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The global food system is responsible for about a quarter of all 
human-induced greenhouse gas (GHG) emissions, one-third 
of global terrestrial acidification and the majority of global 

eutrophication, and is occupying 40% of the world’s ice- and 
desert-free land1,2. The global trend of a growing affluent popula-
tion, thereby shifting diets towards resource-intensive foods (for 
example, meat), is raising concerns that the Earth’s biophysical lim-
its will be exceeded3. To halt this progression, numerous healthy and 
environmentally friendly dietary guidelines have been proposed4–7. 
Such dietary guidelines aim to improve health outcomes by reducing 
the risk of non-communicable diseases (for example, cardiovascular 
disease, colorectal cancer and type 2 diabetes), while simultaneously 
reducing environmental impacts (for example, GHG emissions, 
deforestation, eutrophication and biodiversity loss)3,5,8. One promi-
nent example of healthy and environmentally sustainable dietary 
guidelines is the one proposed by the EAT-Lancet Commission. 
Compared with conventional diets consumed in the European 
Union and the United Kingdom (EU-27 + UK) the EAT-Lancet 
dietary guidelines contain increased quantities of plant-source food, 
such as vegetables, legumes and nuts, and decreased quantities of 
animal-source food, such as meat, milk, eggs and fish4.

The foods that European societies consume, and the way in 
which these foods are produced, contribute substantially to desta-
bilizing several planetary boundaries9,10. Although there is a gen-
eral consensus that the consumption of animal-source food in 
the EU-27 + UK should decrease, there is no consensus about the 
degree of reduction of animal-source food to achieve environmen-
tally sustainable diets11. Some studies suggest that it would be best 
for the planet if we were to consume only plant-source foods (for 
example, ref. 12), while others show that farm animals reared under 
a circular paradigm can play a crucial role in feeding humanity13–17. 

Circular food systems aim to optimally utilize resources by priori-
tizing arable land to produce plant biomass for human consump-
tion, thus avoiding feed–food competition18,19. Currently about 40% 
of our global arable land area is used to produce high-quality feed 
for farm animals, which to a large extent is human-edible20. From a 
resource-efficiency point of view farm animals could instead be fed 
what is currently considered low-opportunity-cost biomass (LCB). 
LCB includes co-products from the food industry (for example, 
wheat middlings or slaughter waste from farm animals which is cur-
rently prohibited), food waste and grassland resources15. In the cur-
rent food system, humans cannot or do not want to consume these 
resources; instead, LCB can be fed to farm animals to increase their 
resource-use efficiency and potentially reduce the environmental 
impact of animal-source food17,21.

Our aim was to assess whether adhering to the circularity princi-
ple of feeding LCB to farm animals within the EU-27 + UK is com-
patible with the recommended animal-source food consumption in 
healthy and environmentally friendly dietary guidelines. We took a 
reference diet derived from the EAT-Lancet guidelines as an exam-
ple of a future healthy diet that was the product of a food system 
with environmental impacts that remained within planetary bound-
aries4. To adhere to circularity principles applied to the EU-27 + 
UK, animals were fed co-products and food waste resulting from the 
plant-source fraction of the EAT-Lancet dietary guidelines (Fig. 1).  
In addition, grassland resources and slaughter by-products from 
farm animals could be used as animal feed. A resource-allocation 
model was used to distribute the LCB among animal production 
systems (dairy, beef, pigs, broilers, laying hens, Atlantic salmon 
and Nile tilapia) to maximize protein production while respecting 
recommended animal-source food intake levels of the EAT-Lancet 
dietary guidelines and to calculate land use and GHG emissions. 
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It is not known whether dietary guidelines proposing a limited intake of animal protein are compatible with the adoption of 
circular food systems. Using a resource-allocation model, we compared the effects of circularity on the supply of animal-source 
nutrients in Europe with the nutritional requirements of the EAT-Lancet reference diet. We found the two to be compatible in 
terms of total animal-source proteins but not specific animal-source foods; in particular, the EAT-Lancet guidelines recom-
mend larger quantities of poultry meat over beef and pork, while a circular food system produces mainly milk, dairy-beef and 
pork. Compared with the EAT-Lancet reference diet, greenhouse gas emissions were reduced by up to 31% and arable land use 
reduced by up to 42%. Careful consideration of the feasible substitutability between animal-source foods is needed to define 
potential roles of animal products in circular human diets.
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We did not consider the economic consequences of feeding LCB to 
livestock. Crop and animal production systems in the EU-27 + UK 
were based on current management and yields (that is, kg per hect-
are or kg per animal). The nutrient adequacy of any changes to the 
EAT-Lancet dietary guidelines was assessed against the European 
Food Safety Agency (EFSA) human nutrient intake requirements22. 
Four explorative theoretical scenarios were investigated (Table 1), 
which assess the impacts of changing diets on land use and GHG 
emissions (although we remain aware that agricultural practices 
are driven by a larger array of factors): (1) an EAT-Lancet refer-
ence scenario which represented the EAT-Lancet dietary guidelines 
in their current form (EL Reference); (2) a healthier wholegrain 
diet with a fixed composition of animal-source food (EL Circular 
Wholegrain Fixed); (3) a refined grain diet with a fixed composi-
tion of animal-source food (EL Circular Refined-grain Fixed); (4) 
a wholegrain diet with an unrestrained quantity of animal-source 
food to demonstrate the production potential of animals fed LCB 

