

Assessing on-farm soil health indicators under Norwegian conditions

<u>Tatiana Rittl</u>, R. Pommeresche, NORSØK

Norwegian Centre for Organic Agriculture

(NORSØK)

Core areas:

- Organic plant production
- Recycling org. materials
- Soil fertility and health
- Animal health and welfare
- Climate effects of agriculture

On-farm soil health indicators under Norwegian

conditions

- Only 3% is agriculture land.
- Snow, freeze-thaw cycles.
- Midnight sun, dark winters.
- Soils with high content of SOM, but not always.

Soil health in different agricultural "habitats"

Organic milk farm

grass-clover (GC) ley in different ages and permanent pasture

Conventional potato field

residual effect of different organic materials

Indicators

- Carbon content
- Active carbon
- Soil respiration
- Earthworms
- Plant residues
- Cotton cloth
- Tea-bag
- Soil structure
- Aggregate size
- Aggregate stabitily
- Root depth
- Penetration depth
- Infiltration
- Pore Volume
- Bait lamina
- •

On-farm soil biological indicators

- Soil respiration
- Feeding activity
- Soil microbiology

Soil respiration

Feeding activity

Soil microbiology

Soil respiration

Feeding activity

Feeding activity

Soil microbiology

Inform

Soil health indicator potential

Indicator value

Max. value for the indicator in farm

Organic milk farm

Conventional potato farm (residual effect)

Conclusions

- Tests significantly differentiate between organically milk farm and conventional potato field, with the first showing better values for soil health.
- Tests do not always differentiate between areas/treatments within the production systems.
- In the organic milk farm, permanent pasture showed a trend of better soil health than cultivated areas.
- In the conventional potato field, selected soil health tests were not sensitive to capture the residual effects of the organic amendments, and untreated and treated soil showed very similar values.
- The visualization of the high potential level is a valuable approach to inform farmers and advisors about soil health.

Thank you!

More info:

https://www.norsok.no/ https://www.youtube.com/channel/UCyq6 x7OFN83nIPP9518OoDg/videos https://orgprints.org/id/eprint/43527/

Tatiana F. Rittl tatiana.rittl@norsok.no

