of enteric fermentation, with 

enteric fermentation from non-ruminant animals known to be very modest in comparison 

(258). To capture CH4 associated with manure management we specified composite 

predictors that also account for the total amount of feed in both ruminant (Eq. S21) and non-40 

ruminant animals (Eq. S23) as a determinant of total manure production, controlling also for 

livestock productivity, which in turn determines livestock numbers and feed demand (174). 

Total plant calories (Eq. S9) were used as a proxy for rice demand and we also fitted a cereal 

crop yield variable as a unique fixed effect predictor. Higher yields in rice paddies have been 

shown to reduce methane emissions since methane emissions are correlated to paddy area 45 

rather than the quantity of production (132). A CH4 intensity predictor (calculated as a 

weighted average across all CH4 emission components, as detailed in Section 1.4.2) was also 

added as a fixed effects predictor. While our selected predictors incorporate the positive 
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impact of lower FCRs on CH4 from enteric fermentation and manure, our statistical models 

and the granularity of our feed data did not allow us to model the impact of feed composition 

(174). We excluded studies that did not provide a breakdown of non-CO2 emissions (19, 64).  5 

To model N2O, we defined composite predictors to cover all key sources: agricultural 

soils (synthetic fertilizer and manure left on pasture are by far the most dominant sources) 

and manure management from confined animal operations (see Section 2.2.1). We assumed 

that both crop (Eq. S17) and grass feed (Eq. S20) require nutrient fertilization and assigned 

separate predictors in each case to account for the differences in N2O emission processes 10 

associated with cropland and pasture (259). This was also intended to capture potential trade-

offs, as in the case where reduced N2O emissions from fertilizer application due to a shift in 

feed composition away from crop feed towards grass feed (i.e., reductions in FCF) could be 

outweighed by nitrogen oxidation from manure and leguminous forage (260). We also 

assumed that manure production is proportional to total feed intake (258). As in the case of 15 

blue water consumption, we allowed a random slope for the yield fixed effects to control for 

the heterogeneity that exists between the underlying models in terms of the relationship 

between crop yields and N2O (see Section 1.4.4). Total plant calories (Eq. S9) and a N2O  

intensity predictor (calculated as a weighted average across all CH4 emission components, as 

detailed in Section 1.4.2) in addition to a predictor controlling for the percentage of land 20 

under organic production (see Section 1.4.3) were also added as fixed effects predictors. We 

excluded studies for which the upstream CO2 emissions associated with fertilizer production 

could not be separated (40), and studies with unresolved issues around the breakdown of N2O 

emissions into different sources (23, 107). 

For parameterization of the CO2 LUC model please see Section 2.2.2. 25 

Biogeochemical flows 

For the Nfert and Pfert models we assumed that fertilizer application is driven primarily by 

food and feed crops, the latter of which is a product of the amount and type of animal 

products consumed along with their respective feed efficiency and feed composition. This is 

consistent with (209) who reported that <5% of fertilizer nitrogen is applied to grassland. 30 

While in the Nfert model we distinguished between ruminant and non-ruminant crop feed (see 

Eq. S15 and Eq. S16), for Pfert we aggregated all crop feed into one single predictor (Eq. S17) 

to avoid collinearity. Similarly to the other models, we also fitted fixed effects predictors for 

total plant calories (see Eq. S9) and crop yields. In addition, we fitted two separate fixed 

effects predictors to control for the level of nutrient-use efficiency (NUEN / NUEP) and 35 

nutrient recycling (N/Prec) following the approach detailed in Section 1.4.2. Studies with very 

few numbers of scenarios (217), those that lacked consistent NUE and yield metrics (140, 

141), and scenarios with organic agriculture (107) were excluded.  

For the Nsurplus and Psurplus models, we also accounted for the significant impact of 

manure from pasture, which contributes significantly to agricultural N and P surplus (94). We 40 

did this by assigning separate predictors for monogastric feed (Eq. S15) and ruminant feed 

(Eq. S20 for Psurplus and Eq. S21 for Nsurplus in order to address collinearity issues). As in the 

case of the Nfert and Pfert models, we also fitted fixed effects predictors for total plant calories 

(see Eq. S9), crop yields, and nutrient-use efficiency (NUEN / NUEP). We did not consider 

nutrient recycling (N/Prec) for surplus indicators as recycling of household waste and/or 45 

wastewater has minimal impact on surplus over agricultural land (42). We excluded (28) 

from the Nsurplus model due to radically different base year starting values and all organic 

scenarios from (28) that assumed negative surplus in the Psurplus model. 
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2.3.2 Composite variables used as predictors 

The following equations describe the calculation of the composite variables presented in 

the selected model summaries (Section 0). 5 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑝 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝐹𝑜𝑜𝑑𝑆𝑢𝑝𝑝𝑙𝑦𝑝 

 

(Eq. S9) 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑟 =  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝐹𝑜𝑜𝑑𝑆𝑢𝑝𝑝𝑙𝑦𝑟 