(EL Circular Wholegrain Potential). The EL Circular Wholegrain 
Fixed and EL Circular Refined-grain Fixed scenarios offer insights 
into how grain consumption can influence the role of animals when 
adopting circularity principles. Consuming wholegrains is preferred 
from a health perspective; however, consuming refined grains results 
in additional by-products for animal feed derived from cereal pro-
cessing15,23. This is meant as an example because processing often 
impacts the potential production of animals fed LCB and health, 
for example, rice or potatoes with or without peels. The EL Circular 
Wholegrain Fixed and EL Circular Wholegrain Potential Scenarios 
provide insight into the debate about which and how many animals 
to keep in a circular food system and the trade-offs and synergies 
with health recommendations.

Results
Supply of animal-source foods. Our analysis revealed that ani-
mals exclusively fed LCB were unable to provide the combination of 
meat, milk, eggs and fish recommended in the EAT-Lancet dietary 
guidelines, largely due to an insufficient quantity of high-quality 
LCB. In total, the reference diet derived from the EAT-Lancet 
dietary guidelines contained 71 g of meat and fish, 250 g of milk and 
13 g of eggs per capita per day. It was, nevertheless, possible to fulfil 
the ‘total’ recommendations by adjusting the share of meat and fish 
while respecting the healthy range. The reference value for pork, 
for example, is 7 g, while the healthy range is 0–14 g pork per capita 
per day.

In the EL Circular Wholegrain Fixed scenario, the recom-
mended quantities of milk and fish could be met while meat was 
only 1% short; eggs were 100% short of meeting the recommended 
intake in the EAT-Lancet dietary guidelines. No eggs were produced 
in the EL Circular Wholegrain Fixed scenario. In the EL Circular 
Refined-grain Fixed scenario, the recommended quantities of meat, 
milk, eggs and fish could be met and exceeded (meat and fish, 12%) 
due to the additional LCB available from the refining of grains (for 
example, wheat bran). However, adjusting the shares of meat and 
fish was still required. Compared to the EL Circular Wholegrain 
Fixed, the EL Circular Refined-grain Fixed scenario could produce 
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Consumption, 1,307

Waste, 66

Waste, 356

Fig. 1 | Framework to assess the supply of animal-source food from animals fed LCB. Example shown represents the EL Circular Wholegrain Fixed 
scenario. All flows are in grams fresh matter per human capita per day except grass which is in grams dry matter (DM) per human capita per day. Green 
flows indicate modelled flows. Dashed line indicates flow of slaughter waste back to co-product.

