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Abstract: Adaptivity of eating and rumination behavior are assumed to play a particular role for
cows in low-input systems, because they are more frequently challenged by altering forage quality.
The present study examined relations between forage quality, chewing behavior and efficiency
estimates in dairy cows from Swiss zero-concentrate organic farming systems. A total of 102 Swiss
Fleckvieh cows on two organic dairy farms were observed during one full production year. Each
farm was visited eight times. At each visit, up to 45 cows were equipped with RumiWatch® (Itin
and Hoch GmbH, Liestal, Switzerland) sensor head collars, from which eating and rumination
time and the frequency of activity changes were obtained for 48 h. Milk from one complete day
was analyzed individually. All offered roughages (pasture herbage, grass silages and hay) were
sampled at each visit and analyzed for crude fiber, crude protein and net energy, and a feed quality
score was calculated. Metabolic production efficiency was estimated based on entire lactation data,
and feed efficiency was estimated based on the individual farm visits. Lactation stage and forage
quality significantly affected the chewing sensor variables. Eating time increased and rumination
time decreased with the improved nutritive quality of feed. Coefficients of variance of the factor
animal in the sensor variables showed a contribution of the individual cow to chewing behavior.
Significant correlations between chewing sensor variables and efficiency estimates were not found.
In conclusion, chewing behavior under on-farm conditions in low-input dairy farms alters during
lactation and during changing forage quality, with significant animal effects, indicating potential for
new phenotypes, albeit with no indications for efficiency.

Keywords: grazing; chewing sensor; feeding behavior; milk yield; on-farm research; organic
dairy; roughage

1. Introduction

Low-input dairy production systems, which aim at reducing the use of concentrate
feeds, are expanding in Europe [1] and in the US [2], particularly in the organic sector.
These farms need cow types well adapted to roughages and pastures with varying nutrient
density and digestibility [3,4]. Responses to varying nutritive quality may consist in
adapting milk yields, mobilizing and restoring body adipose tissues, altering intake and
digestion or avoiding pregnancy. From a biological perspective, the animal’s main goals
are to stay healthy and to reproduce [5], while, from the farmers’ economic perspective,
the main goal is the efficient conversion of the feed offered to dairy products. These goals
are antagonistic, to a certain degree, which is evident from the antagonism between high
milk yields and robustness traits across breeds [6]. There is a general trade-off between
advanced high-yielding breeds, which are often not flexibly adaptive to changing pasture
conditions [7], and well-adapted traditional or dual-purpose breeds, which cope well with
the challenges of low-input systems but have lower milk yields [6,8]. Therefore, resilience,
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adaptability and roughage conversion efficiency are important aspects to characterize
suitable breeds and phenotypes for low-input systems [9]. For such characterizations,
behavioral traits such as eating and rumination may play a helpful role.

The assessment of feed efficiency on cow level under grazing conditions is challeng-
ing. Individual determination of dry matter and nutrient intake is hardly practicable in
dairy systems with loose housing and grazing [10]. Thus, calculation of efficiency sensu
strictu [11] is hardly possible on such farms. Intake and rumination activity measured
with chewing sensors might provide meaningful proxies to estimate intake and responses
to feed quality in practice [12]. Several such sensors were brought to market in recent
years [13,14], and reasonable correlations of the achieved data with intake could be shown,
e.g., for noseband-situated pressure sensors [15,16].

Chewing activity curves, translated into eating and rumination patterns [17], can
reflect changes in feed availability and quality [18,19], but they may also express individual
responses to feed properties in terms of intake and rumination phenotypes [10,20]. How-
ever, such approaches will work only if they provide consistent responses under practice
conditions. In order to evaluate the suitability of chewing sensor data for senseful pheno-
typing, it appears necessary to evaluate (a) the strength of chewing behavior in response to
different forage qualities and (b) the correlation of intake and rumination traits with milk
production efficiency estimates at the cow level.

Therefore, we conducted a study on two commercial Swiss organic dairy farms with
zero-concentrate feeding strategies. Covering a full production season, each of the herds
was assessed eight times with chewing behavior sensors at the cow level over 48 h. The
sensor data were analyzed to investigate the relationships between foraging behavior and
production parameters such as feed quality, lactation stage, performance and efficiency
values. Three levels of analysis were (i) the general development of the assessed variables
across lactation, (ii) the effects of feed quality on chewing sensor and production variables
and (iii) the corrected correlation of chewing sensor data with two different efficiency
estimates. The target of the study was to evaluate the potential of chewing sensor data for
phenotyping cows under practice conditions for selection on low-input dairy farms.

2. Animals, Materials and Methods
2.1. Farms and Animals

We conducted on-farm assessments on two Swiss organic dairy farms. The animal
experiment was controlled and permitted under the Swiss permit number 29374, issued
by the veterinary authority in Aarau, Switzerland. The commercial farms were chosen
in order to have sites well representative for a low-input but nonetheless dedicated dairy
production agriculture in grassland-rich sub-alpine regions. Both farms are economically
fully profitable under current conditions and thus they represent a reasonable model
for future low-input dairy production in the region. Both farms were located in Central
Switzerland (farm 1: close to the city of Aarau; farm 2: close to the city of Luzern; both
were in lowland sites with a high proportion of semi-natural grassland).

Both farms followed a zero-concentrate feeding regime with grazing whenever pos-
sible. The animals had always ad libitum access to water and forage, the latter either as
pasture or as cut grass, grass silage or hay in the barn (Table 1). Salt and mineral mixtures
were accessible daily in the barn for each cow. The cows were milked daily in the morning
(6.00) and in the evening (17.00). Each farm herd consisted of 40–50 lactating dairy cows of
the Swiss Fleckvieh breed [21]. All lactating animals were kept in one group, respectively.
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Table 1. Experimental setup showing the eight runs per farm, starting date, ration including botanical
characterization, Temperature–Humidity Index (THI) and number of cows involved.