 

(Eq. S10) 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑑 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝐹𝑜𝑜𝑑𝑆𝑢𝑝𝑝𝑙𝑦𝑑  

 

(Eq. S11) 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑚 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝐹𝑜𝑜𝑑𝑆𝑢𝑝𝑝𝑙𝑦𝑚 (Eq. S12) 

𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑟 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑟 ∗ 𝐹𝐶𝑅𝑟 ∗ 𝐹𝐶𝐹𝑟 

 

(Eq. S13) 

 

 
𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑑 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑑 ∗ 𝐹𝐶𝑅𝑑 ∗ 𝐹𝐶𝐹𝑑  

 

(Eq. S14) 

𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑚 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑚 ∗ 𝐹𝐶𝑅𝑚 ∗ 𝐹𝐶𝐹𝑚 

 

(Eq. S15) 

𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑟𝑑 = 𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑟 + 𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑑 

 

(Eq. S16) 

𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑟𝑑𝑚 = 𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑟𝑑 + 𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑚 

 

(Eq. S17) 

𝐺𝑟𝑎𝑠𝑠𝐹𝑒𝑒𝑑𝑟 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑟 ∗ 𝐹𝐶𝑅𝑟 ∗ (1 − 𝐹𝐶𝐹𝑟) 

 

(Eq. S18) 

𝐺𝑟𝑎𝑠𝑠𝐹𝑒𝑒𝑑𝑑 = 𝑇𝑜𝑡𝑆𝑢𝑝𝑝𝑙𝑦𝑑 ∗ 𝐹𝐶𝑅𝑑 ∗ (1 − 𝐹𝐶𝐹𝑑) 

 

(Eq. S19) 

𝐺𝑟𝑎𝑠𝑠𝐹𝑒𝑒𝑑𝑟𝑑 = 𝐺𝑟𝑎𝑠𝑠𝐹𝑒𝑒𝑑𝑟 + 𝐺𝑟𝑎𝑠𝑠𝐹𝑒𝑒𝑑𝑑 

 

(Eq. S20) 

𝐴𝑙𝑙𝐹𝑒𝑒𝑑𝑟𝑑 = 𝐺𝑟𝑎𝑠𝑠𝐹𝑒𝑒𝑑𝑟𝑑 + 𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑟𝑑  

 

(Eq. S21) 

𝑂𝑡ℎ𝑒𝑟𝐹𝑒𝑒𝑑𝑚 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑚 ∗ 𝐹𝐶𝑅𝑚 ∗ (1 − 𝐹𝐶𝐹𝑚) 

 

(Eq. S22) 

𝐴𝑙𝑙𝐹𝑒𝑒𝑑𝑚 = 𝐶𝑟𝑜𝑝𝐹𝑒𝑒𝑑𝑚 + 𝑂𝑡ℎ𝑒𝑟𝐹𝑒𝑒𝑑𝑚 

 

(Eq. S23) 

  where r are ruminant meats (beef, mutton and goat), d is dairy (milk excluding butter), m are 

monogastric products (chicken, pork, eggs, and aquaculture), p are all crops directly 

consumed by humans, FCR is the feed conversion ratio, and FCF is the ratio of feed from 

crops in direct competition with food. rd is used when referring to combined totals for all 

ruminant animals. All variables are standardised as multipliers relative to their base year 10 

value across each study. 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦 estimates were converted from kcal to kg based on 

disaggregated commodity energy to mass conversions in the FAOSTAT 2010 balance sheets 

(142) to ensure compatibility with FCR units. 𝑂𝑡ℎ𝑒𝑟𝐹𝑒𝑒𝑑𝑚 refers to non-FCF residues and 

by-products as per (28, 29).  

  15 
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2.3.3 Statistical model summaries 

Below we present the model summaries of each of the LMMs fitted using the R 

package lme4 (225) along with robust LMM versions fitted using the R package robustlmm 5 

(241) for each of the environmental indicators. Each table presents fixed effect coefficients 

and their confidence intervals, random effect attributes including mean random effect 

variance (σ2), random intercept variance (τ00), intra-class correlation coefficient (ICC, 

calculated as random intercept variance over total variance) and number of groups (NStudy), 

and overall model goodness-of-fit estimates such as the Akaike information criterion (AIC). 10 

For variable definitions see Section 2.3.2). %∆ denotes change relative to the base year value. 

All tables were produced with the R package sjPlot (261). 
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Table S15. Cropland (LnR) model summary.  