Table 1 | Overview of scenarios employed

Diet type Animal-source 
food 
composition

Wholegrain Refined 
grain

Fixed Free

EL Reference × ×
EL Circular 
Wholegrain Fixed

× ×

EL Circular 
Refined-grain Fixed

× ×

EL Circular 
Wholegrain Potential

× ×

Three different diet scenarios and a reference scenario were included with varying consumption of 
grains and animal-source food composition.
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more poultry meat (12 g versus 2 g of poultry meat) and meet the 
recommended intake of eggs in the EAT-Lancet dietary guidelines 
(13 eggs per capita per day). From a health perspective, the con-
sumption of poultry meat is preferred over the consumption of 
beef and pork4. Broilers and laying hens, however, were limited in 
their ability to upcycle all types of LCB and mainly required the 
co-products from refined grains. This creates a trade-off between 
consuming healthy wholegrains or producing healthy white poultry 
meat and eggs.

The EL Circular Wholegrain Potential scenario showed the opti-
mal allocation of LCB (in terms of maximizing protein production) 
to different animals (Fig. 2). This scenario resulted in an increase 
in pork production (to 44 g per capita per day) due to the ability 
of pigs to convert low-quality co-products and food waste into 
animal-source food. Milk production also increased (to 523 g per 
capita per day) as dairy cattle are efficient converters of LCB (espe-
cially grassland) to protein. Increased milk production increased the 
supply of cull cows which produced additional beef. The increase of 
pork and milk was at the expense of poultry and fish production, 
thus showing a trade-off between optimally utilizing LCB and pro-
ducing the preferred white meat.

Nutrient supply for human consumption. Our results showed that 
all EL Circular scenarios increased the supply of eicosapentaenoic 
acid (EPA)/docosahexaenoic acid (DHA), zinc, iron, vitamin B12 
and protein compared to the EL Reference. The supply of calcium 
and energy was only increased compared to the EL Reference in the 
EL Circular Wholegrain Potential scenario.

Compared to the EFSA dietary nutrient requirements, the EL 
Circular Wholegrain Fixed, EL Circular Refined-grain Fixed sce-
narios and the EL Reference did not meet zinc, calcium and vita-
min B12 requirements (Fig. 3 and Supplementary Information). 
Notably, the EL Reference also fails to meet EPA/DHA aver-
age nutrient requirements (Fig. 3). The EL Circular Wholegrain 
Potential did meet the calcium and vitamin B12 requirements but 
not zinc, however, largely due to an increase in milk production 
(250 g versus 523 g). For all nutrients except EPA/DHA (due to less 
fish), nutrient supply was greatest in the EL Circular Wholegrain 
Potential scenario. Besides calcium and fat, all three circularity diets 
outperformed the EAT-Lancet diet on available nutrients.

GHG and land use impacts. Overall, GHG emissions were 31% and 
23% lower in the EL Circular Wholegrain Fixed and EL Circular 
Refined-grain Fixed scenario compared with the EL Reference diet. 
The reduction in emissions was due to the avoided emissions related 
to the production of animal feed (for example, nitrous oxide (N2O) 
from nitrogen fertilization) and the EL Circular Wholegrain Fixed 
scenario requiring less grain production (that is, more grain was des-
tined for human consumption, due to no refining). Figure 4 shows 

GHG emissions and animal-source food protein produced from 
all three EL Circular scenarios and the EL Reference diet. Higher 
quantities of animal-source food (and therefore protein) were pro-
duced in the EL Circular Wholegrain Potential and lower quantities 
in the EL Circular Wholegrain Fixed scenarios which influenced 
GHG emissions (Fig. 4). The EL Circular scenarios include a default 
GHG emission value (according to the Intergovernmental Panel 
on Climate Change (IPCC) tier 2 approach) and a range of uncer-
tainty to reflect the uncertainty in GHG emissions. Optimally uti-
lizing LCB (to maximize protein production from animal-source 
food) in the EL Circular Wholegrain Potential scenario increased 
default GHG emissions to 483 kg CO2e per capita per year from 
390 kg CO2e per capita per year in the EL Circular Refined-grain 
Fixed scenario (largely due to an increase in milk and pork produc-
tion, Supplementary Information). The types of animal-source food 
produced impacted the ratio of GHG emissions; in the EL Circular 
Wholegrain Potential scenario additional dairy increased the con-
tribution of methane (CH4) to total GHG emissions (Figs. 2 and 4). 
The default GHG emission values of all scenarios were within the 
safe operating space of the planetary boundaries’ framework (511 kg 
CO2e for food production per capita per year4). In all EL Circular 
scenarios, the upper limit to the range of uncertainty was beyond 
the safe operating space (Fig. 4).

