A simple laboratory method for estimating the standardised precaecal digestibility of crude protein and amino acids in pigs

Valérie Schumacher, Saskia Kehraus, Karl-Heinz Südekum

Introduction

The adequate protein supply for pigs to secure performance and animal health can be determined *in vivo* from standardised precaecal digestibility (spcD) values of crude protein (spcDCP) and amino acids (spcDAA). Until now, only a costly and timeconsuming multi-enzyme *in vitro* method (MenzM) according to Boisen and Fernandez (1997) is available to estimate spcD values from laboratory measurements without *in vivo* experiments.

The objective was to develop and establish a rapid and costeffective laboratory method for estimating spcDCP and spcDAA based on the determination of neutral- or acid-detergent insoluble crude protein (NDICP, ADICP) and amino acids (NDIAA, ADIAA). This approach is based on knowledge that, e.g., the acid-detergent insoluble fraction contains indigestible Ncompounds such as Maillard products and N bound to tanninor phytate-complexes.

Literature: Boisen S., Fernandez, J.A. (1995): Prediction of the apparent ileal digestibility of protein and amino acids in feed stuffs and feed mixtures for pigs by *in vitro* analyses. Anim. Feed Sci. Technol. 51, 29-43.

Results

Protein over all samples

NDSCP resp. ADSCP vs. reference in vivo spcdCP

Material and Methods

A unique, large sample pool of straight feedingstuffs (differently heat-treated legumes, cereal grains) was available on which *in vivo* spcDCP and spcDAA were determined on pigs. Crude protein (N \cdot 6.25) in feedstuffs and in ND and AD residues of feedstuffs was determined by Kjeldahl analysis. The concentrations of ND and AD soluble CP (NDSCP/ADSCP) were calculated by difference, i.e., CP – NDICP and CP – ADICP. Amino acid concentrations in the detergent residues were determined by HPLC. These values were then used for regression analysis for estimating *in vivo* standardised precaecally digestible CP (spcdCP) and AA (spcdAA) concentrations.

Lupine ADCP

Whole soybeans and low heat-treated soybeans (*) were partially removed, as they are usually not used in pig nutrition in this way. The regression has hardly changed as a result y= 0.8683x - 9.9911; R²=0.9760 x= NDSCP

v= spcdCP estimated

Protein in grains

Regression for grouping of Wheat/Triticale and Barley/Rye. x= NDSCP y= spcdCP estimated

Methionine in grains NDSAA vs. reference *in vivo* spcdAA

x= NDSAA y= spcdAA estimated

Regression equations AA in grains

Wheat/Triticale

Lysine: y = 0.8709x - 0.1299; R² = 0.9377

Methionine: y = 0.8861x + 0.095; R² = 0.9630

Threonine: y = 0.7272x + 0.481; $R^2 = 0.8653$

Tryptophan: y = 0.8033x + 0.1213; R² = 0.9992

Arginine: y = 0.8822x + 0.581; R² = 0.9457

Histidine: y = 0.9039x + 0.1253; R² = 0.9922

Isoleucine: $y = 0.8489x + 0.3333; R^2 = 0.9246$

Leucine: y = 0.8598x + 0.624; R² = 0.9172

Phenylalanine: y= 0.9013x + 0.1508; R² = 0.9509

y: spcdAA estimated (g/kg DM) x: NDSAA (g/kg DM)

Conclusion

Determination of NDICP and ADICP is a routine analysis for protein evaluation in ruminants and, therefore, the fast and cost-effective laboratory method is an alternative to the *in vitro* MenzM to estimate spcDCP and spcDAA values from routinely available chemical feedstuff characteristics. Therefore, the comparability of the NDS values between the laboratories is very good.

Abbreviations

CP: crude protein AA: amino acid

ND: neutral detergent AD: acid detergent

NDICP/AA; ADICP/AA: neutral/acid detergent insoluble CP/AA NDSCP/AA; ADSCP/AA: neutral/acid detergent soluble CP/AA spcD: standardised precaecal digestibility spcDCP/spcDAA: standardised precaecal digestibility of CP/AA

spcdCP/AA: standardised digestible CP/AA

aNDF/ADF: neutral/acid detergent fibre

Barley/Rye

Lysine: y = 0.5319x + 0.678; $R^2 = 0.681$ Methionine: y = 0.7555x + 0.150; $R^2 = 0.9571$ Threonine: y = 0.6957x + 0.202; $R^2 = 0.9018$ Tryptophan: y = 0.7665x - 0.021; $R^2 = 0.9803$ Arginine: y = 0.6953x + 1.019; $R^2 = 0.8742$ Histidine: y = 0.777x + 0.167; $R^2 = 0.9000$ Isoleucine: y = 0.7725x + 0.1789; $R^2 = 0.9751$ Leucine: y = 0.7907x + 0.3415; $R^2 = 0.9884$ Phenylalanine: y = 0.7277x + 0.606; $R^2 = 0.9218$

What's next

- Analyses of the ADICP/AA; NDICP/AA in the remaining samples.
- Validation of regressions.
- NIRS calibration of NDICP/AA and ADICP/AA.
- Another project with regard to NDSCP/AA and ADSCP/AA for poultry.

vschu@itw-uni-bonn.de