

Forschungsinstitut für biologischen Landbau FiBL info.suisse@fibl.org | www.fibl.org

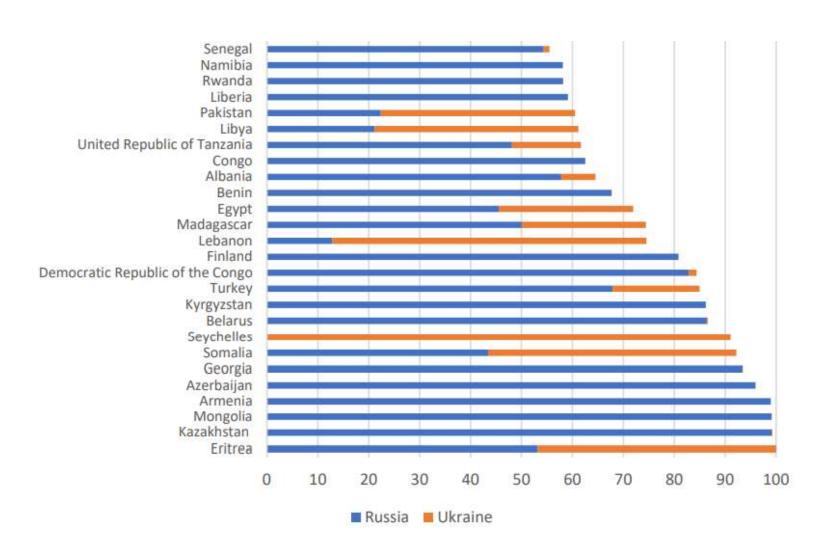
Die Proteinversorgung im Spannungsfeld von Ökologie und Ressourceneffizienz

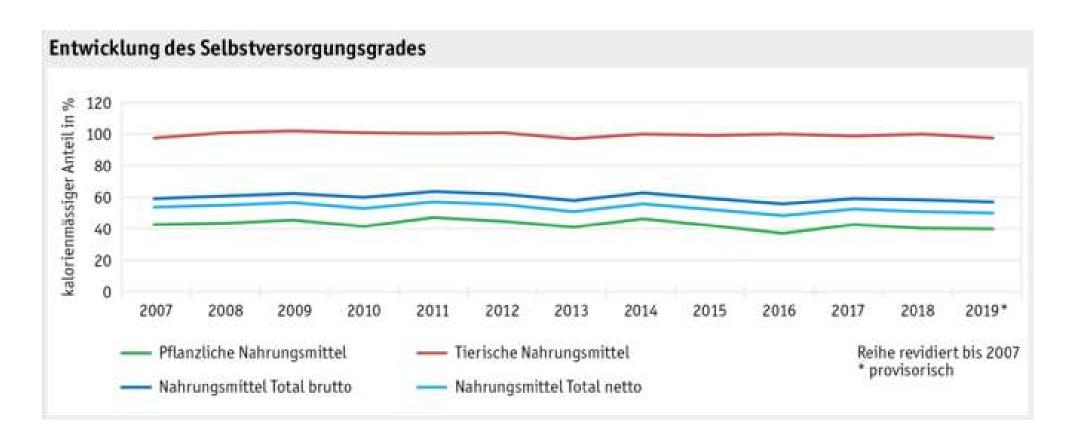
Adrian Müller

Lösungen für eine zukunftsorientierte Proteinproduktion

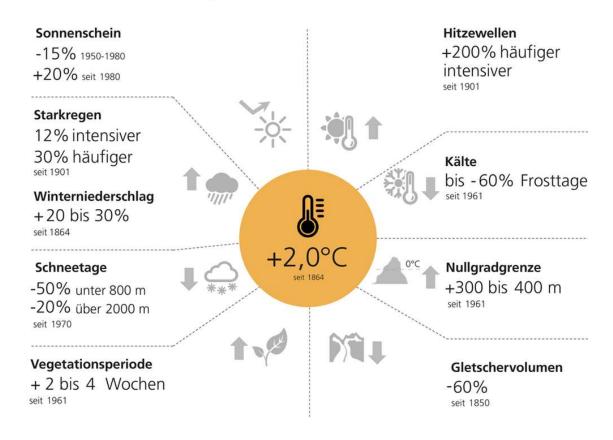
29. Jahresversammlung der Schweizerischen Gesellschaft für Pflanzenbauwissenschaften sgpw

HAFL, Zollikofen, 15.9.2022

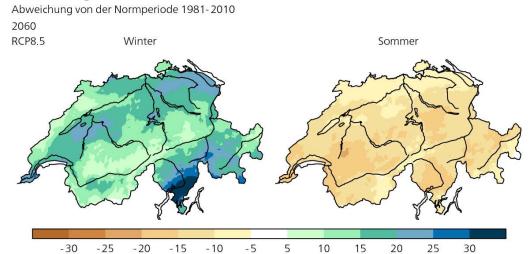

Globale Weizenproduktion


Weizenpreise

Importabhängigkeit beim Weizen

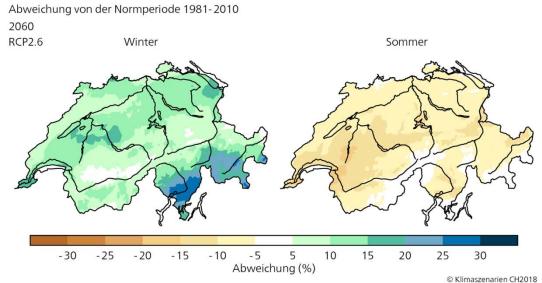


Selbstversorgungsgrad der Schweiz


Entwicklung des Klimas in der Schweiz

Beobachtete Veränderungen

Niederschlagsvorhersagen 2060


Niederschlag

Abweichung (%)