  Cropland (LMM) Cropland (robust LMM) 

Predictors Estimates CI P Estimates CI p 

(Intercept) 0.02 -0.07 – 0.03 0.354 0.01 -0.07 – 0.03 0.393 

CropFeedr (%∆) 0.02 0.01 – 0.02 <0.001 0.02 0.01 – 0.02 <0.001 

CropFeedd (%∆) 0.04 0.04 – 0.05 <0.001 0.05 0.04 – 0.05 <0.001 

CropFeedm (%∆) 0.07 0.06 – 0.07 <0.001 0.07 0.06 – 0.07 <0.001 

TotalSupplyp (%∆) 0.11 0.10 – 0.11 <0.001 0.11 0.10 – 0.11 <0.001 

Crop yields (%∆) -0.15 -0.15 – -0.14 <0.001 -0.15 -0.15 – -0.14 <0.001 

Initial condition delta 0.03 -0.00 – 0.06 0.053 0.04 0.00 – 0.07 0.037 

Random Effects             

σ2 0.01 0.01 

τ00 0.01 Model 0.01 Model 

ICC 0.63 0.59 

N 17 Model 17 Model 

 

Observations 1380 1421 

Marginal R2 / Conditional R2 0.690 / 0.884 0.699 / 0.877 

AIC 3106.190   

AICc -3106.059   
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Table S16. Pasture (delta %) model summary. 

  Pasture (LMM) Pasture (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) -0.22 -0.28 – -0.16 <0.001 -0.21 -0.28 – -0.14 <0.001 

GrassFeedrd (%∆) 0.35 0.34 – 0.37 <0.001 0.36 0.35 – 0.38 <0.001 

Initial condition delta -0.02 -0.05 – 0.02 0.332 -0.01 -0.05 – 0.02 0.374 

Random Effects             

σ2 0.02 0.02 

τ00 0.01 Model 0.01 Model 

ICC 0.30 0.37 

N 13 Model 13 Model 

 

Observations 455 470 

Marginal R2 / Conditional R2 0.783 / 0.848 0.784 / 0.864 

AIC -347.108   

AICc -346.977   
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Table S17. Blue water consumption (LnR) model summary. 

  Blue water (LMM) Blue water (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) -0.07 -0.12 – -0.01 0.016 -0.06 -0.12 – -0.01 0.030 

CropFeedrdm (%∆) 0.04 0.03 – 0.04 <0.001 0.04 0.03 – 0.04 <0.001 

TotalSupplyp (%∆) 0.14 0.14 – 0.15 <0.001 0.14 0.14 – 0.15 <0.001 

Crop yields (%∆) 0.04 -0.00 – 0.07 0.051 0.03 -0.01 – 0.08 0.098 

WUE (%∆) -0.14 -0.15 – -0.13 <0.001 -0.14 -0.15 – -0.12 <0.001 

Initial condition delta -0.03 -0.05 – -0.02 <0.001 -0.03 -0.05 – -0.02 <0.001 

Random Effects             

σ2 0.00 0.00 

τ00 0.01 Model 0.01 Model 

τ11 0.05 Model.Yield 0.07 Model.Yield 

ρ01 -0.77 Model -0.82 Model 

ICC 0.71 0.74 

N 7 Model 7 Model 

 

Observations 732 735 

Marginal R2 / Conditional R2 0.798 / 0.942 0.782 / 0.943 

AIC -1886.779   

AICc -1886.474   
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Table S18. Methane (LnR) model summary. 

  CH4 (LMM) CH4 (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.08 0.02 – 0.13 0.005 0.08 0.03 – 0.13 0.001 

AllFeedr (%∆) 0.17 0.16 – 0.18 <0.001 0.18 0.17 – 0.18 <0.001 

AllFeedd (%∆) 0.08 0.07 – 0.09 <0.001 0.08 0.08 – 0.09 <0.001 

AllFeedm (%∆) 0.02 0.02 – 0.03 <0.001 0.02 0.01 – 0.02 <0.001 

TotalSupplyp (%∆) 0.01 0.01 – 0.02 <0.001 0.01 0.01 – 0.02 <0.001 

Crop yields (%∆) -0.02 -0.02 – -0.01 <0.001 -0.02 -0.02 – -0.01 <0.001 

CH4-intensity (%∆) -0.10 -0.10 – -0.09 <0.001 -0.10 -0.10 – -0.09 <0.001 

Initial condition delta -0.04 -0.06 – -0.02 <0.001 -0.03 -0.05 – -0.02 <0.001 

Random Effects             

σ2 0.00 0.00 

τ00 0.01 Model 0.01 Model 

ICC 0.79 0.82 

N 12 Model 12 Model 

 

Observations 548 556 

Marginal R2 / Conditional R2 0.805 / 0.960 0.853 / 0.974 

AIC -1601.111   

AICc -1600.701   
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Table S19. Nitrous oxide (LnR) model summary. 