Run Starting Date Ration Botanical
Characterization 1 THI 2 Ncows

Farm1_a 29 August 2017 Pasture K2-3 63.8 39
Farm1_b 3 September 2017 Pasture A3 62.1 39
Farm1_c 6 June 2018 Mixed G2 + G4 54.6 34
Farm1_d 11 April 2018 Pasture A4 56.7 34
Farm1_e 23 August 2018 Mixed A2 65.0 39
Farm1_f 28 August 2018 Mixed K3 + L4 59.2 39
Farm1_g 10 October 2018 Pasture L3 + G3 NA 35
Farm1_h 15 October 2018 Mixed G3 NA 35
Farm2_a 5 November 2017 Mixed A2-3 43.4 42
Farm2_b 10 November 2017 Mixed L2-3 40.9 42
Farm2_c 21 March 2018 Hay G3-4 46.3 27
Farm2_d 26 March 2018 Mixed G1 + G3-4 42.8 27
Farm2_e 16 November 2018 Mixed G2 + G3-4 35.2 30
Farm2_f 21 November 2018 Hay G3-4 39.0 30
Farm2_g 16 April 2019 Mixed G3 + G3-4 59.0 21
Farm2_h 21 April 2019 Pasture G3 56.1 21

1 botanical composition, assessed following the recommendations of AGFF, 2007 (https://www.eagff.ch/files/
images/bilder/Raufutter_produzieren/Futterqualitaet/agff-mb3_1707_D_21_bewertung_von_wiesenfutter_
ohne_06.05.pdf (accessed on 15 July 2022)): G = rich in grasses, K = rich in herbs, L = rich in legumes,
A = balanced; development stages: 1 = start of shooting, 2 = panicle rises in 50% of the fermenters, 3 = start of
panicle pushing, 4 = full panicle pushing. 2 Temperature–Humidity Index.

The investigation schedule comprised eight visits per farm, which were intended to
cover the whole grazing season (March–November) and as many as possible of different
feed quality situations. For reasons of feasibility, we organized the visits always pairwise
around a foreseen change in pasture or in feeding schedule. Each farm was visited eight
times between August 2017 and April 2019, to collect chewing behavior data in association
with feed nutritional quality and lactation status, and to assess the body condition and
body weight of the cows. Whereas, initially, all lactating cows were studied at each farm
visit, technical errors of sensors or mismatch with validation criteria caused a posteriori
exclusion of individual animals. The effective sample size and basic descriptors of the
different farm visits are shown in Table 1, and the farm characteristics are displayed in
Table 2.

Table 2. Descriptive summary of chewing sensor variables and cow characteristics by farm.

Data Origin Variable
Farm 1

(Observations n = 294)
Farm 2

(Observations n = 240)

Mean ± SD Median Min–Max Mean ± SD Median Min–Max

Trial 1

Eating time (min/d) 609.9 ± 88.8 628.6 341.3–768.3 538.3 ± 71.7 542.3 325.6–714.2
Ruminate time (min/d) 413.1 ± 79.4 399.5 240.5–606.7 490.4 ± 71.9 486.9 324.5–666.5

Other activity time (min/d) 412.8 ± 102.4 394.6 233.3–692.8 401.0 ± 80.8 410.0 219.6–603.9
Ruminate chews per minute (avg.

of 24 h) 43.2 ± 6.8 42.5 26.6–67.5 50.3 ± 7.0 49.8 31.2–71.4

Ruminate chews per bolus (avg.
of 24 h) 34.5 ± 6.2 34.2 18.7–55.9 43.7 ± 6.8 43.8 28.3–60.7

Activity changes (n/d) 121.9 ± 20.0 120.0 77.3–183.0 133.1 ± 26.5 128.7 79.3–220.3
Body weight (kg) 581.8 ± 61.1 583 456–787 648.4 ± 75.4 658 441–810

Body condition score 2.90 ± 0.29 2.75 2.25–3.75 3.21 ± 0.34 3.25 2.50–4.00
ECM (kg/d) 3 16.6 ± 5.7 15.1 6.7–37.0 21.3 ± 5.7 21.4 5.2–33.0

Milk protein (%) 3.37 ± 0.30 3.34 2.76–5.12 3.70 ± 0.50 3.72 2.77–5.40
Milk fat (%) 4.34 ± 0.59 4.29 2.96–6.35 4.44 ± 0.79 4.49 1.88–6.98

Milk lactose (%) 4.73 ± 0.15 4.73 4.27–5.48 4.67 ± 0.17 4.69 3.78–5.13
Days in milk 182.5 ± 76.1 210.5 3–300 148.7 ± 108.6 161 3–308

HB 2

Lactation number 3.5 ± 2.8 2 1–12 3.9 ± 2.4 3.5 1–10
Lactation yield (kg) 6362 ± 1815 6406 2295–10,621 5857 ± 1226 5863 2135–10,208
Lactation length (d) 336 ± 101 307 90–602 297 ± 70 306 80–584
DECMTL

4 (kg/d) 19.6 ± 3.2 19.7 12.6–26.3 20.8 ± 2.9 20.9 14.4–27.7
Milk proteinTL (%) 3.31 ± 0.24 3.32 2.72–3.96 3.42 ± 0.18 3.43 3.00–3.86

Milk fatTL (%) 4.22 ± 0.43 4.15 3.48–5.52 4.28 ± 0.35 4.29 3.37–5.20
Milk lactoseTL (%) 4.77 ± 0.10 4.77 4.46–5.02 4.70 ± 0.11 4.70 4.43–4.93

1 data generated during the trial, 2 data extracted from herd book data (Qualitas AG, Zug, Switzerland),
3 energy-corrected milk yield measured during the trial, 4

TL = averages of total lactation.

https://www.eagff.ch/files/images/bilder/Raufutter_produzieren/Futterqualitaet/agff-mb3_1707_D_21_bewertung_von_wiesenfutter_ohne_06.05.pdf
https://www.eagff.ch/files/images/bilder/Raufutter_produzieren/Futterqualitaet/agff-mb3_1707_D_21_bewertung_von_wiesenfutter_ohne_06.05.pdf
https://www.eagff.ch/files/images/bilder/Raufutter_produzieren/Futterqualitaet/agff-mb3_1707_D_21_bewertung_von_wiesenfutter_ohne_06.05.pdf
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2.2. Data Collection

We equipped up to 45 cows of each herd with RumiWatch® (RW) head collars for at
least four days per farm visit, on eight runs in total. RumiWatch® head collars are noseband
pressure sensors detecting chewing movements; the signals are translated into temporal
eating and ruminating patterns (Itin and Hoch GmbH, Liestal, Switzerland, [17]). After the
cows were holstered, they followed their daily routines on the farm.