Overall, cropland use was lower in all EL Circular scenarios 
than in the EL Reference diet (Fig. 5). However, it is important to 
note that cropland use for the EAT-Lancet reference scenario was 
based on a global cropland use average and could overestimate EU 
cropland use per capita; all EL Circular scenarios were based on EU 
cropland-use data specific for the EU. Further, utilizing cropland 
to produce animal feed also led to an increase in land use in the 
EAT-Lancet reference scenario. Cropland use was lowest in the EL 
Circular Wholegrain Fixed and EL Circular Wholegrain Potential 
scenarios due to the use of wholegrains requiring less land (that 
is, lower amounts of co-products from wheat result in less land 
required), although differences with using refined grain were mar-
ginal. Grassland use of the EL Circular Wholegrain Fixed and EL 
Circular Refined-grain Fixed were similar while the EL Circular 
Wholegrain Potential scenario resulted in higher grassland use 
because the use of grassland resources was increased for milk pro-
duction (Fig. 3).

The production of milk and beef in circular food systems is 
highly dependent on the availability of grassland. Variation exists 
in the data on the quantity and quality of current grassland in the 
EU-27 + UK depending on the study and definition of grassland 
(that is, between managed and natural grassland) and available data 
sources. We compared the animal-source food output (for example, 
milk) of the EL Circular Wholegrain Potential scenario with dif-
ferent areas of managed grassland resulting from three different 
studies/models24–26. Milk production and beef (from dairy cattle) 
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Poultry
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Fish
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Scenario

EL reference

EL circular wholegrain fixed

EL circular refined-grain fixed

EL circular wholegrain potential

Fig. 2 | Animal-source food production from all EL Circular scenarios and the EL Reference diet. On this graph ‘100%’ is equal to the recommended daily 
intake in the EAT-Lancet dietary guidelines, that is, 28 g of fish, 7 g of pork, 13 g of eggs, 29 g of poultry meat, 7 g of beef and 250 g of milk.
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ranged, respectively, from 291 to 748 and 11 to 32 g per capita per 
day (Supplementary Information). Including natural grasslands 
could further increase the output of animal-source food.

Discussion
Our results show that the overall quantity of animal-source protein 
in the EAT-Lancet dietary guidelines can be met, but that the pre-
cise levels of inclusion of different animal-source foods in such a 
diet cannot be achieved by only feeding LCB to animals. The extent 
to which the recommended quantities of animal-source food could 
be met largely depended on the availability of LCB. The EL Circular 
Wholegrain Fixed scenario versus the EL Circular Refined-grain 
Fixed scenario revealed that the role animals can play in circular 
food systems will be narrowed as we move towards healthier con-
sumption of plant-source foods. With today’s food consumption 
patterns, several food groups are consumed in highly processed 

forms, resulting in additional by-products on the one hand, but 
increasing the risk for non-communicable diseases on the other 
hand27. The example employed here, wheat, results in by-products 
such as wheat bran and wheat germ if wheat is consumed in a 
refined manner. If it is, however, consumed as wholegrain, as rec-
ommended in the EAT-Lancet dietary guidelines, no by-products 
occur. Potatoes, vegetables and fruits would be other examples; if 
potatoes, for example, are industrially processed, their peel can be 
collected and used as animal feed.

