Plant Biomarker Pattern Apples grown with various availability of organic nitrogen and with or without the use of pesticides

Helle Weber Ravn (her[a]dmu.dk)¹, Trine F. Christensen¹, Brigitte Diedrichsen¹, Charlotte V. Kristensen¹, Anders K. Jensen¹, Carina L. Husted¹, Hanne Lindhard Petersen², Kirsten Brandt² & Jan Buch Andersen³ ²Danish Institute of Agricultural Sciences, Dept. of Terrestrial Ecology, P.O. Box 314, Vejlsøvej 25, DK-8600 Silkeborg, Denmark, tel.: +45 8920 1400, fax: +45 8920 1413
²Danish Institute of Agricultural Sciences, Dept. of Horticulture, Kirstinebjergvej 10, DK-5792 Aarslev
³Biotech Line AS, Industrivej 3, P.O. Box 60, DK-3550 Slangerup, Denmark

Introduction

In the recent years there has been an increasing focus on the quality and health value of organic plant products compared with conventional products.

The use of pesticides and concentrated fertilisers in conventional agriculture implies a risk of effects on plant composition, which may affect health of the consumer (Brandt & Mølgaard, 2001).

To determine if organically grown plant food could provide more or less benefits to health than conventional food, a first step is to investigate the differences in the composition and relative concentration of natural compounds in the plant products.

In this project apples were grown with two levels of nitrogen availability and with or without the use of pesticides. The apples were screened for changes in the phytochemical composition and concentration.

The work is affiliated to the project "Organic food and health" supported by the Danish Research Centre for Organic Farming (DARCOF).

Screening process

Sample preparation Application on stationary phase (TLC-plate) Development in mobile phase Derivatization with chemical reagent Detection of biomarkers

Hypothesis

The composition and relative concentration of natural compounds differs (a biomarker pattern) if the plants are grown:

with low or high N and with or without pesticides

Screening programme

Groups of phytochemical compounds detected in 46 Thin layer chromatography (TLC) systems (Christensen & Diedrichsen, 2002):

- · Alcohols and phenolic compounds
- Carbohydrates
- · N-containing compounds
- · Organic acids and lipids
- · P-containing compounds
- · S-containing compounds
- Terpenoids
- Several of the above mentioned groups

Sample preparation

Plant extracts used for screening are obtained using fresh, frozen or freeze-dried plant material. The plant material is either pressed or extracted with suitable solvents and centrifuged before screening.

Plant material

Apples, Malus domesticus Borkh. var. Otava were harvested primo October 2001. The trees and alleyway ground-cover treatments were established in 1995 in Aarslev and cultivated organically and unsprayed until 2001.

Parcel 1:

High N: The alleyways between the tree rows were sown with a mixture of Persian clover (Trifolium resupinatum) and Italian ryegrass (Lolium multiflorum) each year primo July. Mulched in April, followed by mechanical weed cleaning. No pesticides.

Parcel 2:

Low N: The alleyways were covered with a permanent grass mixture, consisting of red fescue (Festuca rubra) and meadowgrass (Poa pratensis) No pesticides.

Parcel 3:

High N: As in parcel 1. Pesticides (only in 2001): Kresoxim-methyl, Dithianon, Mancozeb, Triforin (Fungicides), Phosalon (Insecticide). Parcel 4:

Low N: As in parcel 2.

Pesticides: As in parcel 3

Conclusion

Biomarkers and biomarker patterns were presented in plants cultivated with low and high N and with pesticides.

- One biomarker was related to:
- the type of N with and without pesticides • pesticides at high N and type of N without
- pesticides
- · pesticides at low and high N

One biomarker pattern was related to:

- the type of N
- the type of N without pesticides
- pesticides at low N and type of N without pesticides
- pesticides at high N and type of N with pesticides

Results		Biom	arkers		
Cultivated with or without:	Pesticides		No pesticides		
Cultivated with Type of N:	Low N	High N	Low N	High N	Causal relation
Organic acid/lipids	n.d	х	n.d	х	Type of N
Carbohydrates	х	n.d	х	n.d	Type of N
S-containing compounds	n.d	n.d	х	n.d	Type of N without pesticides
S-containing compounds	n.d	n.d	х	n.d	Type of N without pesticides
Organic acid/lipids	n.d	x	х	n.d	Type of N with and without pesticides
Organic acid/lipids	х	х	n.d	х	Pesticides at low N and type of N without pesticides
Organic acid/lipids	х	х	n.d	х	Pesticides at low N and type of N without pesticides
N-containing compounds (amino acid)	х	х	х	n.d	Pesticides at high N and type of N without pesticides
Phenolic compounds (flavonoid)	(x)	n.d	х	х	Pesticides at high N and type of N with pesticides
Phenolic compounds (flavonoid)	х	n.d	х	х	Pesticides at high N and type of N with pesticides
Phenolic compounds (flavonoid)	(x)	n.d	х	х	Pesticides at high N and type of N with pesticides
Terpenoids	n.d	n.d	х	х	Pesticides at low and high N

x: presence of biomarkers

n.d: not detected

National Environmental Researd Institute (NERI) is a research institute affiliated to the Danish Ministry of the Environment.

NERI's mission is to provide a sound and informed scientific basis for environmental decisions making at the politic administrative and commercia

National Environmental Research Institute (NERI) Dept. of Terrestrial Ecology Vejlsøvej 25, P.O. Box 314, DK-8600 Silkeborg, Denmark Tlf.: +45 89 20 14 00 Fax +45 89 20 14 14 www.dmu.dk

In 2000 an international PCT patent application: "An assay method and kit for testing biological material for exposure to stress using biomarkers" (WO 01/92879 A1), PCT /DK01/00377) was filed at the European Patent Office with the purpose of international patent protection.

Reference

Brandt, K. & Melgaard, J.P. (2001): Organic agriculture: does it enhance or reduce the nutritional value of plant foods? J. Sci. Food Agric. 81, 924-931. Christensen, T.F. & Diedrinsen, B. (2002): A new phytochemical screening programme used for organic and conventional crops. Master Thesis, The Royal Danish School of Pharmacy and The National Environmental Research Institute.

	DIOII	larkers		
Pesti	cides	No pesticides		
Low N	High N	Low N	High N	Causal relation
n.d	х	n.d	х	Type of N
х	n.d	х	n.d	Type of N
n.d	n.d	x	n.d	Type of N without pesticides
n.d	n.d	х	n.d	Type of N without pesticides
n.d	х	х	n.d	Type of N with and without pesticides
х	x	n.d	х	Pesticides at low N and type of N without pesticides
х	х	n.d	х	Pesticides at low N and type of N without pesticides
х	х	х	n.d	Pesticides at high N and type of N without pesticides
(x)	n.d	х	х	Pesticides at high N and type of N with pesticides
х	n.d	х	х	Pesticides at high N and type of N with pesticides
(x)	n.d	х	х	Pesticides at high N and type of N with pesticides
n.d	n.d	х	х	Pesticides at low and high N