  N2O (LMM) N2O (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.13 0.05 – 0.22 0.003 0.14 0.05 – 0.23 0.003 

GrassFeedrd (%∆) 0.10 0.09 – 0.10 <0.001 0.10 0.09 – 0.10 <0.001 

CropFeedrdm (%∆) 0.12 0.11 – 0.13 <0.001 0.12 0.12 – 0.13 <0.001 

TotalSupplyp (%∆) 0.05 0.03 – 0.06 <0.001 0.04 0.03 – 0.06 <0.001 

Crop yields (%∆) 0.01 -0.02 – 0.04 0.560 0.01 -0.03 – 0.05 0.562 

N2O-intensity (%∆) -0.08 -0.09 – -0.07 <0.001 -0.08 -0.09 – -0.07 <0.001 

Organic area (%) -0.06 -0.07 – -0.05 <0.001 -0.06 -0.07 – -0.05 <0.001 

Delta initial -0.04 -0.05 – -0.02 <0.001 -0.04 -0.05 – -0.03 <0.001 

Random Effects             

σ2 0.01 0.00 

τ00 0.01 Model 0.01 Model 

τ11 0.05 Model.Yield 0.06 Model.Yield 

ρ01 0.00 Model -0.03 Model 

ICC 0.67 0.72 

N 9 Model 9 Model 

 

Observations 415 418 

Marginal R2 / Conditional R2 0.688 / 0.898 0.711 / 0.920 

AIC -866.420   

AICc -865.644   
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Table S20. CO2 LUC (Mt CO2e yr-1) model summary. See Section 2.2.2 for additional information. 

  CO2 LUC (LMM) CO2 LUC (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) 1714.86 1193.38 – 2236.33 <0.001 1741.58 1173.80 – 2309.36 <0.001 

Delta pasture 416.20 362.29 – 470.11 <0.001 432.44 374.09 – 490.79 <0.001 

Delta cropland 556.45 510.37 – 602.53 <0.001 611.27 563.51 – 659.04 <0.001 

Delta afforestation  -128.94 -185.15 – -72.73 <0.001 -150.07 -209.67 – -90.46 <0.001 

Carbon price -393.74 -432.13 – -355.36 <0.001 -406.88 -447.59 – -366.17 <0.001 

Year -1595.71 -1634.26 – -1557.1 <0.001 -1609.46 -1650.27 – -1568.6 <0.001 

Random Effects             

σ2 1363770.78 1520109.12 

τ00 1226381.08 Model 1383665.43 Model 

ICC 0.47 0.48 

N 18 Model 18 Model 

 

Observations 4729 4835 

Marginal R2 / Conditional R2 0.623 / 0.801 0.599 / 0.790 

AIC 80261.064   

AICc 80261.094   

  

   

 

  



61 

 

Table S21. Nfert (LnR) model summary.  

 Nfert (LMM) Nfert (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.08 0.03 – 0.12 0.001 0.08 0.04 – 0.12 <0.001 

CropFeedrd (%∆) 0.06 0.05 – 0.08 <0.001 0.07 0.05 – 0.08 <0.001 

CropFeedm (%∆) 0.03 0.01 – 0.04 <0.001 0.03 0.01 – 0.04 0.001 

TotalSupplyp (%∆) 0.09 0.09 – 0.10 <0.001 0.09 0.09 – 0.10 <0.001 

Crop yields (%∆) 0.02 0.01 – 0.03 <0.001 0.02 0.01 – 0.03 <0.001 

NUEN (%∆) -0.18 -0.19 – -0.17 <0.001 -0.18 -0.19 – -0.17 <0.001 

Nrec (%) 0.00 -0.01 – 0.01 0.809 0.00 -0.01 – 0.02 0.761 

Initial condition delta 0.03 0.01 – 0.06 0.013 0.04 0.01 – 0.06 0.008 

Random Effects             

σ2 0.01 0.01 

τ00 0.00 Model 0.00 Model 

ICC 0.34 0.28 

N 9 Model 9 Model 

 

Observations 737 743 

Marginal R2 / Conditional R2 0.816 / 0.878 0.809 / 0.863 

AIC -1388.418   

AICc -1388.115   
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Table S22. Nsurplus (LnR) model summary. 

  Nsurplus (LMM) Nsurplus (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.01 -0.05 – 0.07 0.708 -0.00 -0.06 – 0.06 0.993 

AllFeedrd (%∆) 0.03 0.02 – 0.04 <0.001 0.03 0.02 – 0.04 <0.001 

CropFeedm (%∆) 0.10 0.08 – 0.11 <0.001 0.10 0.08 – 0.11 <0.001 

TotalSupplyp (%∆) 0.09 0.08 – 0.09 <0.001 0.09 0.08 – 0.10 <0.001 

Crop yields (%∆) -0.02 -0.02 – -0.01 <0.001 -0.02 -0.02 – -0.01 0.001 

NUEN (%∆) -0.15 -0.15 – -0.14 <0.001 -0.15 -0.16 – -0.14 <0.001 

Initial condition delta -0.03 -0.04 – -0.01 0.001 -0.02 -0.04 – -0.00 0.016 

Random Effects             

σ2 0.00 0.00 

τ00 0.01 Model 0.00 Model 

ICC 0.54 0.49 

N 6 Model 6 Model 

 

Observations 595 601 

Marginal R2 / Conditional R2 0.848 / 0.931 0.845 / 0.921 

AIC -1476.236   

AICc -1475.928   
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 Table S23. Pfert (LnR) model summary. 