Although dietary guidelines could not be met, it was possible 
to meet the nutrient recommendations when the EAT-Lancet diet 
restrictions were removed (that is, the EL Circular Wholegrain 
Potential scenario). Comparing the two EL Circular Fixed sce-
narios with the EL Circular Wholegrain Potential scenario showed 
that some animal species were more efficient at upcycling LCB 
(for example, dairy cattle and pigs) than others (for example, poul-
try). Grass resources, for example, were utilized most efficiently by 
dairy cattle because ruminants are well adapted to value this feed.  
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Fig. 4 | GHG impacts from all EL Circular scenarios and the EL Reference 
diet. GHG emissions (kg CO2e capita per year) and protein intake from 
animal-source food (g per capita per day) of the EL Circular scenarios 
compared to the GHG emission results calculated by the EAT-Lancet 
Commission for its reference diet (red dot). Range indicates uncertainty in 
GHG emissions. Pie charts indicate midpoint (default) GHG emissions and 
contribution of each GHG (N2O and CH4).
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Fig. 3 | Nutrients available in all EL Circular scenarios and the EL 
Reference diet. On this graph ‘100%’ refers to the daily average nutrient 
requirements outlined by EFSA (see Supplementary Information). Nutrients 
are shown from animal-source food (solid fraction) and plant-source food 
(shaded fraction). Total daily dietary nutrient supply includes the solid and 
unshaded fractions.
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Wet or fibrous food leftovers are used most efficiently by pigs, which 
are known to have a high feed intake capacity. Milk, furthermore, 
includes relatively high amounts of calcium, and beef and pork are 
high-quality sources of bioavailable vitamin B12 and zinc28. In other 
words, each animal has its own unique capacity to convert LCB into 
specific nutrients. The nutrients provided by animals are of high 
bioavailability and some, such as vitamin B12 and the omega-3 fatty 
acids EPA and DHA, are predominantly provided by animal-source 
foods and are almost absent in plant-source foods28.

The EL Circular scenarios, and in particular the EL Circular 
Wholegrain Potential scenario, showed that animals raised in a 
circular food system can play an essential role in providing nutri-
ents. This is in line with earlier findings of, for example, Röös 
et al.29, van Hal et al.15 and van Zanten et al.14. None of those stud-
ies, however, assessed the importance of the dietary recommen-
dations. Our results clearly show that although the EL Circular 
Wholegrain Potential scenario met all the nutrient recommenda-
tions except that of zinc, it exceeded the intake of beef and pork. 
Evidently, a healthy diet is not only defined by the sum of its nutri-
ents. In fact, since the majority of the EL Reference diet was kept 
constant and clear bounds were set for the animal-source foods, 
the endowment for a healthy diet can nevertheless be approxi-
mated. However, findings from cohort studies suggest that the 
occurrence of several non-communicable diseases, such as car-
diovascular disease, was associated with a relatively high intake of 
red meat, that is, beef and pork (for example, ref. 30). The higher 
recommended amounts of poultry as compared with beef in the 
EL Reference diet was justified by the fact that poultry meat does 
not show associations with increased mortality, and poultry fat 
moreover provided a higher content of essential polyunsaturated 
fatty acids (21% versus 4%)4. The above illustrates that although it 
is important to optimize essential nutrients from animal-source 
food, following upper limits of dietary guidelines is essential to 
avoid dietary-related diseases.

Our results furthermore showed that when circularity principles 
were adopted, GHG emissions and land use could be reduced com-
pared with the EAT-Lancet diet because feed–food competition was 
avoided. In Willett et al.4, broilers perform better than, for example, 
beef from an environmental perspective due to their favourable 
feed conversion ratio. However, Willett et al.’s assessment is based 
on impact intensities (for example, GHG emissions per kg of food 
product) calculated for the current system; it was not considered 
whether the feed for broilers would also have been suitable as food 
for humans, or whether the area on which it was grown would have 
been suitable to grow food for humans. Our analysis clearly shows 
that as soon as we move towards a circular food system, and hence 
restrict the role for animals in converting LCB, broilers can no lon-
ger compete with, for example, cattle. This has consequences for 
any dietary guidelines (local or national) that aim to reduce envi-
ronmental impacts, beyond the global EAT-Lancet diet. This does 
not mean that broilers cannot play a role in circular food systems, 
but it demonstrates that the broilers of today are less suited to con-
vert LCB. This stresses the importance of adapting future breeding 
goals and feeding strategies towards the ability of animals to utilize 

LCB. This is essential because our results showed that animals can 
reduce their environmental impact (and the impact of the entire 
food system) if they increase their efficiency in converting LCB 
into healthy food.

