
The Journal of Agricultural
Science

cambridge.org/ags

Crops and Soils Research
Paper

Cite this article: Piepho H-P et al (2022). One,
two, three: portable sample size in agricultural
research. The Journal of Agricultural Science
1–24. https://doi.org/10.1017/
S0021859622000466

Received: 27 May 2022
Revised: 30 June 2022
Accepted: 13 July 2022

Key words:
Experimental design; linear model; power;
precision; replication

Author for correspondence:
Hans-Peter Piepho,
E-mail: piepho@uni-hohenheim.de

© The Author(s), 2022. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

One, two, three: portable sample size in
agricultural research

Hans-Peter Piepho1 , Doreen Gabriel2, Jens Hartung1, Andreas Büchse3,

Meike Grosse4, Sabine Kurz5, Friedrich Laidig1, Volker Michel6, Iain Proctor3,

Jan Erik Sedlmeier7, Kathrin Toppel8 and Dörte Wittenburg9

1Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; 2Institute for Crop and
Soil Science, Julius Kühn-Institut (JKI), Braunschweig, Germany; 3BASF SE, Ludwigshafen am Rhein, Germany;
4Research Institute of Organic Agriculture FiBL, Frick, Switzerland; 5Fachgebiet Pflanzenbau, Hochschule für
Wirtschaft und Umwelt Nürtingen-Geislingen (HfWU), Nürtingen, Germany; 6Mecklenburg-Vorpommern Research
Centre for Agriculture and Fisheries, Gülzow, Germany; 7Applied Entomology, Institute of Phytomedicine,
University of Hohenheim, Stuttgart, Germany; 8Fachgebiet Tierhaltung und Produkte, Hochschule Osnabrück,
Osnabrück, Germany and 9Research Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry,
Dummerstorf, Germany

Abstract

Determination of sample size (the number of replications) is a key step in the design of an
observational study or randomized experiment. Statistical procedures for this purpose are
readily available. Their treatment in textbooks is often somewhat marginal, however, and
frequently the focus is on just one particular method of inference (significance test, confidence
interval). Here, we provide a unified review of approaches and explain their close interrela-
tionships, emphasizing that all approaches rely on the standard error of the quantity of
interest, most often a pairwise difference of two means. The focus is on methods that are
easy to compute, even without a computer. Our main recommendation based on standard
errors is summarized as what we call the 1-2-3 rule for a difference of two treatment means.

Introduction

One of the most common questions in the design of experiments and observational studies is:
how many replications or samples do I need? Answers to this key question are well established
(e.g., Rasch et al., 2011; Welham et al., 2015, Chapter 10), and good software tools are available
as well (Stroup, 2002; Rasch et al., 2011; Green and MacLeod, 2015). At the same time this
important topic is treated only tangentially in many textbooks, and often times the material is
somewhat dispersed throughout the text. This makes it difficult to recommend a single source
to practitioners wanting quick advice and having little time to delve into the underlying mathem-
atical theory. Also, decisions on sample size require prior information on variance, which
researchers may sometimes find hard to come by, but only if such prior information is furnished
can the sample size question be settled. This may require rough estimates to be derived on the
spot, and good illustrations with real examples for this in the agricultural sciences remain sparse.
Moreover, much of the material on sample size calculation focuses on significance testing,
whereas one may also determine sample size based on considerations of precision alone, without
having a specific significance test in mind. The purpose of this tutorial paper, therefore, is to pro-
vide a compact overview of the most basic procedures and the underlying key concepts, showing
how they are all intimately related and giving particular emphasis to procedures based solely on
precision requirements. Several practical examples are used for illustration. While sample size cal-
culations are usually implemented using statistical software, we here emphasize the utility of sim-
ple equations that allow a quick determination of appropriate sample size. Wheeler (1974, 1975)
denoted such equations as ‘portable in the sense that one can use (them) in the midst of a con-
sultation with no tools other than perhaps a pocket calculator.’ This was written before personal
computers but we think the term ‘portable’ is still very apt for this type of equation, so we use it
freely throughout the paper. If we factor in the availability of portable computers and phones, as
well as of free software and programming environments, portability comes within reach even for
more advanced methods, which we cover briefly in the later part of the paper.

