

Research Institute of Organic Agriculture FiBL info.suisse@fibl.org, www.fibl.org

Cocoa and by-crop yields in three organic production systems entering mature stage

Johanna Rüegg (johanna.rueegg@fibl.org)¹, Ulf Schneidewind², Joachim Milz², Monika Schneider, ¹ Laura Armengot¹

¹FiBL, Switzerland

²Fundación Ecotop, Bolivia

Agroforestry for cocoa has environmental benefits

AGROFORESTRY SYSTEM	MONOCULTURE	
Cocoa yield		
Total system yield		
Economy		
Soil chemical properties		
Soil physical properties		
Pests and diseases		
Microclimate buffering		
Carbon storage		
Biodiversity		

Niether et al. 2020 Environ. Res. Lett. 15 104085

SysCom Bolivia Project

Objectives

- Do agroforestry systems and organic management perform better (agronomical, socio-economic and environmental indicators) compared with monocultures and conventional farming?
- What are the challenges of the different production systems?

- Start: End of 2008
- 5 different systems compared, replicated 4 times
- Plots measuring 48 m x 48 m
- 12 cacao cultivars, planted at 4×4 m
- 144 cocoa trees monitored per plot (2880 trees in total) every 2 weeks

Gradient of diversity of organic production systems

Monoculture MONO ORG

Agroforestry AF ORG

Successional or dynamic agroforestry SAFS

Compost (21 L/tree) Cover crop/herbal cover Mechanical weeding Compost until 2016 (10 L/tree)
Cover crop in beginning
Mechanical weeding
Regular shade tree pruning
Temporal shade: plantain, trees

Temporal shade: plantain

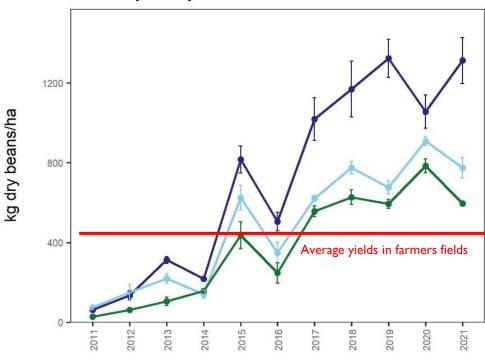
No external inputs
Selective weeding & natural regeneration
Regular shade tree pruning
Temporal shade: plantain, trees annual crops (cassava, maize, ...)

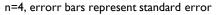
Agroforestry designs

Agroforests (About 300 shade trees/ha)

- Plantain (4 x 4 m) for the 3 first years
- Since 2012 banana (4 x4 m)
- Since 2016 coffee $(4 \times 2 \text{ m}) \times 2$
- Leguminous trees (8x8 m)
- Fruit and timber trees (16 x 16 m)
- → 5 timber species, 4 fruit species, 2 biomass species, I palm

Successional agroforests (About 800 shade trees/ha)

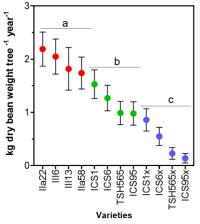

- Plantain (4 x 4 m) for the 3 first years
- Anual and short-life cycle crops
- Since 2012 banana (8x8 m)
- Since 2013 coffee $(4 \times 2 \text{ m}) \times 2$
- Ginger and curcuma
- → ~19 timber species, 4 banana varieties, ~ 8 fruit species, ~20 biomass species, 3 palms
- → Natural regeneration of some species
- → Shade tree density changing over time
- → Different strata and life cycles



Cocoa yield development

Cocoa dry bean yields

- MONO ORG
- AF ORG
- SAFS
 - All systems started slowly (compared to Conv. not shown)
 - Tree growth in AF/SAFS slower
 - Yields in AF and SAFS are higher than producers in many places
 - Lower yields in denser systems and with less inputs

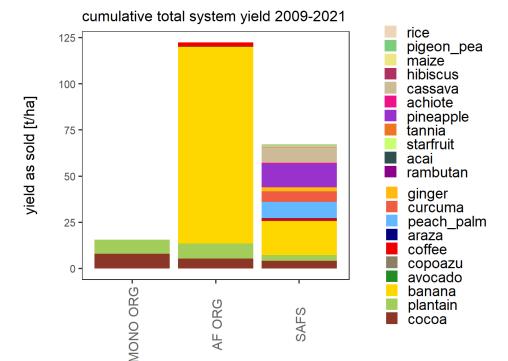


Cocoa yields in mature plantations depending on varieties

mean dry bean yields [kg/ha] between 2018 - 2021			
	MONO ORG	AF ORG	SAFS
all 12 varieties	1213.6	781.4	648.9
4 local clones	1845.1	1140.5	975.I

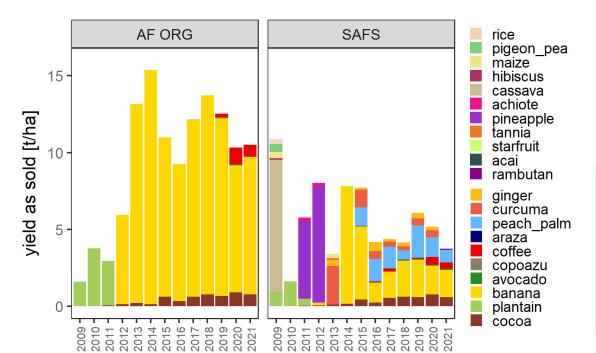
- Local clones
- International clones
- Full-sib families (xIMC67)

2015 - 2019 Picucci et. al, unpublished


- → Participatory selection process of el Ceibo selecting locally adapted clones, tolerant to diseases
- → Cocoa yields in MONO are 1.9 (SAFS) and 1.6 (AF) times higher
- → No systems effect
- → Breeding for agroforestry

Cumulative total system yields

- → Total system yields in 7.8 (AF) and 4.3 (SAFS) times higher than in MONO
- → SAFS lower total yields than AF, but higher diversity


cocoa dry beans, coffee dry parchment,fruit as fresh weight, plantain/banana withut peduncle

How do AF and SAFS differ in their development?

- → SAFS higher yields in young systems
- → AF higher yields in mature systems with 3 market oriented crops
- → Fruit trees, ginger and turmeric with potential

Conclusions for agroforestry design and income

Diversity of crops for income

- Income strongly market dependent
- SAFS/temporal shade for quick income
- Diversity intresting for distribution of income over year
- Strategy to be ready for markets in the future (Emerging markets (Acai, Rambutan, Copoazu))
- Interesting for self-consumption (avoiding costs)

Optimization of the design depending on

- Specific goals (input or labour time intensive, extensive, economic, nutrition, ...)
- Ressources and market opportunities

Conclusions for agroforestry management

Reducing shade trees over time vs. fixed design

- Selection of productive fruit and good quality timber trees
- Growth of timber trees
- Risk distribution for loss of fruit trees

Regular shade tree pruning

- Can replace external fertilizers
- Allows for high density of shade trees while reaching good cocoa yields

Contact

Partners in Bolivia

Johanna Rüegg

Research Institute of Organic Agriculture FiBL

Ackerstrasse 113

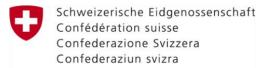
5070 Frick

Switzerland

Phone +41 62 8657-272

johanna.rueegg@fibl.org

www.fibl.org



Donors

Swiss Agency for Development and Cooperation SDC

This project is supported by the **Coop Sustainability Fund**.