Our study and model focused on feeding LCB, including food 
waste, to animals as a principle of circularity. Preventing food 
waste in the first instance or revalorizing food waste as food 
should always remain the priority; only when this is not possible 
should food waste be used as animal feed31. In other countries (for 
example, Japan and South Korea), food waste is successfully fed 
to monogastric animals after a processing and sterilization step 
before feeding32. In our case we assumed 35% of food waste avail-
able is suitable to be fed to animals32. The nutrient content of food 
waste is highly dependent on the food consumed and discarded, 
a weighted average based on the amount of food consumed in 
the human diet and the proportion wasted. By combining these 
products into one mix the feed value in terms of energy and pro-
tein of higher-quality waste products (for example, grains) is 
diluted by lower-quality waste products (for example, vegetables). 
Expanding the model employed to separate streams of food waste 
may increase the amount of animal-source food produced due 
to a greater availability of high-quality LCB. Further expanding 
the optimization model to include plant-source food production 
within the EAT-Lancet diet could offer further opportunities to 
reduce GHG emissions and land use. In addition, more circular-
ity principles could be captured, including returning nutrients in 
manure and crop residues to the soil. Applying alternative objec-
tive functions (for example, minimizing GHG emissions while 
meeting the nutrient requirements of the human diet) could also 
influence the animal production systems selected.

Finally, it is important to consider the importance of future 
technologies for our results33. In our work we followed the assump-
tions made by Willett et al.4. It was, for example, assumed that fos-
sil energy was replaced by renewable-energy sources, causing no 
CO2 emissions, while crop and grass yields were based on current 
yields and management (obtained from the Miterra-Europe Model 
and Carlson et al.34). In the coming decades, crop yields might be 
expected to continue to increase due to ongoing technological 
developments35,36. Increased crop yields would not, however, alter 
the main findings of our study because this study focused on the 
utilization choice of LCB, of which the amount is independent from 
crop yields. A change in crop yield would affect the environmental 
impacts of the remaining plant-source food needed to fulfil nutri-
tional requirements. Increased crop yields may lead to lower land-
use requirements per capita in each of the scenarios. The impacts 
of increased crop yields on GHG emissions are less clear. Achieving 
higher yields is likely to require more nutrient inputs (especially 
nitrogen37), with associated increases in GHG emissions per tonne 
of product, but technological developments may also increase nutri-
ent-use efficiencies and thereby play a compensatory role.

Conclusion
We demonstrated that feeding LCB to animals has the potential to 
reduce GHG emissions and land use. Our results showed that the 

EL Circular Wholegrain Potential

EL Circular Refined-grain Fixed

EL Circular Wholegrain Fixed

EL Reference

0 0.05 0.10 0.15 0.20

Grassland
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Fig. 5 | Land-use impacts from all EL Circular scenarios and the EL Reference diet. Cropland use (hectares per capita per year) from the EL Reference diet 
(which is an estimate for the entire globe, calculated by the EAT-Lancet Commission) compared to cropland and grassland use in the EU-27 + UK for the 
three EL Circular scenarios.
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quantity of animal-source protein in EAT-Lancet dietary guidelines 
could be met, but that the precise animal-source food composition 
of the EAT-Lancet dietary guidelines could not be met by only feed-
ing LCB to animals. Dietary guidelines recommend poultry meat 
over beef and pork, whereas in a circular food system mainly milk, 
dairy-beef and pork are produced. Careful consideration of the 
feasible substitutability between animal-source foods is urgently 
needed to define the role of animal products in the human diet. In 
this way the circularity principle of only feeding animals with LCB 
can be integrated into healthy and environmentally sustainable diets 
to further reduce environmental impacts.

Methods
In this study we extended the resource-allocation model developed by van 
Hal et al.15 to include GHG emissions and land use. This model allocates 
co-products, food-waste resources (from the EAT-Lancet example diet derived 
from the EAT-Lancet dietary guidelines4) and grassland resources. We compared 
environmental impacts of the EL Reference diet with three EL Circular scenarios. 
Each scenario varied based on the type of grain (wholegrain or refined grain) and 
the animal-source food composition (Table 1).