Individual milk samples from one complete milking (evening and morning) were
taken on day 2/day 3 of each farm visit and analyzed for fat, protein, lactose and urea
through infrared spectroscopy (Milko-Scan-FT TM, FOSS Hilleroed, Denmark) by Suisselab
(Zollikofen, Switzerland). At the end of each visit, cows were weighed with a digital balance
with a riffle sheet that cows could walk on and two Trutest weighing bars (M800; Grüter
Waagen GmbH, Eschenbach). Further, body condition score was assessed using the method
described as ”dBCS” by [22]. Additionally, herd book data on total milk yield (kg), average
milk composition (i.e., percentage of milk fat, milk protein and milk lactose content) and
length of the respective lactation of each cow in the trial were obtained from the competence
center for informatics and genetics of Swiss breeding organizations, Qualitas AG (Zug,
Switzerland), and included in the analysis.

We used TinyTag loggers located on a pasture close to each barn to measure relative
humidity and temperature in ◦C and calculated the Temperature–Humidity Index (THI),
defined in Equation (1) as

THI = (1.8 × T + 32) − (0.55 − 0.0055 × RH) × (1.8 × T − 26) (1)

where T is the air temperature in ◦C and RH is the relative humidity in % (Table 1).

2.3. Feed Sampling and Analysis

At each farm visit, we collected representative samples of the actual feedstuffs, includ-
ing indoor fed hay, grass silage and freshly cut green fodder, as well as pasture. On pasture,
samples were collected by cutting, respectively, five plots of 0.25 m2 at 3–5 cm above ground.
The plots were randomly chosen spots, distributed across the respective pasture actually
grazed. From hay, grass silage or cut grass, we collected five samples filling a 1 L bag from
different places of the feedstocks in the barn, respectively. We dried the samples for 24 h at
60 ◦C to determine dry matter. Dried samples were milled (Cutting Mill SM100, Retsch
GmbH, 42781 Haan, Germany) and analyzed with near-infrared spectroscopy (NIRFlex
N-500 equipped with a NIRflex Solids measuring cell, Büchi Labortechnik AG, 9230 Flawil,
Switzerland) for crude protein (CP), crude ash and crude fiber. The NIRFlex device had
been calibrated based on a sample of >100 roughage samples of a wide quality range. Net
energy for lactation (NEL) and absorbable protein at the duodenum (APD) were calculated
according to the Swiss feed grading system [23].

2.4. Processing and Validation of RumiWatch Data

The first day of each farm visit was considered an adaptation day to the head collars,
and data were not used. From each visit, RumiWatch data from day two, 2:00 p.m., to
day four, 1:59 p.m., were used for analysis. Raw data recorded by the RumiWatch head
collars were converted using the RumiWatch Converter V.0.7.3.36 [24] to calculate eating
and rumination patterns, aggregated at 1-h time intervals (minutes per hour). If a cow
had spent less than 30 min within two consecutive hours with either ruminating or eating,
the data of the corresponding 24 h (defined as time slot from 2:00 p.m. to 1:59 p.m.) were
excluded for this cow. If we had to exclude more than 24 h of data from a cow, we excluded
that cow for the current visit.

We used the variables rumination time (min/h), eating time (min/h) and number of ac-
tivity changes, i.e., the frequency of switches between eating, ruminating and idling (n/h; [19]),
as descriptors of chewing behavior, which we validated against the following threshold values
(aggregated to 24 h): eating, 240–795 min/d; ruminating, 220–720 min/d; and activity changes,
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55–300 n/d. The validation ranges for eating and ruminating are larger than the averages
given in the review of Beauchemin (2018). This reflected the longer activity time for grazing
cows [25]. A descriptive summary of chewing sensor variables by farm in the validated data
set is shown in Table 2.

2.5. Definition of Efficiency Parameters

Energy-corrected milk yield (ECM in kg/d) was calculated with a standard of 4% milk
fat, 3.2% milk protein and 4.8% milk lactose, applying Formula (2) [23]. We estimated dry
matter intake (DMI) in kg per day using Formula (3) proposed by [26].

ECM [kg] = ((MilkFat [%] × 0.38 + MilkProtein [%] × 0.24 + MilkLactose [%] × 0.17) × DMY [kg])/3.14 (2)

DMIDeSouza = [(3.7 + Parity × 5.7) + 0.305 × (0.0929 × MilkFat [%] × DMY [kg] + 0.0563 × MilkProtein [%] ×
DMY [kg] + 0.0395 × MilkLactose × DMY [kg]) + 0.022 × Body weight [kg] + (−0.689 + Parity × −1.87) × BCS]

× [1 − (0.212 + Parity × 0.136) × exp(−0.053 × DIM)]
(3)

where DMY = daily milk yield in kg, MilkFat = milk fat content in %, MilkProtein = milk protein
content in %, MilkLactose = milk lactose content in %, Parity = a two-level categorical variable
indicating whether a cow is primiparous (0) or multiparous (1), BCS = body condition score of the
cow on a scale of 1 to 5 with 0.25 intervals [22] and DIM = days in milk.

Data were limited to cows with an actual lactation status of maximal 305 days in milk. We had
to discard the attempt to apply the formula proposed by [16], which uses RumiWatch variables to
estimate DMI, as we partly obtained unrealistically low DMI estimates.

We used herd book data on total lactation milk yield, milk fat, milk protein and milk lactose
content and lactation length (Qualitas, Zug, Switzerland) for each cow involved in the trial. Herd
book data on lactation milk yield were energy-corrected by applying Formula (2). The resulting
energy-corrected lactation milk yield (in kg) was divided by the lactation length (in days) to obtain
values for energy-corrected average daily milk yield of total lactation (DECMTL).

We calculated two different efficiency estimates. First, the metabolic milk production efficiency
at total lactation level (MPETL) [27] was calculated as

MPETL = DECMTL/(average body weight0.75) (4)

where DECMTL is the average energy-corrected daily milk yield of the total lactation divided by the
average metabolic body weight of the respective lactation based on the weighings during our farm visits.

Second, we calculated a day-based feed efficiency value

FEday = ECMday/DMIDeSouza (5)

where ECMday is the energy-corrected daily milk yield measured during the respective farm visit,
divided by the actual dry matter intake estimated according to Formula (3).

2.6. Statistical Analysis
All statistical analyses were performed in R (v 3.6.2; [28]).
Because the nutritional values analyzed in the feed were highly correlated, and in order to

reduce the dimensions of the data, we performed a Principal Component Analysis (PCA) using the
“prcomp” function in R (v 3.6.2, [28]). The broken stick approach was applied to identify the relevant
principal components (Table 3). The first principal component (PC1) explained 88% of the variance in
feed quality across the different farm visits. Therefore, we used the coefficients from PC1 to calculate
a general “feed quality score” using Formula (6).