Niederschlag

© Klimaszenarien CH2018

N-Überschüsse in der Schweiz

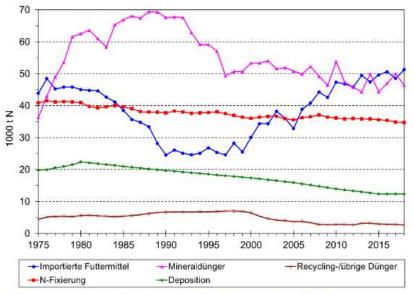
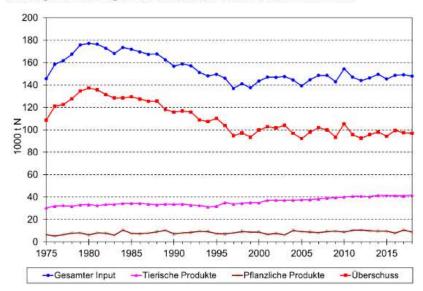
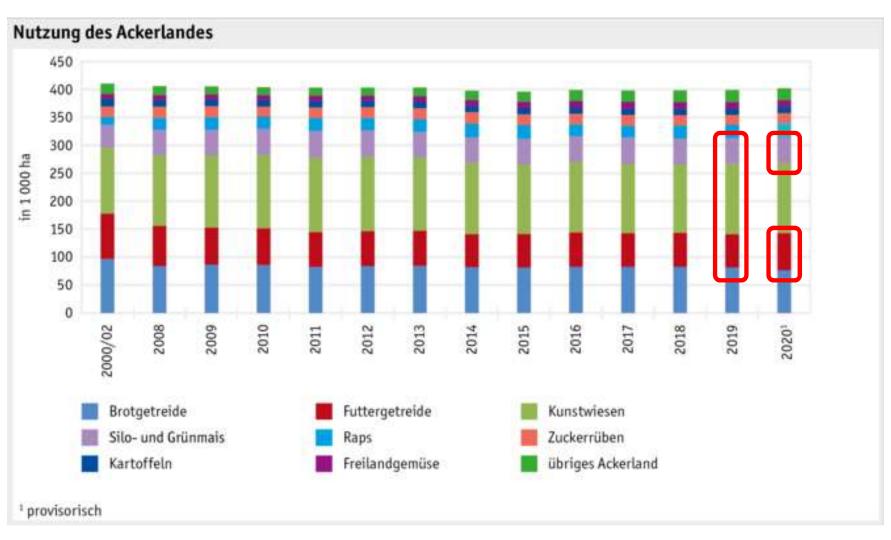



Abbildung 6: Stickstoffmengen in den einzelnen Input-Grössen zwischen 1975 und 2018.

Überschuss 2020:

 56 kg N/ ha Landwirtschaftsland


Abbildung 7: Stickstoffmengen im gesamten Input, in den einzelnen Output-Grössen (tierische Nahrungsmittel und andere Produkte sowie pflanzliche Nahrungsmittel) sowie im Überschuss zwischen 1975 und 2018.

Die Probleme sind nicht neu!

Flächennutzung in der Schweiz

Futtermittel:

- 60% vom Ackerland
- 40% vom offenen Ackerland

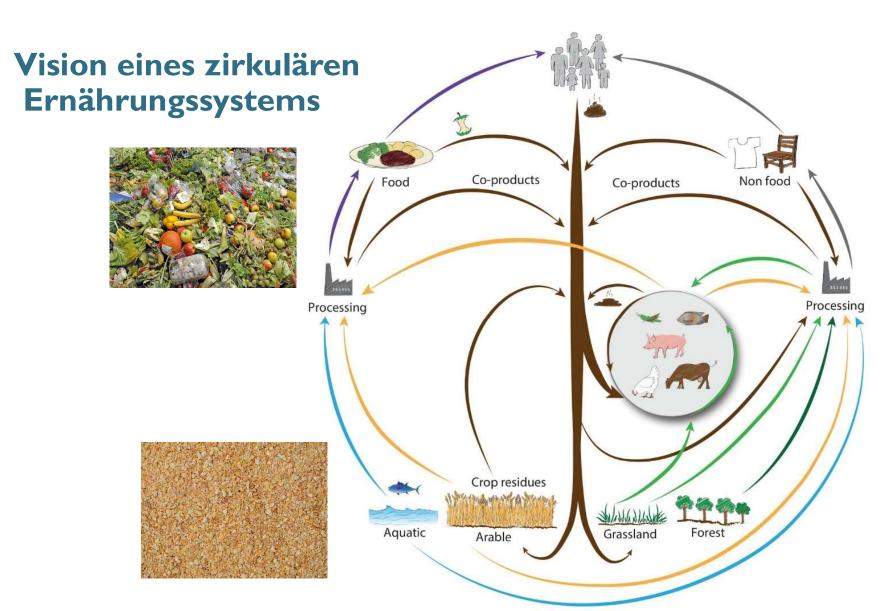
Wie ernährt sich die Schweiz/Welt?

