Contribution of four cover crops to SOM fractions and emissions of N₂O under NORSØK Norwegian conditions

<u>Rittl, T. F.¹</u>; Bárcena, T. G.²; Farkas, É.²; Henriksen, T. M.²; Kjær, S. T.³; Dörsch, P.³ and Frøseth, R. B.²

¹Norwegian Centre for Organic Agriculture (NORSØK); ²Norwegian Institute of Bioeconomy Research (NIBIO); ³Norwegian University of Life Sciences (NMBU)

Objective

In the **CAPTURE project**, we are evaluating to what degree cover crops contribute to sequestration of carbon (C) and emission of N_2O under Norwegian conditions.

Norges miljø- og biovitenskapelige universitet

Enviromental conditions

Soil type: Artificially drained Umbric Epistagnic Retisol Mean annual temperature: 5.7 °C Total annual precipitation: 795 mm

Pulse labelling with ¹³C

We pulse labelled four different cover crop species; Italian ryegrass (IR), phacelia (PH), oilseed radish (OR) and summer vetch (SV) with ¹³C -CO₂ through their growing

S NIBIO

Methods

N₂O emissions

In neighbouring plots, N₂O emissions from the same cover crops, grown in barley, were measured in manual chambers and with a field flux robot after

period. Cover crops were grown in a monoculture to ensure detectable amounts of ¹³C.

Fig.2. Soil sampling at the end of the growing season. POM and MAOM fractions.

Fig.1. ¹³C-pulse labelling events.

At the end of the growing season, we measured how much ¹³C was found in the soil particulate organic matter (POM) fraction and in the mineral organic matter fraction (MAOM).

threshing.

Fig.3. Overview of the two experiments.

Fig.4. N₂O measurements with manual chambers(left) or robot (right).

Preliminary results Soil C sequestration

The results show that these cover crops allocated much more C to the aboveground than into roots and exudates. SV had the smallest percentage of ¹³C in the belowground fractions.

Fig. 5. Allocation of ¹³C to different p fractions and soil.

N₂O emissions

Norges miljø- og biovitenskapelige universitet

Fluxes were highly variable over the year. High N₂O emissions during freeze-thaw cycles in spring has a major impact on total emission under our conditions.

Fig.7. A: Daily averages of N_2O fluxes measured. B: Average soil temperature at 2 cm depth measured in control plots.

At the end of the growing season, as expected, the POM fraction was more enriched with ¹³C than the MAOM fraction. Both fractions were more enriched in the PH than in the other cover crop types.

Fig. 6. $\delta^{13}C$ in the different soil organic matter fractions. Red cross is the ¹³C of unlabelled soil.

IR potentially reduces N_2O emissions, while OR tend to increase N_2O emissions during winter.

Fig.8. Examples of N₂O fluxes as a function of preceding soil temperature. Plots including cover crops oilseed radish (left) and Italian ryegrass(right) are compared to controls with no cover crop.

www.norsok.no

NORSØK Norsk senter for økologisk landbruk Gunnars veg 6, NO-6630 Tingvoll

Tatiana F. Rittl tatiana.rittl@norsok.no