Feed quality score = DM [g/kg] × 0.51 + CF [g/kg] × 0.50 + NEL [MJ/kg] × −0.50 + CP [g/kg] × −0.49 (6)
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Table 3. Results of the Principal Component Analysis for the feed composition.

PC1 PC2 PC3 PC4

Eigenvalue 3.54 0.27 0.12 0.08
% variance 88.38 6.70 2.88 2.03

% variance cum. 88.38 95.08 97.97 100.00

Variables’ % contribution

Dry matter 25.70 9.65 38.69 25.97
Crude fiber 25.47 13.99 37.83 22.71

NEL 24.65 33.90 11.29 30.15
Crude protein 24.18 42.46 12.19 21.16

Variables’ coordinate contribution

Dry matter 0.95 −0.16 0.21 0.15
Crude fiber 0.95 0.19 −0.21 0.14

NEL −0.93 −0.30 −0.11 0.16
Crude protein −0.92 0.34 0.12 0.13

This feed quality score has only a dimension in the sense of distances on the x-axis. It distin-
guishes fiber- and dry-matter-rich feed (positive values) from protein- and energy-rich feedstuff
(negative values). The score was subsequently used in the models calculating the feed effects of
chewing sensor variables.

Furthermore, we categorized three main types of rations according to the respective feeding
schedules at each farm visit (Table 1): (1) a pure hay diet indoors, during winter (“hay”), (2) a pasture-
only regime in summer (“pasture”) and (3) a pasture-based diet with additional supply of hay, freshly
cut grass or grass silage in the barns during spring and autumn or drought periods (“mix”). This
classification was used to provide a summarized overview of the feeding regimes (Tables 1 and 4).

Table 4. Chemical feed composition and nutritive values aggregated to three ration types (hay, mixed
and pasture) across visits and farms.

Ration DM (%) CP
(g/kg DM)

Ash
(g/kg DM)

CF
(g/kg DM)

NEL
(MJ/kg DM)

APD
(g/kg DM)

Hay (n = 57) Mean ± SD 89.7 a ± 1.0 124.8 c ± 7.9 91.8 b ± 3.5 279.8 a ± 2.7 5.2 c ± 0.0 79.2 c ± 5.5
Min–Max 88.8–90.7 117.4–133.0 88.5–95.4 277.1–282.2 5.2–5.2 74.0–85.0

Mixed (n = 274) Mean ± SD 32.4 b ± 17.7 178.0 b ± 19.6 110.4 b ± 24.8 236.6 b ± 18.0 5.8 b ± 0.2 100.2 b ± 5.1
Min–Max 11.9–67.3 149.0–204.8 72.2–141.8 206.9–263.8 5.5–6.2 92.5–107.8

Pasture
(n = 203)

Mean ± SD 15.4 c ± 3.4 207.5 a ± 15.8 113.6 a ± 10.2 215.0 c ± 11.9 6.2 a ± 0.2 108.9 a ± 2.8
Min–Max 9.3–20.4 181.0–228.3 96.1–130.8 195.3–226.6 5.8–6.5 104.0–111.8

DM = dry matter, CP = crude protein, CF = crude fiber, NEL = net energy lactation, APD = absorbable protein
at the duodenum. a,b,c Different superscript letters within columns represent significant differences at p < 0.05
between rations based on mean comparisons by Tukey contrasts.

In order to test differences in chemical composition (Table 4) between the rations “hay”, “mix”
and “pasture”, respectively, we performed pairwise comparisons as Tukey contrasts on the linear
models for the respective chemical component (dependent variable) and ration (independent variable)
using the “emmeans” package (version 1.4.5, [29]).

We investigated the effect of days in milk (DIM) and feed quality score on chewing sensor
variables, applying linear mixed effects models in the “lme4” package in R (version 1.1-21, [30]). DIM,
feed quality score and lactation class (levels: 1st, 2nd or 3rd lactation onwards) were fixed effects:

Model 1: Yijklm = µ + DIMi + FQSj + LCk + herdl + cowm (herdl) + eijklm

where Yijklm = response variable (ruminate time (min/d), eating time (min/d) or activity changes
(n/d), µ = overall mean, DIMi = covariate of days in milk i, FQSj = covariate of feed quality score j,
LCk = fixed effect of lactation class k (k = 1st, 2nd or 3rd lactation onwards), herdl = random effect of
herd l, N = 2, cowm (herdl) = random effect of cow m nested within herd l and eijklm = random error.
Intake estimates, body weight and BCS had been excluded from the model to avoid confounding
with the efficiency estimates in the subsequent step (Model 2).

To account for repeated measurements, cows nested within farms were used as random effects.
We extracted pseudo marginal and conditional R squared estimates with the “MuMIn” package
(version 1.43.15, [31]) to assess the variance explained by the models.
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In order to display the non-linear relationships of relevant variables with DIM, we calculated
smooth splines to show the empirical development of chewing sensor data, performance, body
condition score and body weight across lactation. For this, we used an expanded version of model 1,
which included DMIDeSouza, BCS and body weight.

The smooth spline calculations were subsequently used to correct chewing sensor data for days
in milk with a smoothing parameter (spar) of 0.95. For the last step, we used the estimates from the
models for feed effects, which are displayed in Table 5, to correct the chewing sensor variables for
effects of the feed quality score. Thereafter, the chewing sensor variables are labeled with “corrected”.

Finally, we applied mixed models in “lme4” with efficiency traits as dependent variables,
corrected chewing sensor variables as fixed effects and cow nested within farm as a random effect.

Model 2: Yijklmn = µ + Eati + Rumj + ACk + LCl + herdm + cown (herdm) + eijklmn

where Yijklmn = response variable (MPETL: total lactation average daily metabolic milk production
efficiency [kg ECM/kg BW0.75], FEday = day-based feed efficiency value [kg ECM/kg DM intake]),
µ = overall mean, Eati = eating time corrected for days in milk and feed quality score i, Rumj = ruminate
time corrected for days in milk and feed quality score j, ACk = number of activity changes corrected
for days in milk and feed quality score, LCl = fixed effect of lactation class (l = 1st, 2nd or 3rd lactation
onwards; applied only in model with MPETL as dependent variable), herdm = random effect of herd l,
N = 2, cown (herdm) = random effect of cow nested within herd and eijklmn = random error.

The significance of random effects was tested by comparing models with and without random
effects through likelihood ratio tests in the “lmerTest” package [32]. This was done for animal within
farm and also separately for farm only. Statistical significance was determined at p < 0.05, with
tendency at p > 0.05 and <0.1 in all analyses.