• 2960 kcal/cap/d (1/5 tierisch)

- Bedarf: 2300 kcal/cap/d
 83 g Protein/cap/d (2/5)
 - 83 g Protein/cap/d (2/5 tierisch)
 - empfohlen: 60g/cap/d
 - 88 g Fett/cap/d (2/5 tierisch)
 - 25% Kalorien von Fett
 - empfohlen: 25-30%

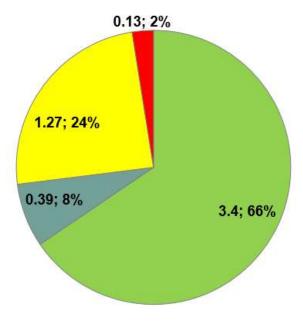
Schweiz 2019

- 3380 kcal/cap/d (1/3 tierisch)
- Bedarf: 2500 kcal/cap/d
- 97 g Protein/cap/d (2/3 tierisch)
- empfohlen: 60g/cap/d
- I 60 g Fett/cap/d (3/5 tierisch)
- 40% Kalorien von Fett
- empfohlen: 25-30%



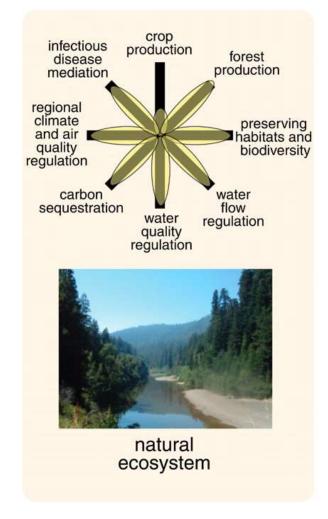
Welt 2019

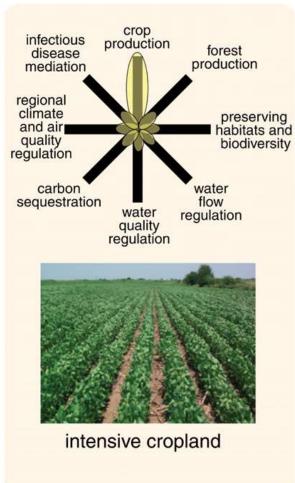
Unsere Ernährungssysteme sind zu gross!

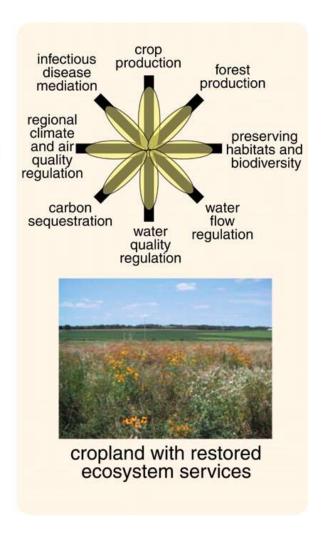


Produkt	2000/02	2015	2016	2017	2018	2019	2020 ¹	2000/02 -
					2,23		2020	2018/20
	ha	%						
Getreide	178 576	141 417	144 721	142 838	143 506	141 240	143 748	-20.0
Brotgetreide	96 527	81 827	83 062	82 688	83 253	81 684	76 609	-17.0
Weizen	91 045	75 931	76 312	75 541	75 713	73 619	68 510	-20.0
Dinkel	1 878	3 907	4 607	4 978	5 367	5 692	5 933	202.0
Emmer, Einkorn	46	67	134	153	284	430	330	657.0
Roggen	3 518	1 890	1 985	2 004	1 855	1 905	1 798	-47.0
Mischel von Brotgetreide	39	32	24	12	34	38	38	-6.0
Futtergetreide	82 049	59 590	61 659	60 150	60 253	59 556	67 139	-24.0
Weizen	-	6 381	7 408	6 377	6 612	6 715	9 613	
Gerste	42 916	27 986	28 641	28 088	27 898	26 853	27 808	-36.0
Hafer	4 342	1 556	1 684	1 899	1 628	1 713	1 793	-61.0
Mischel von Futtergetreide	311	192	221	245	222	266	256	-20.0
Körnermais	22 280	15 322	14 912	15 192	15 700	16 015	19 972	-23.0
Triticale	12 201	8 090	8 721	8 523	7 960	7 683	7 457	-37.0
Hirse		63	72	186	233	311	240	
Hülsenfrüchte	3 514	5 016	5 314	5 263	5 057	4 714	4 740	38.0
Futtererbsen (Eiweisserbsen)	3 165	4 355	4 553	4 109	3 891	3 550	3 573	16.0
Ackerbohnen	294	556	646	1 039	1 003	1 002	957	235.0
Lupinen	55	105	115	115	163	162	210	224.0
Hackfrüchte	34 229	31 180	30 594	30 905	30 133	28 970	28 972	-14.0
Kartoffeln (inkl. Saatgut)	13 799	10 891	10 995	11 276	11 107	10 981	10 956	-20.0
Zuckerrüben	17 886	19 759	19 095	19 135	18 578	17 555	17 602	0.0
Futterrüben (Runkeln, Halbzuckerrüben)	2 544	530	504	494	448	434	414	-83.0
Ölsaaten	18 535	29 769	27 687	27 433	30 060	30 404	30 979	64.0
Raps	13 126	23 432	20 979	20 419	22 811	22 697	24 391	77.0
Sonnenblumen	4 389	4 568	4 885	5 258	5 386	5 903	4 472	19.0
Soja	989	1 719	1 765	1 695	1 801	1 721	2 031	87.0
Ölkürbisse	32	50	58	61	62	83	85	142.0
Nachwachsende Rohstoffe	1 304	181	198	255	359	240	238	-79.0
Raps	1 137	116	106	135	187	97	117	-88.0
Sonnenblumen	35	44	40	52	46	49	31	20.0
Andere (Kenaf, Hanf, usw.)	132	21	52	68	126	94	90	-22.0
Freilandgemüse	8 489	10 865	11 435	12 127	12 127	11 876	12 128	42.0
Silo- und Grünmais	40 652	45 904	46 259	47 865	47 003	46 692	46 847	15.0
Grün- und Buntbrache	3 392	3 014	3 113	3 162	3 169	3 086	3 109	-8.0
Übrige offene Ackerfläche	1 770	5 630	3 554	4 107	4 025	4 834	3 688	136.3
Offenes Ackerland	290 462	272 816	272 698	273 955	275 439	272 056	274 449	-6.0
Kunstwiesen	117 671	125 060	125 561	123 782	122 222	126 248	125 393	6.0
Übrige Ackerfläche	2 427	477	436	447	478	490	2 030	-59.0
Ackerland Total	410 560	398 353	398 695	398 184	398 139	398 794	401 872	-3.0
Obstbaumkulturen ²	6 913	6 297	6 318	6 298	6 304	6 240	6 055	-10.0
Reben	15 053	14 793	14 780	14 748	14 712	14 704	14 696	-2.0
Mehrjährige nachwachsende Rohstoffe	257	142	119	99	93	86	02	-66.0
Naturwiesen, Weiden	627 938	612 901	611 573	609 042	603 830	601 850	600 686	-4.0
Andere Nutzung sowie Streue- und Torfland	10 410	16 992	17 587	17 738	21 898	21 989	20 658	107.0
Landwirtschaftliche Nutzfläche	1 071 131	1 049 478	1 049 072	1 046 109	1 044 976	1 043 663	1 044 034	-3.0