  Pfert (LMM) Pfert (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) -0.02 -0.08 – 0.04 0.460 -0.02 -0.07 – 0.03 0.408 

CropFeedrdm (%∆) 0.09 0.08 – 0.10 <0.001 0.09 0.08 – 0.10 <0.001 

TotalSupplyp (%∆) 0.09 0.09 – 0.10 <0.001 0.10 0.09 – 0.10 <0.001 

Crop yields (%∆) 0.03 0.01 – 0.04 <0.001 0.03 0.01 – 0.04 0.001 

NUEP (%∆) -0.04 -0.05 – -0.03 <0.001 -0.04 -0.06 – -0.03 <0.001 

Nrec (%) -0.31 -0.32 – -0.31 <0.001 -0.31 -0.32 – -0.30 <0.001 

Initial condition delta 0.01 -0.01 – 0.03 0.379 0.01 -0.01 – 0.03 0.403 

Random Effects             

σ2 0.01 0.01 

τ00 0.01 Model 0.00 Model 

ICC 0.51 0.37 

N 8 Model 8 Model 

 

Observations 601 605 

Marginal R2 / Conditional R2 0.916 / 0.959 0.924 / 0.952 

AIC -1303.060   

AICc -1302.755   
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Table S24. Psurplus (LnR) model summary. Pinstream is calculated from Psurplus as described in Table S2. 

  Psurplus (LMM) Psurplus (robust LMM) 

Predictors Estimates CI p Estimates CI p 

(Intercept) 0.20 0.12 – 0.28 <0.001 0.19 0.08 – 0.30 0.001 

GrassFeedrd  (%∆) 0.04 0.01 – 0.07 0.002 0.06 0.04 – 0.08 <0.001 

CropFeedrdm (%∆) 0.11 0.09 – 0.13 <0.001 0.12 0.10 – 0.14 <0.001 

TotalSupplyp (%∆) 0.01 -0.01 – 0.03 0.320 0.02 -0.00 – 0.03 0.080 

Crop yields (%∆) 0.06 0.03 – 0.08 <0.001 0.06 0.04 – 0.07 <0.001 

NUEP (%∆) -0.14 -0.15 – -0.13 <0.001 -0.14 -0.15 – -0.13 <0.001 

Nrec (%) 0.01 -0.04 – 0.06 0.747 0.03 -0.03 – 0.09 0.349 

Random Effects             

σ2 0.00 0.00 

τ00 0.01 Model 0.01 Model 

ICC 0.72 0.88 

N 5 Model 5 Model 

 

Observations 102 107 

Marginal R2 / Conditional R2 0.817 / 0.948 0.793 / 0.976 

AIC -228.439   

AICc -226.482   
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2.4 Assumptions and limitations  

2.4.1 Lack of spatially-explicit impacts 

Our analysis focused on four planetary boundaries (land-system change, freshwater use, 

climate change, biogeochemical flows). These four boundaries and the 10 relevant 

environmental indicators selected to represent them (Section 1.2), were chosen due to their 

representation in the global food system scenario modeling literature, enabling adequate 

sample sizes for statistical analysis. Given the global scope of our analysis and the challenges 

entailed in extensive data collection from studies with disparate spatial and analytical 

modeling scopes, we only considered global environmental indicators. This did not account 

for spatially explicit planetary boundary transgressions and their impacts at the regional level 

(Section 1.2). For TotalAgArea, these were derived at the global level, without explicitly 

accounting for the three individual biomes of tropical, temperate and boreal forest (17). Not 

accounting for local or regional impacts underestimates exceedance risk across the spatially-

dependent planetary boundaries of land-system change, freshwater use, and biogeochemical 

flows, with recent work focusing on adding regional granularity to the freshwater use (41) 

and biogeochemical flow (262) boundaries .   

While our estimates of environmental limits encompassed wide uncertainty ranges 

incorporated in published estimates as well as the full range in potential future share of the 

global food system proxies for both overall boundary and regional uncertainty (Table S2), 

recent analyses highlight the added importance of process-detailed spatially explicit 

assessments to concurrently account for both local and global impacts (31, 263). Other work 

is also developing approaches to downscale planetary boundaries to the country-level (30, 45, 

264, 265). A growing body of simulation results with harmonized country- and regional- 

level results from multi-model assessments (97, 185, 266), along with a better understanding 

of local biophysical thresholds and appropriate allocation methods, should enable more 

comprehensive risk-based assessments of future scenarios to be carried out at finer levels of 

spatial resolution.  