3. Results
3.1. Feed Quality

The three ration types differed significantly regarding their nutritional properties (Table 4). The
PCA on the feed analyses shown in Table 3 and Figure 1 revealed that most of the variation (88.4%)
was explained by one single component (PC1, Eigenvalue =3.53). PC1 was composed of dry matter
content (%), fiber content (g/kg DM), net energy used for lactation (NEL in MJ/kg DM) and protein
content (g/kg DM), with a contribution to PC1 of 25.7, 25.5, 24.6 and 24.2, respectively. The broken
stick approach revealed that PC1 was the only component explaining more of the variation than
expected by chance. Based on this result, the feed quality score was calculated from PC1 (coefficients
provided in Materials and Methods section). The farm visits were well distributed along the feed
quality score (Figure 1), with farm 2 tending towards more fiber-rich and farm 1 tending towards
more protein-rich score values.
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Figure 1. Result of the Principal Component Analysis (PCA) on feed quality parameters. The PCA
revealed that PC1 explains more than 88% of the variance in the data, reflecting a gradient from
energy- and protein-rich feed (PC1 < 0) to fiber-rich feed (PC1 > 0). The arrows in the lower right
indicate the loadings of the different parameters on the first two components (DM = dry matter, NEL
= net energy lactation), and the shape of the symbols represents the two different farms. The letters
in the symbols reflect the eight different trials (a–h) on each farm to enable the link to Table 1.
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3.2. Temporal Development of Intake, Rumination, Body Condition and Yields
Across both farms, all variables of interest for this study were significantly altered with the days

in milk (Figure 2, Table 5). While rumination time showed a smoothed U shape, where the early and
the late days in milk showed the highest rumination time, eating time had an inverse U shape, with
peak eating times in mid-lactation (Figure 2A). The variation in activity changes across DIM was a
small but statistically significant decrease over time. While ruminate time did not differ between
cows of different lactation classes, eat time was lower in cows from third lactation onwards. Activity
changes were less frequent in cows from second lactation onwards.

Table 5. Influence of days in milk (DIM), feed quality score (FQS) and lactation class on chewing
behavior traits (Nobservations = 534, Ncows = 102, N farms = 2).

Intercept Slope by DIM Slope by FQS Average by Lactation Class

1 2 3

Response Variable Est. ± SE p Est. ± SE p Est. ± SE p Est. ± SE Est. ± SE Est. ± SE p R2 m R2 c

Rumination time
(min/d) 466 ± 19 * −0.13 ± 0.03 *** 29.1 ± 1.5 *** 440 ± 19 445 ± 19 455 ± 18 0.121 0.443 0.590

Eating time (min/d) 651 ± 31 * −0.33 ± 0.03 *** −14.9 ± 1.9 *** 597 ± 31 a 581 ± 31 a 563 ± 30 b ** 0.191 0.471
Activity changes

(n/d) 147 ± 7 * −0.05 ± 0.01 *** −0.4 ± 0.5 0.434 138 ± 7 a 124 ± 7 b 125 ± 7 b *** 0.079 0.514

Est. = estimate, p values show t-test results using Satterthwaite’s method in linear mixed models fit by REML
for the intercept, days in milk, feed quality score and the p values of the F-Test with Kenward Roger degrees of
freedom for lactation class (1st, 2nd and 3rd lactation onwards) as fixed and cow nested within farm as random
effect. a,b Estimates for levels of lactation class are least square means, where different superscript letters in the
same row indicate pairwise differences at p < 0.05 in the post hoc analysis. R2 m = marginal R squared, i.e.,
proportion of variance explained by the fixed effects, R2 c = conditional R squared, i.e., proportion of variance
explained by the fixed and random effects. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.3. Impact of Feed Quality Score and Rations on Chewing Sensor Data and Milk Yield 

Figure 2. Influence of days in milk (DIM) on (A) the chewing behavior parameters rumination time
(min/d), eating time (min/d) and number of activity changes (n/d), and on (B) the efficiency-related
parameters body weight, body condition score (BCS), dry matter intake (DMI) based on the formula
of de Souza et al. (2019) and daily energy-corrected milk yield (ECM). Lines represent the smooth
splines between DIM and the corresponding variable. Variables have been multiplied or divided by
the values added to the labels. Vertical lines represent 120-day intervals of DIM.
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As shown in Figure 2B, body weight and BCS decreased in early lactation, but started to increase
again at around 200 DIM. While dry matter intake (DMI), after de Souza et al. (2019), showed an
increase at the beginning of the lactation, which leveled out after approximately 50 DIM, ECM clearly
showed a negative relationship with DIM.

3.3. Impact of Feed Quality Score and Rations on Chewing Sensor Data and Milk Yield
Rumination and eating time were significantly affected by feed quality score, while the number

of activity changes was not (Table 5). Rumination time increased with fiber content in feed (positive
feed quality score values), while eating time showed the inverse pattern, namely an increase in eating
time with more protein-rich feed (negative feed quality score values). Eating time and number of
activity changes decreased with increasing lactation class.

3.4. Relation of Chewing Behavior Traits and Lactation Class with Efficiency Parameters
The three chewing sensor traits rumination time, eating time and number of activity changes,

all corrected for days in milk and feed quality score, had no significant relation with the variation
in the day-based efficiency parameter, FEday. By contrast, corrected rumination time significantly
influenced the total-lactation based MPETL, albeit with a small effect size (Table 6). Moreover, lactation
class significantly influenced MPETL, with animals of second lactation and third lactation onwards
showing higher MPETL estimates than primiparous animals (i.e., least square means of 0.147 (SE:
0.003), 0.159 (SE: 0.002), and 0.175 (SE: 0.002) for first, second and ≥ third lactation, respectively, all
pairwise comparisons with p < 0.001). The marginal R squared values representing the variation
explained by the fixed factors were 0.002 and 0.232, for the FEday and MPETL model, respectively,
and the conditional R squared values were 0.281 and 0.814, representing the variation explained by
the whole model (Table 6).
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Table 6. Influence of chewing sensor variables corrected for days in milk and feed quality score on metabolic milk production efficiency calculated on the basis of total
lactation data (MPETL) and feed efficiency at daily basis (FEday) in Swiss organic dairy cows (Nobservations = 534, Ncows = 102, Nfarms = 2).