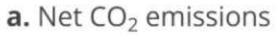
¹ provisorisch

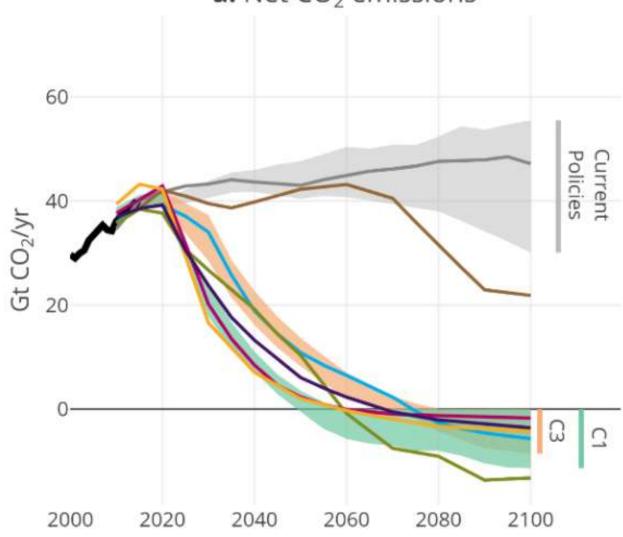


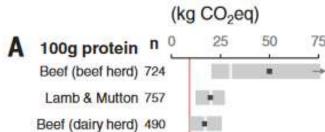

- Permanent grassland
- Arable land for feedstuff (livestock)
- Arable land for direct human consumption
- Permanent crops for direct human consumption


² Die Datenerhebung des BLW für Obstbaumkulturen erfolgte 2020 nach einem neuem System. Aus diesem Grund weichen die Daten liefemden Betriebe im 2020 gegenüber 2019 leicht voneinander ab. Die Flächenunterschiede von 2020 zu 2019 können folglich nicht unbedingt als Flächenzuwachs oder Flächenrückgang interpretiert werden.

Quellen: Obstbaumkulturen, Reben: BLW (Flächenstatistik/obst.ch, Weinjahr); andere Produkte: SBV, BFS