2.4.2 Omitted planetary boundaries 

As a result of our focus on specific boundaries, our analysis did not encompass the 

potential risk contribution of the food system on other environmental indicators and planetary 

boundaries. In addition to the four planetary boundaries explicitly quantified in our study, 

agriculture has been identified as a major contributor to impacts across other planetary 

boundaries including biosphere integrity, ocean acidification, stratospheric ozone depletion, 

and novel entities (13).    

While land-system change control variables encompass elements of anthropogenic 

impact on biodiversity, biosphere integrity was not explicitly considered in our analysis. It is 

estimated that agriculture accounts for around 80% of total anthropogenic impact on the 

status of the biosphere integrity boundary, based on the assumption that genetic and 

functional diversity losses are primarily driven by land-use change (13, 17, 267). While a few 

recent assessments have modelled global food system impacts on extinction rates (64) and the 

biodiversity intactness index (BII) (31, 263), it was not possible for us to include biodiversity 

indicators due to very small study sample sizes. Given the continuing impact of population 

and agriculture in highly biodiverse locations such as the tropics (103, 268), in addition to the 

many strong interactions of biosphere integrity with other planetary boundaries (269, 270), 

not considering biodiversity impacts is likely to lead to an underestimation of risk of global 

food system futures. Also likely to be underestimated is the risk mitigation potential of 

interventions that reduce cropland/pasture expansion such as increases in crop yields, feed 
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efficiency, and GHG mitigation through afforestation, as well as demand-side measures that 

reduce aggregate food demand.   

As a major source of CO2 emissions and nutrients from fertilizers to the world’s oceans, 

agriculture is a major contributor to ocean acidification, estimated at 25% of total 

anthropogenic impact on this planetary boundary (13). No study identified during the 

systematic search contained estimates of future impacts of agriculture on ocean acidification, 

despite this having been specified in our search string (Search results were exported from 

ProQuest as spreadsheets and the percentage of test list articles retrieved in each search was 

assessed in order to optimize the search string. An initial 20% retrieval rate using ProQuest 

alone was improved to >50% when using the final search string. Ultimately an 80% retrieval 

rate (16/20 test list articles found) was achieved after search results from all four databases 

were combined (Data S2). No further refinements to the search string were made after this 

point to prevent a significant increase in the number of retrieved studies (over 5000) with 

little improvement to the overall retrieval rate of relevant articles. A total of 2548 studies 

(journal articles plus book chapters) were exported to Endnote for abstract screening (Fig. 

S1). 

An anticipated challenge was to ensure adequate coverage of the grey literature given its 

importance in this research space (21). Further literature searches were conducted to retrieve 

relevant grey literature from reputable institutions using a simplified version of the final 

search string in the Google search engine. Further searches were conducted by adding a URL 

domain restriction such as those belonging to specialist organizations such as the FAO, 

World Bank, CGIAR, IFPRI, WRI, UNEP, UNCCD. A recent review article (22) was also 

used to identify additional reports from the grey literature. A total of 17 such reports were 

retrieved and exported to Endnote for further screening (Fig. S1).   

 

Table S1). In a similar way as for biodiversity, the omission of ocean acidification from 

our analysis is likely to underestimate risk and the risk reduction achieved by measures that 

curb land-use change.  

The use of chemical fertilizers and manure in agriculture has an impact beyond the 

biogeochemical flows boundary, contributing around 5% to stratospheric ozone depletion via 

the historical influence of chlorofluorocarbon emissions (13). However, as the major source 

of anthropogenic N2O (currently the most potent ozone-depleting substance), it is expected to 

have much greater impact on ozone depletion in the future (86, 211). Another class of 

chemicals widely used in agriculture—pesticides—are encompassed in the novel entities 

planetary boundary (17). However, there is not yet an aggregate, global-level control variable 

or a planetary boundary value for novel entities. While abundant fertilizer and some pesticide 

estimates (28, 271) were available, it was not possible to relate these to explicitly quantify 

their impact on the planetary boundaries of ozone depletion and novel entities despite a 

general expectation that impacts from agriculture on these boundaries are likely to increase. 

We would assume that interventions such as nutrient-use efficiency and nutrient recycling 

would have a positive risk reduction impact on ozone depletion, while crop yield increases 

through conventional farming practices would likely entail significant trade-offs for both 

stratospheric ozone depletion and novel entities. Regenerative farming practices such as 

organic agriculture may also lead to reductions in risk for these planetary boundaries. 
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2.4.3 Unexplained variance in statistical models  

The wide scope and statistical nature of our analysis meant that we were not able to 

encompass all possible interventions and predictors that are likely to affect each indicator. 

Several factors and dynamics acting at different spatial scales that could impact individual 

indicators have not been accounted for, as we were not able to obtain sufficient quantitative 

information across published studies to quantify them. Below is a list of potentially important 

aspects that we were not able to quantify but would expect, based on scenario storylines and 

the wider scientific literature, to account for some of the unexplained variance (related to 

marginal R2 values for fixed effects) in our statistical models: 

• Grassland and pasture intensification. This is an important productivity parameter for 

ruminants (83). While feed efficiency and food-competing feed account for some of 

the unaccounted-for variance, a dedicated pasture productivity variable would like 

improve the Pasture LMM fit.  