Adjustments to the EAT-Lancet diet. We took a reference diet developed by the 
EAT-Lancet Commission (derived from the EAT-Lancet dietary guidelines) as a 
starting point for this study. To better reflect the EU diet, some adjustments were 
made to grain consumption (that is, more wheat and less rice; the total quantity of 
grain remained unchanged) based on FAOSTAT4,38.

LCB from the EAT-Lancet diet. To calculate the amount (that is, tonnes) and area 
of crop required, and co-products available, reverse calculations were made using 
food consumption. Quantities of co-products (for example, wheat bran) from crops 
(for example, wheat) were calculated using FAO technical conversion factors39,40. 
In some scenarios grains were refined to increase the availability of co-products 
as animal feed and to better reflect current dietary habits (for example, wheat 
bran; Table 1). Quantities of food waste were calculated using food waste fractions 
developed by Gustavsson et al.41. This process was performed for each of the EU-27 
+ UK countries.

Resource allocation model. The model of van Hal et al.15 is a resource-allocation 
model of the EU-27 + UK developed in General Algebraic Modelling System v.30.3. 
The objective of the model is to maximize animal protein output from a given 
availability of animal feeds while meeting the nutritional requirements of the animals.

Animal systems include livestock (dairy cattle, beef cattle, pigs, broiler chickens 
and laying hens) and farmed fish (Atlantic salmon and Nile tilapia). The two fish 
systems are a proxy for a range of species with similar characteristics (for example, 
rainbow trout for Atlantic salmon). Livestock systems include three productivity 
levels (high, medium and low) while farmed fish only include a high productivity 
level. The model included the parent stocks (for example, sows in the pig system) 
and reproduction stocks (for example, heifers in the dairy system) to account for 
the entire life cycle of the animal. The nutritional requirements of livestock and 
farmed fish can be found in the Supplementary Information.

Livestock and farmed fish were exclusively fed co-products, food waste, 
grassland resources and animal by-products, referred to as LCB. In our model, 
co-products and animal by-products could be traded between EU-27 + UK 
countries, while food waste and grassland must be used in the country in which 
it is produced. The availability of co-products and food waste was set by the 
EAT-Lancet reference.

Thirty-five percent of the available food waste could be fed to animals as a wet 
feed, which is considered achievable if the feeding of food waste to animals were 
to be legalized32. Food waste could only be consumed by monogastric animals 
and fish due to food safety risks32. The availability of European grassland was 
based on the Miterra-Europe model26, and it was assumed grassland could only be 
consumed by ruminants. Our analysis only included managed grassland due to the 
uncertainty in quantity and quality of natural grasslands in Europe.

The availability of animal by-products was a fraction of the predicted live 
weight output of each livestock system (reported in ref. 42). Cannibalism was 
prevented in livestock systems; in farmed fish systems cannibalism was allowed 
due to the species being a proxy of a range of species. This enabled intraspecies 
recycling of by-products from farmed fish, meaning farmed fish can consume 
by-products of the same species. The nutritional value of LCB for livestock was 
obtained from the Dutch animal feed board, known as the CVB system43; the 
nutritional value of LCB for farmed fish was obtained from the International 
Aquaculture Feed Formulation Database44.

In addition to aquaculture, the model includes capture fisheries. Capture fisheries 
produce fish for human consumption and fish by-products (for example, fish meal) 
which can be fed in the animal systems. Quantities of capture fisheries (that is, 
harvested fish in tonnes of fresh fish) were limited to the maximum sustainable yield.

Human nutrient supply. To ensure that changes in the quantity and composition 
of animal-source food in the EAT-Lancet diet did not reduce the supply of 
nutrients to humans, the nutrient supply of each scenario was assessed against 
dietary nutrient recommendations from EFSA22. The nutrient content of each food 
item was based on the US Department of Agriculture food and nutrient database45.