Belastungen in der Landschaft





Klimaziele

Fussabdruck verschiedener Lebensmittel

GHG Emissions

Crustaceans (farmed) 1.0k

Cheese 1.9k

Pig Meat 116 Fish (farmed) 612

Poultry Meat 326

Eggs 100

Tofu 354

10tu 354

Groundnuts 100 III
Other Pulses 115 III

Peas 438 •

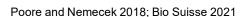
Nuts 199 =

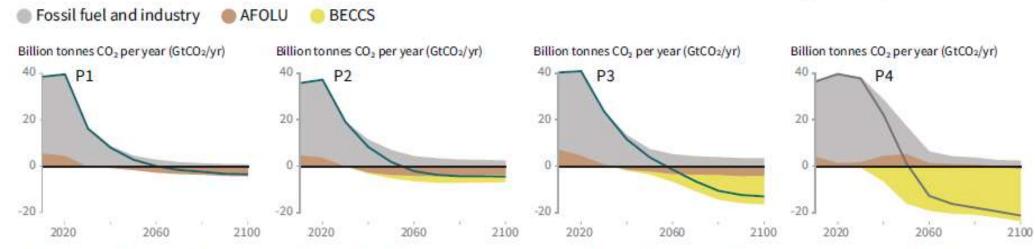
Grains 23k

B

1 liter 0 2 4 Milk 1.8k

Soymilk 354



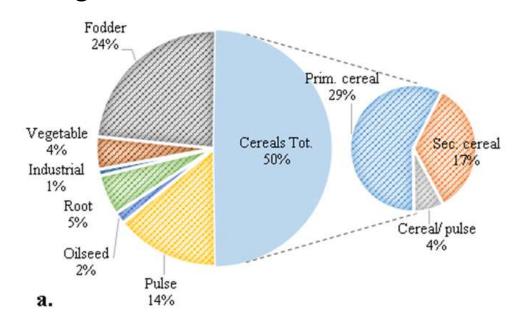

10th pctl.

ruminant

meat

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways

P1: A scenario in which social, business and technological innovations result in lower energy demand up to 2050 while living standards rise, especially in the global South. A downsized energy system enables rapid decarbonization of energy supply. Afforestation is the only CDR option considered; neither fossil fuels with CCS nor BECCS are used.

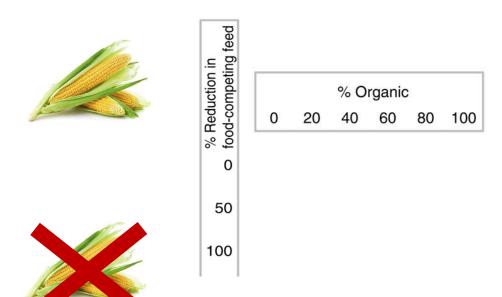

P2: A scenario with a broad focus on sustainability including energy intensity, human development, economic convergence and international cooperation, as well as shifts towards sustainable and healthy consumption patterns, low-carbon technology innovation, and well-managed land systems with limited societal acceptability for BECCS.

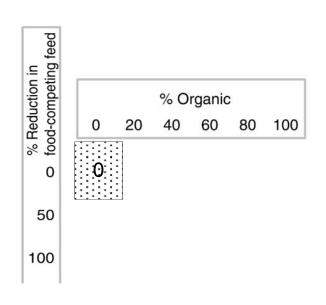
P3: A middle-of-the-road scenario in which societal as well as technological development follows historical patterns. Emissions reductions are mainly achieved by changing the way in which energy and products are produced, and to a lesser degree by reductions in demand.

P4: A resource- and energy-intensive scenario in which economic growth and globalization lead to widespread adoption of greenhouse-gas-intensive lifestyles, including high demand for transportation fuels and livestock products. Emissions reductions are mainly achieved through technological means, making strong use of CDR through the deployment of BECCS.

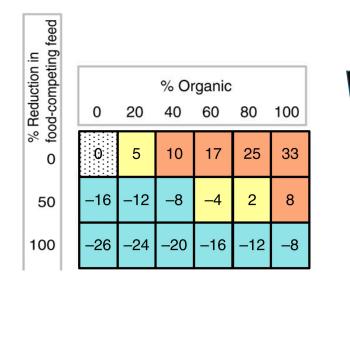
Bio-Fruchtfolgen als Beispiel agrarökologischer Ansätze

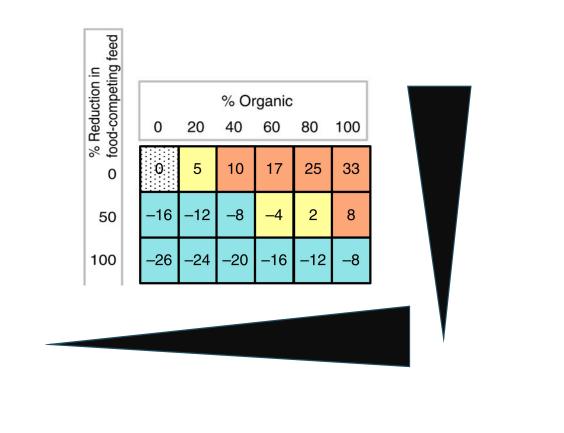
- Mindestens 16% Futterleguminosen, 30% Hauptleguminosenkulturen
 - N-Versorgung, Unkrautregulierung, Humusaufbau
- Nicht mehr als 60% Getreide in der Fruchtfolge
- Vermeide «Leguminosenmüdigkeit»
- Nutze Diversität



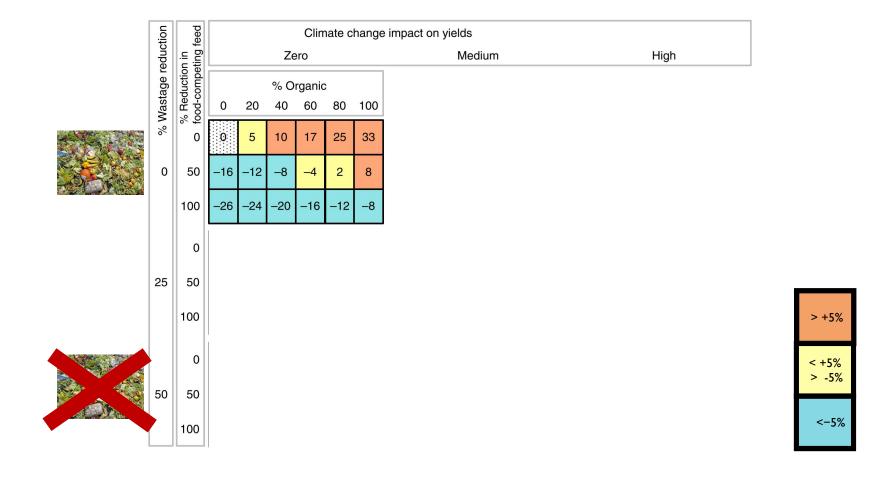

Wie wollen/sollen/müssen wir die Flächen nutzen?