• Rainfed area contribution to production. Expansion and improved efficiency and 

yields in rainfed areas is a key strategy for reducing water consumption in agriculture 

(164, 205). The water-use efficiency metric (Section 1.4.2) is supposed to control for 

this aspect as the denominator is total irrigated and rainfed production, meaning that 

higher yields in rainfed areas translates into a higher overall WUE thus reducing 

irrigation demand. This point is also related to aggregation bias due to not having 

enough data across papers to allow separate predictors for irrigated and rainfed yields 

(Section 2.4.4).   

• Land-use regulation and conservation actions. Stricter regulation of land use is a key 

measure to limit total agricultural area and reduce GHG emissions (272), this is 

currently under-represented in most models (97). While this was partly accounted for 

through the use of a carbon price (Section 1.4.2), a more robust quantitative variable 

such as the area set aside for nature conservation, would have allowed explicit 

inclusion of this crucial parameter across the land-system change control variables.  

• Trade openness. See discussion in Section 1.4.2.  

• Complex dynamics and non-linearity. The assumption of linear responses between 

increased efficiency and mitigation across control variables is a limitation of our 

statistical approach. This is especially the case for Biogeochemical Flows where 

nutrient-use efficiency has a non-linear relationship with Nfert/Nsurplus because of the 

possibility of declining spatial efficiency of N across regions, as has been historically 

observed (180, 273). Similarly, complex non-linear dynamics impact on stocks of 

residual soil phosphorus stocks in cropland and negative soil phosphorus budgets 

(deficits) in intensively grazed grasslands (93), meaning that an assumed linear 

relationship between nutrient-use efficiency and Pfert/Psurplus/Pinstream may be an 

oversimplification.  

2.4.4 Aggregation bias 

Due to the global scope of the analysis, we calculated weighted global averages of 

several regionally or sectorally disaggregated parameters which introduced aggregation bias. 

The following are key sources of bias and their likely effects on the results:  

• No distinction between rainfed and irrigated yields. It is well known that yields differ 

between rainfed and irrigated agriculture, with significantly higher yield gaps and 

opportunities for improvement in rainfed areas (161, 164). However, this level of 

disaggregation was not available across most studies. 
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• No distinction between different monogastric products. Eggs, chicken, pork, and 

aquaculture differ widely in environmental impact but the models were not of 

sufficient fidelity to explicitly capture this nuance (82). 

• No explicit modelling of the effects of regional trends in agricultural productivity, 

population, income growth and urbanization on food demand and environmental risk. 

All projections and risk estimates presented in the analysis are global totals. This 

ignores potentially diverging trends across different regions due to the complex 

interplay of the aforementioned drivers (103, 274, 275). However, such regional 

dynamics are incorporated into the storylines and weighted global averages of the 

quantitative variables used as inputs to the meta-regression models.  

• Incomplete set of intervention combinations. To limit scenario numbers and 

computational challenges, interventions such as reductions in animal calories or feed 

efficiency were applied uniformly across livestock types. While the chosen 

intervention levels ensure consistency by reflecting the range in the published 

literature, different animal-source foods have highly diverse environmental effects 

(82). Our models use different predictor variables for ruminant meat (beef and lamb), 

dairy, and monogastric products (pork, chicken, eggs, and aquaculture) to capture 

such effects. It is therefore likely that there are more intervention level combinations 

than those identified that meet risk thresholds (e.g., through further reductions in 

ruminant meat and concomitant increases in dairy or monogastric products). This 

would allow exploring more desirable or feasible combinations suited to different 

geographic and socio-cultural settings (276).  
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2.5 Additional meta-model results 

2.5.1 Base year and BAU projections  

Table S25. Base year and BAU projections for 2050 across all planetary boundary indicators. BAU estimates 

assume that population, diet (animal and plant calories), waste, crop yields, feed efficiency (FCR) and feed 

composition will follow recent trends while climate action, water-use efficiency, nutrient-use efficiency, and 

nutrient recycling will remain at low (current) levels of ambition. 