Intercept Rumination Time Corrected Eating Time Corrected Activity Changes Corrected

Response
Variable Estimate SE p Estimate SE p Estimate SE p Estimate SE p R2 m R2 c

MPETL
1 0.1602 0.0086 *** −2.17 × 10−5 6.32 × 10−6 *** −5.25 × 10−6 8.59 × 10−6 0.542 −3.32 × 10−6 2.89 × 10−5 0.908 0.232 0.814

FEday
2 0.9938 0.2000 *** −6.42 × 10−6 1.40 × 10−4 0.963 1.15 × 10−4 1.83 × 10−4 0.532 −5.06 × 10−4 5.66 × 10−4 0.37 0.002 0.280

1 MPETL: total lactation average daily metabolic milk production efficiency [kg ECM/kg BW0.75]. 2 FEday: day-based feed efficiency value [kg ECM/kg DM intake]. p values show
t-test results using Satterthwaite’s method in linear mixed models fit by REML with the corrected chewing traits ruminate time, eating time and number of activity changes as fixed
effects, for both response variables, plus lactation class (3 levels: 1st, 2nd and 3rd lactation onwards) in the MPETL model, and cow nested within farm as random effect in both models.
R2 m = marginal R squared, i.e., proportion of variance explained by the fixed effects, R2 c = conditional R squared, i.e., proportion of variance explained by the fixed and random effects.
*** p < 0.001.
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3.5. Animal and Farm Effects

The variability between animals and between farms was observed in all chewing sensor vari-
ables (Figure 3). The respective coefficients of animal variability for eating time, rumination time and
activity changes were 14.6%, 19.2% and 16.4%.
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For all investigated traits, models with animal and farm as random effects differed significantly
from models without a random effect at p < 0.001, showing that the inclusion of the random effects
was reasonable in order to explain the variation in the data. The only random effect without a
significant effect was farm for the variable MPE_TL.

4. Discussion

Grassland-based low-concentrate dairy cattle systems can claim high sustainability in environ-
mental scales, if human-edible feed conversion efficiency [3] and land-surface-related effects such
as eutrophication potential are considered [33,34]. However, even if differentiated land use (arable
land versus permanent grassland) is one of the core arguments pro low-input dairy production [34],
also, in such systems, feed conversion efficiency must not be neglected. The detection of cow types
that are resilient in low-input grassland systems and show fair milk yields at the same time is a
challenge [6]. For selection in such systems, it is important to have more phenotypic traits besides
milk yields, fitness and fertility, because feed intake is almost impossible to control. An increasing
number of sensors are currently appearing on the market that detect the chewing movements of
the individual animals. Such chewing behavior data may be used for the detection of estrus [35],
diseases [36] or the start of parturition [12], and there appears to be potential for estimating intake [15]
or even efficiency by such approaches. In particular, the head-collar-based devices appear to have
high accuracy, because they directly measure jaw movements [13,17]. For such devices, equations for
absolute [16] or relative [15] intake estimates have been developed. Therefore, they might be helpful
as indirect proxies for the efficiency of individual cows. Whether or not this is possible under practice
conditions on-farm is, however, not proven.
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Instead of standardized station experiments, which may be better controlled, but are also
always specific cases [37], the immanent diversity of low-input production systems requires repeated
data collections and evaluation under varying on-farm practices [1,38]. The current study provides
such on-farm-generated data showing the feasibility of sensor-based phenotypic relations between
chewing behavior, milk yield development and efficiency estimates in dairy cows with altering forage
quality on low-input farms.

We used the system Rumiwatch®, which has high precision in detecting eating and rumination
patterns [17,39]. The initial goal had been a sound estimate for intake on pasture with the sensor head
collars. However, during the current study, it became clear that none of the existing equations [15,16]
would lead to plausible intake data for the herds investigated. In this light, we decided to use
intake [26] and efficiency [27] estimates based on cow performance data and evaluate whether or not
the sensor data would relate to them.

In a first step, the general sensitivity of chewing sensor variables towards different nutritional
quality of forages (pasture, hay and mixed) was assessed. The finding that eating time was strongly
affected by feed quality was well in line with earlier studies, which, however, did not report clear
feed quality effects on rumination time [40–42]. Nonetheless, there are other studies reporting such
effects on rumination [18,43,44] and the results of the present study appear plausible in terms of the
direction and strength of these effects.

The development of eating time across lactation (Figure 2) reflected common intake curves, and
the curve of rumination time along DIM was similar to the one published by Zetouni et al. [20]. The
development of rumination time during lactation appeared reciprocal to that of eating time, decreasing
when eating time increased and vice versa (Figure 2A). In addition, in the literature [18–20], there seems
to be a slight partial antagonism between intake (eat time) and rumination time. This points towards a
potential time conflict between these activities. Since the eating time development with lactation in our
data followed the commonly known intake curve during lactation, we assume that, given an existing
time conflict between eating and rumination, the former dominates the curve of the latter. Thus, when a
high feed intake is required (as, for instance, during high performance in the first months of lactation),
less intensive rumination and, eventually, less efficient feed degradation might happen. This context
will, however, need further investigation.

Additionally, our study showed the effects of animal on chewing sensor variables, with consider-
able variation in the individual effects. The coefficients of variance of the animal effects on eating and
rumination time were well in line with the animal variability reported by [20,38]. We could show that the
variation among animals is significant, even if corrected for feed effects and days in milk, indicating a
potential to phenotype individuals based on sensor variables for foraging behavior. This underlines that
sensor-based phenotypes can be related to chewing activity patterns as such, but also in response to feed
quality changes and in development during lactation. The practical applicability of these phenotypes
with respect to the resilience or productivity of the cow still needs to be further elaborated.

While we were able to link behavioral changes directly to feed quality and stage of lactation, we
did not find clear relations between the applied efficiency estimates and the behavioral data. One of
the main issues in studies in pasture-based systems is the difficulty to gain an appropriate estimate
for feed intake on pasture [45], which was a relevant obstacle for FEday estimates in the current
study. None of the efficiency estimates applied was related to chewing sensor variables. Generally,
the fact that effect estimates were very small shows that there was no functional relation between
chewing behavior and both chosen efficiency parameters. Even though a significant effect of corrected
rumination time on MPETL was detected, it had such a small effect size (a longer rumination time of
100 min/day would reduce MPETL by roughly 1%) that its relevance is negligible.