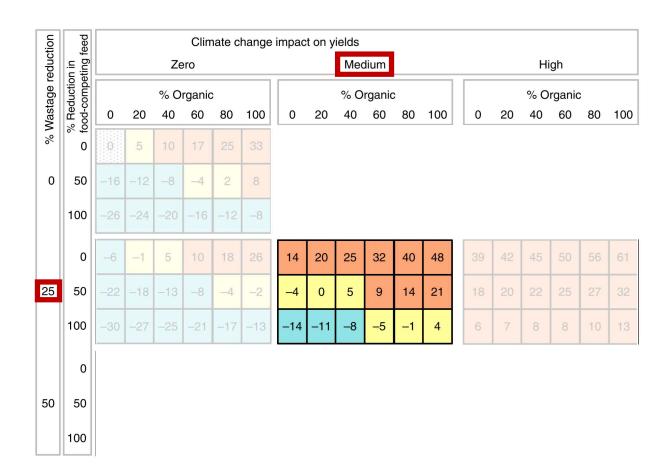
Muller et al. 2017; Courtesy: R. Zürcher


Option space: Landverbrauch

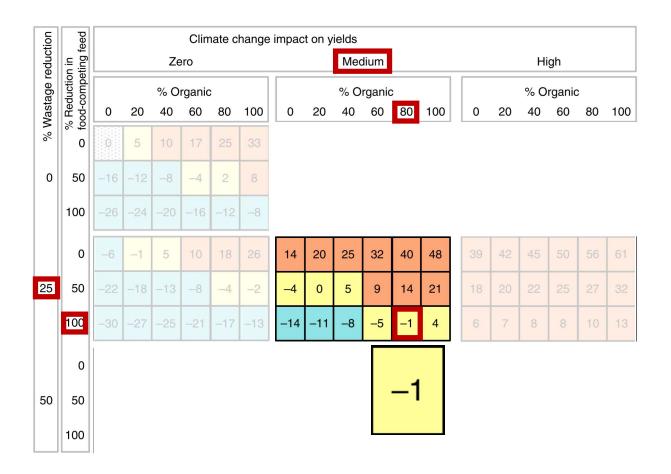

< +5% > -5%

< -5%


< +5% > -5%


< -5%

< +5% > -5%


< -5%

< +5% > -5%

<-5%

< +5% > -5%

<-5%

tion	eed				Clim	nate c	hange	impac	t on y	ields					6 50 54 58 5 26 29 32									
educ	n in eting f			Zε	ero					Med	dium				High									
% Wastage reduction	% Reduction in food-competing feed			% O	rganic	;				% O	rganic	;				% O	rganic	ganic						
Wast	% Recood-c	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100					
%	0	0	5	10	17	25	33	21	26	33	40	47	57	46	50	54	58							
0	50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	25	26	29	32							
	100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	12	13	14	15							
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	39	42	45	50		0					
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	20	22	25		2					
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6	7	8	8	7	3					
	0	-11	-7	-1	5	11	20	8	13	18	25	32	40	30	34	38	42	47	53					
50	50	-25	-23	-19	-14	-9	-4	-9	6	-2	3	8	14	10	12	15	17	21	25					
	100	-35	-32	-29	-25	-22	-18	-19	-17	-13	-10	-7	-3	-1	0	1	3	4	7					

> +5% < +5% > -5%

% Wastage reduction	feed				Clim	nate c	hange	impac	t on y	ields									П
edu	on in eting			Ze	ero					Med	lium					Hi	gh		
age I	ductic			% O	rganic	:				% O	rganic	;				% O	rganic	:	
Vast	% Reduction in food-competing	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
1%	0	0	5	10	17	25	33	21	26	33	40	47	57	46	50	54	58	64	71
0	50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	25	26	29	32	35	40
	100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	12	13	14	15	17	20
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	39	42	45	50	56	61
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	20	22	25	27	32
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6	7	8	8	10	13
	0	-11	-7	-1	5	11	20	8	13	18	25	32	40	30	34	38	42	47	53
50	50	-25	-23	-19	-14	-9	-4	_9	6										
	100	-35	-32	-29	-25	-22	-18	-19	-17	-13	-10	-/	-3						

> +5% < +5% > -5%

Option space: Landverbrauch

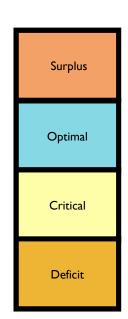
tion	feed				Clim	nate c	hange	impac	t on y	ields												
educ	n in ting f			Ze	ero					Med	lium					Hi	gh					
% Wastage reduction	% Reduction in food-competing f			% O	rganic	;				% O	rganic	;		% Organic								
Nast	% Rec	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100			
%	0	0	5	10	17	25	33	21	26	33	40	47	57	46	50	54	58	64	71			
0	50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	25	26	29	32	35	40			
	100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	12	13	14	15	17	20			
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	39	42	45	50	56	61			
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	20	22	25	27	32			
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6	7	8	8	10	13			
	0	-11	-7	-1	5	11	20	8	13	18	25	32	40	30	34	38	42	47	53			
50	50	-25	-23	-19	-14	-9	-4	-9	- 6	-2	3	8	14	10	12	15	17	21	25			
	100	-35	-32	-29	-25	-22	-18	-19	-17	-13	-10	-7	-3	-1	0	1	3	4	7			