  Base year (2010) Trend - All intervention settings (2050) 

Planetary 
boundary 

Indicator Units Mean 
estimate 

Mean 
projection 

Standard 
deviation 

Risk of 
exceedance 

Land-system 
change 

Cropland Mha 1520a 2013 155 - 

Pasture Mha 3277a 3413 516 - 

Total agricultural area Mha 4797 5427 538 0.97 

Climate change 

Methane 
Mt CO2e 
yr-1 

3659b 4676 229 - 

Nitrous oxide 
Mt CO2e 
yr-1 

1964b 2592 209 - 

Land-use change 
Mt CO2e 
yr-1 

4900c 3567 1177 - 

Total direct agriculture 
emissions 

Mt CO2e 10523 10835 1226 0.98 

Freshwater use Blue water consumption km3 yr-1 1807d 2793 190 0.72 

Biogeochemical 
flows – N 

Nitrogen fertiliser Tg yr-1 103.7e 167.9 14.6 1.00 

Nitrogen surplus Tg yr-1 134.4f 201.0 14.3 1.00 

Biogeochemical 
flows – P 

Phosphorus fertiliser Tg yr-1 17.9e 29.6 2.39 1.00 

Phosphorus instream Tg yr-1 4.76g 5.34 0.76 1.00 

a FAOSTAT Land Use Domain (48) 
b FAO Tier 1 IPCC Agriculture using AR6 GWP-100 factors (251) 
c UNFCC mean annual GHG flux for 2000–2010 from land use and land-use change (277) 
d Springmann et al. (2018) (19) 
e FAOSTAT Fertilizers by Nutrient (278) 
f Willet et al. (2019) (64) 
g Beusen et al. (92) 

2.5.2 Mitigation barplots for all indicators across intervention levels 

This section presents mitigation potentials for each of the 10 environmental indicators 

across all intervention levels, estimated using the statistical meta-regression models (Section 

1.4). These results complement here in terms of percentage increase complement the 

exceedance risk presented in the main manuscript.  
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Fig. S4. Modeled effect size (percentage deviation relative to 2010 base year) values for all Land-

System Change and Climate Change indicators under a range of settings for the 8 relevant 

interventions. Each bar/boxplot presents the distribution of projection estimates for all levels of 

mitigation ambition across all other interventions. Bars denote mean percentage deviation, boxes 

denote median and 25th/75th percentiles, and whiskers denote 5th/95th percentiles [see Data S4 for 

full dataset. Dark/light grey text above bars indicates mean values (Mha for Cropland/Pasture, Mt 

CO2e yr-1 for CH4/N2O/LUC based on AR6 GWP-100 factors) for mean trend setting and deviation 

relative to Trend for all other columns. Missing bars correspond to interventions excluded from 



71 

 

individual models due to lack of relevance, adverse impacts on model performance, collinearity, or 

missing/insufficient data. [R= ruminant meat, D = dairy, M = monogastric protein including 

aquaculture and eggs, all calories are expressed in food intake terms, with the 0% waste setting being 

equivalent to food supply in FAOSTAT Food Balance Sheets (142) assuming current rates of retail 

and household waste (19, 155)].  

 

Fig. S5. Modeled effect size (percentage deviation relative to 2010 base year) values for all Land-

System Change and Climate Change indicators under a range of settings for the 10 relevant 
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interventions. Each bar/boxplot presents the distribution of projection estimates for all levels of 

mitigation ambition across all other interventions. Bars denote mean percentage deviation, boxes 

denote median and 25th/75th percentiles, and whiskers denote 5th/95th percentiles [see Data S4 for 

full dataset. Dark/light grey text above bars indicates mean values (km3 yr-1 for blue water 

consumption, Tg P/N yr-1 for N/P fertilizer and surplus) for mean trend setting and deviation relative 

to Trend for all other columns. Missing bars correspond to interventions excluded from individual 

models due to lack of relevance, adverse impacts on model performance, collinearity, or 

missing/insufficient data. [R= ruminant meat, D = dairy, M = monogastric protein including 

aquaculture and eggs, all calories are expressed in food supply terms compatible with FAOSTAT 

Food Balance Sheets (142), assuming current rates of retail and household waste (19, 155)]. 

2.5.3 Final mapping of risk-compliant combinations 

 

Fig. S6. Trade-offs between average mitigation ambition and risk reduction for all boundaries. Shown 

are the combined Pareto front which assumes equal-priority weighting of all four boundaries (large 

panel, n = 2,097,152), and Pareto fronts for each planetary boundary (smaller panels, where n = 47 = 

16,384 for land-system change, n = 48 = 65,536 for climate change, n = 48 = 65,536 for freshwater 

use, and n = 48*2 = 131,072 for biogeochemical flows. Pareto sets (dark grey circles) represent the 

most efficient (non-dominated) scenarios where trade-offs between the objectives of risk reduction 

and level of mitigation ambition, both of which should ideally be kept as low as possible, are 
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minimized. Any additional risk reduction (moving left along the x-axis) is possible at the given level 

of mitigation ambition (y-axis), or vice versa, where the same risk reduction cannot be achieved with 

a lower level of mitigation ambition. Based on IPCC calibrated uncertainty language (250), blue dots 

denote the scenarios with < 0.50 risk (exceedance about as likely as not) across all boundaries while 

the red dots are the subset of scenarios with < 0.33 risk (exceedance unlikely – for climate change this 

threshold is set to 0.40). The clouds of light grey dots are all the scenarios that do not belong to the 

Pareto set and also exceed the 0.5 condition for at least one planetary boundary.  
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