Considering that sensor data were obtained only a few times during the lactation of the indi-
vidual animals, it appears plausible that the regression on an efficiency parameter, which builds on
whole lactation data (MPETL), was weak. However, the rather low frequency of data collection is
a real constraint in the practice of pasture-based production systems, and it makes rather limited
sense to test sensors at unrealistically high usage frequencies, which are subsequently not affordable.
Moreover, the absence of any effects in the FEday model indicates that there was no correlation
between chewing behavior and estimated feed efficiency in the studied herds. This makes it rather
unlikely that chewing sensors could be successfully used to approximate the efficiency of dairy cows
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in low-concentrate pasture-based dairy systems. There may be potential if chewing sensor data are
used as auxiliary traits in models when intake is known [46], but under barely controllable practice
conditions with pasture, as in the current study, the predictive use for efficiency appears limited. The
lack of intake data will remain difficult to overcome in pasture-based systems. We have used two
efficiency estimates in order to see trends at least, but it appears that the road to efficiency proxies in
these contexts is still long.

The curves for body weight and BCS development, as well as intake estimates along the days in
milk, are plausibly in accordance with expectations of physiological development in the lactating
cow. The ECM curve, which was estimated based on the Swiss herd book test-day data, did not show
the expected early-lactation increase, because the first test day is usually one month after parturition.

5. Conclusions

The present study assessed the potential of chewing sensor data as traits for contributing to the
estimation of the individual production efficiency of dairy cows in low-input pasture-based systems.
Clear animal-related variance in eating and rumination time was found, and effects of nutritional
feed quality and days in milk on these variables were detected, which may be useful information
in low-input breed phenotyping. After correction for these effects, no notable relation of eating and
rumination time with efficiency approximations was found. This lack of effect was found regardless
of whether efficiency had been calculated as milk yield over metabolic body weight on lactation level
or as milk yield over estimated intake on day level. Thus, in pasture-based systems, the difficulty of
quantifying intake remains an obstacle, which cannot be overcome by the use of chewing sensors
only. However, the sensor data may serve as interesting phenotypes, in response to feed quality and
stage of lactation. To what degree the individual variation of the sensor traits may be indicative of
the adaptability and thus resilience of low-input dairy cows is subject to further investigation.

Author Contributions: Conceptualization, F.L., J.K.P., S.A. and A.S.N.; Methodology, F.L., F.N.M.,
A.B., C.B. and A.S.N.; Software, F.N.M. and A.B.; Validation, A.B., F.N.M. and F.L.; Investigation, J.K.P.,
C.B. and A.S.N.; Resources, F.L.; Data Curation, F.N.M. and A.B.; Writing—Original Draft Preparation,
F.L., F.N.M. and A.B.; Writing—Review and Editing, S.A., J.K.P., C.B. and A.S.N.; Visualization, F.N.M.;
Supervision, F.L. and A.S.N.; Project Administration, A.B.; Funding Acquisition, A.S.N. and F.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant of the European project GenTORE (the European
Union’s Horizon 2020 Research and Innovation Program, grant agreement no. 727213). Moreover, we
acknowledge the financial support of the Foundation Sur-la-Croix, Basel, Switzerland.

Institutional Review Board Statement: The animal experiment was controlled and permitted under
the Swiss permit number 29374, issued by the cantonal veterinary authority in Aarau, Switzer-
land. The application, approval and control procedures followed the FELASA guidelines and the
Declaration of Helsinki.

Informed Consent Statement: Not applicable.

Data Availability Statement: The complete data files for the present study will be uploaded to a
public repository and are currently available from the main author upon request.

Acknowledgments: We sincerely thank the farmers who provided access to their animals and
information and kindly supported us with their collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leiber, F.; Schenk, I.K.; Maeschli, A.; Ivemeyer, S.; Zeitz, J.O.; Moakes, S.; Klocke, P.; Staehli, P.; Notz, C.; Walkenhorst, M.

Implications of feed concentrate reduction in organic grassland-based dairy systems: A long-term on-farm study. Animal 2017, 11,
2051–2060. [CrossRef]

2. Brito, A.F.; Silva, L.H.P. Symposium review: Comparisons of feed and milk nitrogen efficiency and carbon emissions in organic
versus conventional dairy production systems. J. Dairy Sci. 2020, 103, 5726–5739. [CrossRef]

3. Horn, M.; Steinwidder, A.; Gasteiner, J.; Podstatzky, L.; Haiger, A.; Zollitsch, W. Suitability of different dairy cow types for an
Alpine organic and low-input milk production system. Livest. Sci. 2013, 153, 135–146. [CrossRef]

http://doi.org/10.1017/S1751731117000830
http://doi.org/10.3168/jds.2019-17232
http://doi.org/10.1016/j.livsci.2013.01.011


Agriculture 2022, 12, 1570 14 of 15

4. Horn, M.; Steinwidder, A.; Pfister, R.; Gasteiner, J.; Vestergaard, M.; Larsen, T.; Zollitsch, W. Do different cow types respond
differently to a reduction of concentrate supplementation in an Alpine low-input dairy system? Livest. Sci. 2014, 170, 72–83.
[CrossRef]

5. Friggens, N.C.; Blanc, F.; Berry, D.P.; Puillet, L. Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock
breeding and management. Animal 2017, 11, 2237–2251. [CrossRef]

6. Bieber, A.; Wallenbeck, A.; Leiber, F.; Fuerst-Waltl, B.; Winckler, C.; Gullstrand, P.; Walczak, J.; Wojcik, P.; Neff, A.S. Production
level, fertility, health traits, and longevity in local and commercial dairy breeds under organic production conditions in Austria,
Switzerland, Poland, and Sweden. J. Dairy Sci. 2019, 102, 5330–5341. [CrossRef]

7. Peyraud, J.L.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7 (Suppl. S1), 57–67.
[CrossRef]

8. Bieber, A.; Wallenbeck, A.; Spengler Neff, A.; Leiber, F.; Simantke, C.; Knierim, U.; Ivemeyer, S. Comparison of performance and
fitness traits in German Angler, Swedish Red and Swedish Polled with Holstein dairy cattle breeds under organic production.
Animal 2020, 14, 609–616. [CrossRef]

9. Leiber, F. Let them graze! Potentials of ruminant production outside the feed-food competition. In Managing Healthy Livestock
Production and Consumption; El-Hage Scialabba, N., Ed.; Elsevier Academic Press: London, UK, 2022; pp. 137–148. [CrossRef]

10. Seymour, D.J.; Canovas, A.; Baes, C.F.; Chud, T.C.S.; Osborne, V.R.; Cant, J.P.; Brito, L.F.; Gredler-Grandl, B.; Finocchiaro, R.;
Veerkamp, R.F.; et al. Invited review: Determination of large-scale individual dry matter intake phenotypes in dairy cattle.
J. Dairy Sci. 2019, 102, 7655–7663. [CrossRef]