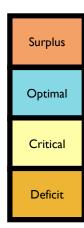
> +5% < +5% > -5%

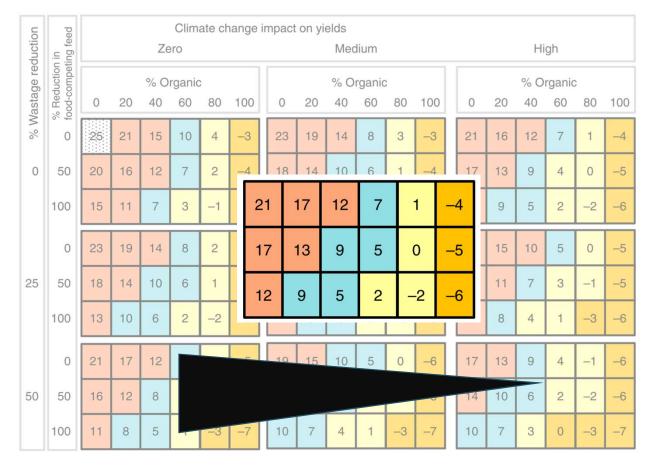
Nährstoffversorgung

Nährstoffversorgung:

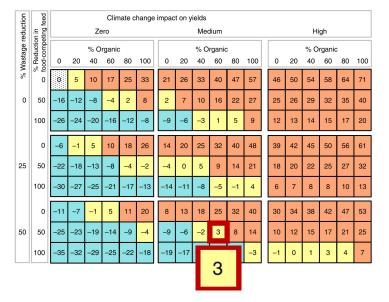
Nicht nur die Produkte, sondern auch der Dünger wird auf den Flächen produziert.

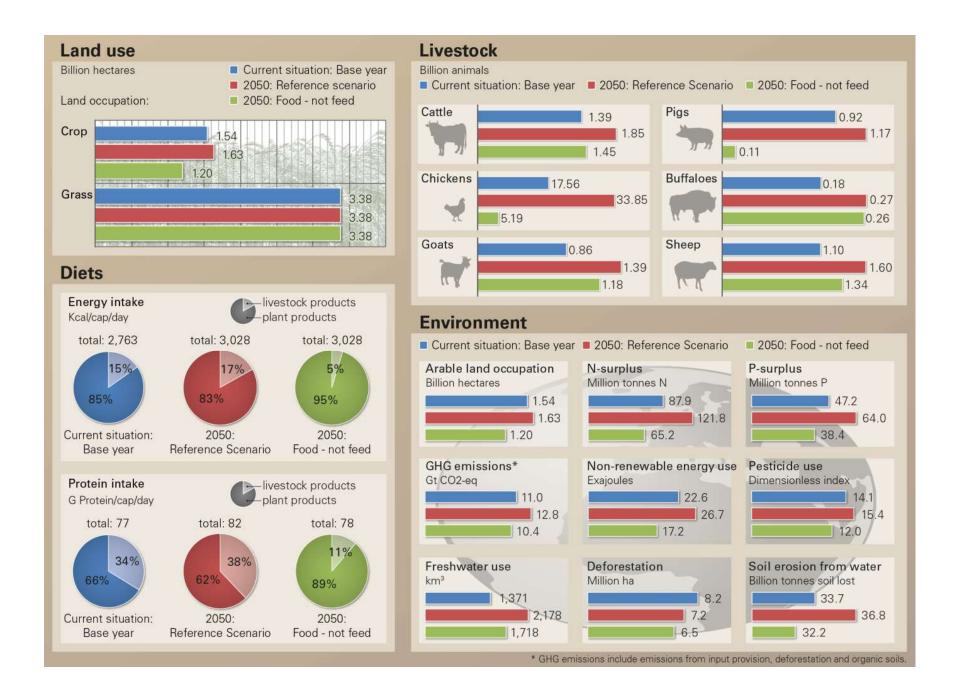

Es ist eine Herausforderung, eine genügende Nährstoffversorgung zu gewährleisten – primär N und P