GHG emissions and land use from animal-source food. The resource-allocation 
model developed by van Hal et al.15 was extended to include GHG emissions 
calculations. GHG emissions were based on the IPCC and Dutch GHG inventory 
methodologies46. It was assumed that fossil energy was replaced by renewable energy 
sources by 2050, causing no CO2 emissions, to keep our assumptions in line with the 
EAT-Lancet study4. The only contribution to land use from livestock was the grassland 
used as feed for ruminants. Other livestock systems were considered landless or had a 
very small, negligible land use because livestock are fed exclusively LCB.

GHG emission calculations were performed using a food systems approach. 
A food systems approach assesses emissions from the total diet as opposed to 
emissions per individual products in a life-cycle assessment. Emissions were 
limited to those occurring on the farm, including manure management, enteric 
fermentation and grassland production. No other animal feed emissions were 
considered due to the food-based allocation method47.

GHG emissions from terrestrial animals (dairy cattle, beef cattle, pigs, broiler 
chickens and laying hens) included CH4 and N2O from manure management. 
Methane emissions from manure management were calculated by multiplying 
volatile solid excretion by the methane conversion factor (that is, the conversion 
factor for each manure management system), B0 (that is, the maximum 
methane-producing capacity for manure) and 0.67 (that is, the conversion of 
methane from m3 to kg CH4)48. Volatile solid excretion was calculated using 
digestibility of protein and organic matter of feed consumed by the animal species49. 
N2O emissions from manure management included direct and indirect emissions 
(the latter resulting from the volatilization of ammonia and nitrogen (di)oxide) 
from nitrogen excretion in housing systems48. Nitrogen excretion was calculated by 
subtracting nitrogen retained in meat/milk/eggs from nitrogen intake.

In addition, ruminant systems included CH4 from enteric fermentation and 
N2O from grassland fertilization. CH4 emissions from enteric fermentation were 
calculated by multiplying gross energy intake by Ym (that is, percentage of gross 
energy in feed converted to CH4) and dividing by 55.65 (that is, the gross energy 
content of methane)48. N2O emissions from grassland included direct and indirect 
emissions (the latter resulting from the volatilization of ammonia and nitrogen (di)
oxide and the leaching of nitrate) from nitrogen fertilization and manure excretion 
while grazing50. Grassland fertilization rates were estimated by the Miterra-Europe 
model based on the assumption that all organic fertilizer produced by grazing 
animals is applied to fodder crops (for example, grassland and fodder maize) in the 
same region and based on FAOSTAT data on nitrogen mineral fertilizer26.

GHG emissions from farmed fish included N2O emissions from the 
aquaculture system. Nitrogen in unconsumed feed and excreta (nitrogen intake 
minus nitrogen retained in body tissue) was multiplied by 1.8% and converted 
from nitrogen to N2O (ref. 51).

GHG emissions were summed into carbon dioxide equivalents (CO2e; 100 yr 
time horizon, 28 for biogenic CH4 and 265 for N2O (ref. 52)), and summed with 
plant-source food emissions (see next section) to calculate total GHG emissions. 
Results were given in GHG emissions per diet per capita per year.

GHG emissions and land use from plant-source food. For plant-source food, 
average national crop yields and nitrogen inputs per hectare were estimated using 
the Miterra-Europe model26 with 2017 as a reference year. For national crop yields 
and nitrogen inputs, direct and indirect N2O emissions were calculated using an 
IPCC tier 2 approach50. A food-based allocation method was applied where all 
GHG emissions were allocated to the main food product (for example, wheat 
flour)47. To calculate GHG emission intensities and crop yields at an EU level, a 
weighted average was applied based on harvested area in each country. Not all 
plant-source food was included in the Miterra-Europe model (lentils, groundnuts, 
tree nuts and bananas). The GHG emission intensities and crop yields per hectare 
were then estimated using global data, with a reference year of circa 200034. 
Processing of crop into edible food products and food waste along the supply chain 
(LCB from the EAT-Lancet diet) were then considered to calculate GHG emission 
intensities and land use per kg of plant-source food consumed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available from https://doi.org/10.4121/16918732

Code availability
Model code is available from https://doi.org/10.4121/16918732.
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