11. Phuong, H.N.; Friggens, N.C.; de Boer, I.J.M.; Schmidely, P. Factors affecting energy and nitrogen efficiency of dairy cows: A
meta-analysis. J. Dairy Sci. 2013, 96, 7245–7259. [CrossRef]

12. Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101,
4762–4784. [CrossRef] [PubMed]

13. Büchel, S.; Sundrum, A. Technical note: Evaluation of a new system for measuring feeding behavior of dairy cows. Comput.
Electron. Agric. 2014, 108, 12–16. [CrossRef]

14. Bikker, J.P.; van Laar, H.; Rump, P.; Doorenbos, J.; van Meurs, K.; Griffioen, G.M.; Dijkstra, J. Technical note: Evaluation of an
ear-attached movement sensor to record cow feeding behavior and activity. J. Dairy Sci. 2014, 97, 2974–2979. [CrossRef]

15. Leiber, F.; Holinger, M.; Zehner, N.; Dorn, K.; Probst, J.K.; Spengler Neff, A. Intake estimation in dairy cows fed roughage-based
diets: An approach based on chewing behaviour measurements. Appl. Anim. Behav. Sci. 2016, 185, 9–14. [CrossRef]

16. Rombach, M.; Sudekum, K.H.; Munger, A.; Schori, F. Herbage dry matter intake estimation of grazing dairy cows based on
animal, behavioral, environmental, and feed variables. J. Dairy Sci. 2019, 102, 2985–2999. [CrossRef] [PubMed]

17. Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System specification and validation of a noseband pressure sensor for
measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 2017, 136, 31–41. [CrossRef]

18. Tafaj, M.; Kolaneci, V.; Junck, B.; Maulbetsch, A.; Steingass, H.; Drochner, W. Influence of fiber content and concentrate level on
chewing activity, ruminal digestion, digesta passage rate and nutrient digestibility in dairy cows in late lactation. Asian-Australas.
J. Anim. Sci. 2005, 18, 1116–1124. [CrossRef]

19. Leiber, F.; Probst, J.K.; Zehner, N.; Spengler Neff, A.S. Feeding and rumination behaviour of dairy cows fed by varied feeding
regimes. Agrarforsch. Schweiz 2015, 6, 462–469.

20. Zetouni, L.; Difford, G.F.; Lassen, J.; Byskov, M.V.; Norberg, E.; Lovendahl, P. Is rumination time an indicator of methane
production in dairy cows? J. Dairy Sci. 2018, 101, 11074–11085. [CrossRef]

21. Swissherdbook. Rasse Swiss Fleckvieh. 2021. Available online: https://www.swissherdbook.ch/unsere-rassen/swiss-fleckvieh/
(accessed on 3 March 2021).

22. Isensee, A.; Leiber, F.; Bieber, A.; Spengler, A.; Ivemeyer, S.; Maurer, V.; Klocke, P. Comparison of a classical with a highly
formularized body condition scoring system for dairy cattle. Animal 2014, 8, 1971–1977. [CrossRef]

23. Jans, F.; Kessler, J.; Münger, A.; Schori, F.; Schlegel, P. Fütterungsempfehlungen ür die Milchkuh. In Fütterungsempfehlungen für
Wiederkäuer; Agroscope: Posieux, Switzerland, 2016.

24. Werner, J.; Umstatter, C.; Kennedy, E.; Grant, J.; Leso, L.; Geoghegan, A.; Shalloo, L.; Schick, M.; O’Brien, B. Identification of
possible cow grazing behaviour indicators for restricted grass availability in a pasture-based spring calving dairy system. Livest.
Sci. 2019, 220, 74–82. [CrossRef]

25. Dohme-Meier, F.; Kaufmann, L.D.; Gors, S.; Junghans, P.; Metges, C.C.; van Dorland, H.A.; Bruckmaier, R.M.; Munger, A.
Comparison of energy expenditure, eating pattern and physical activity of grazing and zero-grazing dairy cows at different time
points during lactation. Livest. Sci. 2014, 162, 86–96. [CrossRef]

26. De Souza, R.A.; Tempelman, R.J.; Allen, M.S.; VandeHaar, M.J. Updating predictions of dry matter intake of lactating dairy cows.
J. Dairy Sci. 2019, 102, 7948–7960. [CrossRef] [PubMed]

27. Hofstetter, P.; Burgos, M.S.; Petermann, R.; Munger, A.; Blum, J.W.; Thomet, P.; Menzi, H.; Kohler, S.; Kunz, P. Does body size
of dairy cows, at constant ratio of maintenance to production requirements, affect productivity in a pasture-based production
system? J. Anim. Physiol. Anim. Nutr. 2011, 95, 717–729. [CrossRef]

28. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
29. Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. Version 1.4.5. R Package. 2020. Available online:

https://CRAN.R-project.org/package=emmeans (accessed on 3 March 2021).

http://doi.org/10.1016/j.livsci.2014.10.006
http://doi.org/10.1017/S175173111700088X
http://doi.org/10.3168/jds.2018-16147
http://doi.org/10.1017/S1751731111002394
http://doi.org/10.1017/S1751731119001964
http://doi.org/10.1016/B978-0-12-823019-0.00009-X
http://doi.org/10.3168/jds.2019-16454
http://doi.org/10.3168/jds.2013-6977
http://doi.org/10.3168/jds.2017-13706
http://www.ncbi.nlm.nih.gov/pubmed/29627250
http://doi.org/10.1016/j.compag.2014.06.010
http://doi.org/10.3168/jds.2013-7560
http://doi.org/10.1016/j.applanim.2016.10.010
http://doi.org/10.3168/jds.2018-14834
http://www.ncbi.nlm.nih.gov/pubmed/30712935
http://doi.org/10.1016/j.compag.2017.02.021
http://doi.org/10.5713/ajas.2005.1116
http://doi.org/10.3168/jds.2017-14280
https://www.swissherdbook.ch/unsere-rassen/swiss-fleckvieh/
http://doi.org/10.1017/S1751731114001888
http://doi.org/10.1016/j.livsci.2018.12.004
http://doi.org/10.1016/j.livsci.2014.01.006
http://doi.org/10.3168/jds.2018-16176
http://www.ncbi.nlm.nih.gov/pubmed/31326181
http://doi.org/10.1111/j.1439-0396.2010.01102.x
https://CRAN.R-project.org/package=emmeans


Agriculture 2022, 12, 1570 15 of 15

30. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015, 67, 1–48.
[CrossRef]
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