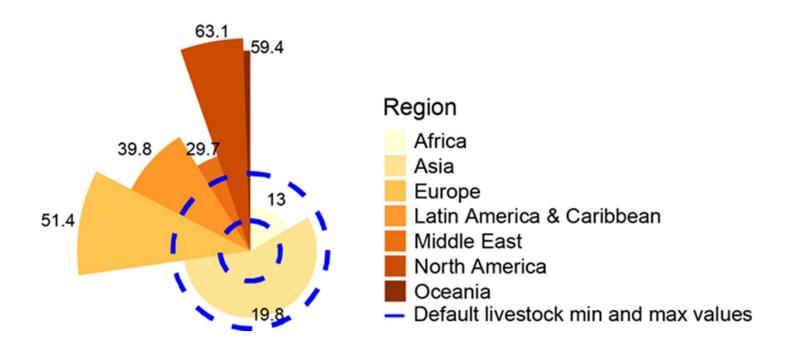

Option space: N-Surplus


ction	feed			Ze		ate ch	nange i	mpact	on yi		lium					Ыi	gh		
% Wastage reduction	% Reduction in food-competing feed				rganic	,					rganio						rganio		
astag	6 Redu	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
W %	0	25	21	15	10	4	-3	23	19	14	8	3	-3	21	16	12	7	1	-4
0	50	20	16	12	7	2	-4	18	14	10	6	1	-4	17	13	9	4	0	-5
	100	15	11	7	3	-1	-5	13	10	7	3	-1	-5	12	9	5	2	-2	-6
	0	23	19	14	8	2	-4	21	17	12	7	1	-4	19	15	10	5	0	-5
25	50	18	14	10	6	1	-5	17	13	9	5	0	-5	15	11	7	3	-1	-5
	100	13	10	6	2	-2	-6	12	9	5	2	-2	-6	11	8	4	1	-3	-6
	0	21	17	12	7	1	-5	19	15	10	5	0	-6	17	13	9	4	-1	-6
50	50	16	12	8	4	0	-6	15	11	7	3	-1	-6	14	10	6	2	-2	-6
	100	11	8	5	1	-3	-7	10	7	4	1	-3	-7	10	7	3	0	-3	-7

tion	peed			_		ate ch	nange	mpact	on yi										
duc	ni r ting			Ze	ero					Med	lium					Н	gh		
% Wastage reduction	% Reduction in food-competing			% 0	rganic	;				% 0	rganic	;				% 0	rganic	;	
asta	% Re	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
M %	0	25	21	15	10	4	-3	23	19	14	8	3	-3	21	16	12	7	1	-4
0	50	20				2	-4	18	14	10	6	1	-4	17	13	9	4	0	-5
	100	15		25	5	-1	-5	13	10	7	3	-1	-5	12	9	5	2	-2	-6
	0	23				2	-4	21	17	12	7	1	-4	19	15	10	5	0	-5
25	50	18	14	10	6	1	-5	17	13	9	5	0	-5	15	11	7	3	-1	-5
	100	13	10	6	2	-2	-6	12	9	5	2	-2	-6	11	8	4	1	-3	-6
	0	21	17	12	7	1	-5	19	15	10	5	0	-6	17	13	9	4	-1	-6
50	50	16	12	8	4	0	-6	15	11	7	3	-1	-6	14	10	6	2	-2	-6
	100	11	8	5	1	-3	-7	10	7	4	1	-3	-7	10	7	3	0	-3	-7







ction	feed			70	Clim	ate cl	nange	impact	on yi		dium				1 16 12 7 1 -4 7 13 9 4 0 -5 2 9 5 2 -2 -6 9 15 10 5 0 -5 5 11 7 3 -1 -5 1 8 4 1 -3 -6 7 13 9 4 -1 -6 4 10 6 2 -2 -6				
% Wastage reduction	% Reduction in food-competing feed	H			rganio	;					rganio	;						;	
astaç	6 Red	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
M %	0	25	21	15	10	4	-3	23	19	14	8	3	-3	21	16	12	7	1	-4
0	50	20	16	12	7	2	-4	18	14	10	6	1	-4	17	13	9	4	0	-5
	100	15	11	7	3	-1	-5	13	10	7	3	-1	-5	12	9	5	2	-2	-6
	0	23	19	14	8	2	-4	21	17	12	7	1	-4	19	15	10	5	0	-5
25	50	18	14	10	6	1	-5	17	13	9	5	0	-5	15	11	7	3	-1	-5
	100	13	10	6	2	-2	-6	12	9	5	2	-2	-6	11	8	4	1	-3	-6
	0	21	17	12	7	1	-5	19	15	10	5	0	-6	17	13	9	4	-1	-6
50	50	16	12	8	4	0	-6	15	11	7	3	-1	-6	14	10	6	2	-2	-6
	100	11	8	5	1	-3	-7	10	7	F		٦	-7	10	7	3	0	-3	-7
											3					•			

Protein von tierischen Quellen nach Weltregionen

Muller et al. 2022, PELIMINARY

Schweiz / Sri Lanka: kein Futter vom Acker plus Bio

Vorläufige Resultate – nicht dargestellt in dieser Version

Modellierter «Option-space» als Beitrag zur Diskussion auf Systemebene

Weitereführende und abschliessende Gedanken

- Wofür werden Proteinkulturen genutzt:
 - Nahrung, Futter, Fleischersatz/Ersatz tierischer Produkte
- Verarbeitung: Wichtigkeit der Proteinkulturen?
 - Weizen hat auch sehr viel Protein pro Hektare
- Rolle der Unternehmen
 - Business-Modelle; Ersatzprodukte als Umsatztreiber, etc.
- Gesundheit/Versorgung:
 - Proteinqualität
 - Verarbeitungsgrad der Lebensmittel
 - Andere Aspekte: z.B. Fett

Weitereführende und abschliessende Gedanken

- Die heutigen Probleme sind nicht neu
- Wir haben Lösungen
 - «Grösse» des Ernährungssystems
 - Wie wollen/sollen/müssen/können wir unsere Flächen nutzen?
- Visionen für eine nachhaltige Proteinzukunft nicht losgelöst von anderen Aspekten denken
 - Vor allem: eingebettet in einen Systemkontext