The term sample size is mostly synonymous with the term replication. The latter term is
mainly used in reference to randomized experiments, whereas the former is used more
broadly, also in reference to observational studies and surveys. In this paper, we mostly use
the term sample size, but occasionally use the terms replication or replicate when the context
is a designed experiment. In surveys, units in the sample are randomly selected from a well-
defined parent population. In designed experiment, treatments are randomly allocated to
experimental units. Random sampling in surveys and randomization in designed experiments
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are the prerequisites underlying all methods for statistical infer-
ence and for determining sample size considered in this paper.

The rest of the paper is structured as follows. In the next
section, we consider inference for a single mean, followed by a
section on the comparison of two means. These two sections
cover the basic concepts, and provide a set of equations which
in our experience fully cover the majority of applications occur-
ring in practice. Thus, a first reader may focus attention on these
two sections. In both sections, we consider several alternative ways
to determine sample size, showing how these alternatives all
depend on the standard error and are therefore intimately con-
nected. The core idea put forward is that all methods can be for-
mulated in terms of a specification of the standard error of a mean
(SEM) or of a difference alone. Our focus is mainly on responses
that are approximately normally distributed, but we also touch
upon count data. Subsequently we consider several important
advanced cases for which portable equations are available as
well, including regression, sub-sampling (pseudo-replication),
and series of experiments. In a further section, we briefly review
two general approaches to determine sample size, both of which
involve the use of a linear model (LM) package. The paper con-
cludes with a brief general discussion.

Estimating a single mean

Determining sample size based on a precision requirement

We here consider three different types of specifications for the
precision of a mean that lead to a determination of sample size.
To illustrate these, we will consider the following example.

Example 1: Assume that we want to estimate the mean milk
yield (in kg day−1) per animal in a dairy cow population. The
population mean is denoted here as μ. This mean may be esti-
mated based on a random sample of n cows. The sample mean
is defined as �y†=n−1 ∑n

j=1 yj, where yj ( j = 1, …, n) are the
milk yields of the n cows in the sample, and it provides an esti-
mate of the population mean μ. If we assume that the individual
milk yields yj are independent with mean (expected value) μ and
variance σ2, it follows that the sample mean �y† has expected value
E(�y†) = m and variance var (�y†) = n−1s2, which is inversely pro-
portional to the sample size n. This crucial fact is well-known, and
it forms the basis of all approaches to determine sample size.

Precision requirement specified in terms of the standard error of
a mean
A common measure of precision for a mean estimate is its stand-
ard error (SEM), defined as the square root of the variance of a
mean (VM):

SEM =
���
s2

n

√
(1)

An important feature of the SEM, distinguishing it from the
VM, is that it is on the same scale as the mean itself, making it
attractive for a specification of the precision requirement. Thus,
Eqn (1) may be solved for n as:

n = s2

SEM2
(2)

Example 1 (continued): Assume that the mean milk yield per
day is expected to be in the order of 30 kg day−1 and that from
prior analyses the variance is expected to be σ2 = 88.4 kg2 day−2

(see Table 1). We would like to estimate the mean μ with a stand-
ard error of SEM = 2 kg day−1. To achieve this, the required sam-
ple size as per Eqn (2) is:

n = 88.4
22

= 22.1 ⇒ 23

Note that Eqn (2) does not usually return an integer value for n,
so rounding to a near integer is necessary. If we want to be on the
conservative side and ensure that the SEM is no larger than the
targeted value, we need to round up as a general rule, which in
our example yields n = 23. Equation (2) is exact, but some of
the equations that follow are approximations, erring on the opti-
mistic side, which is a further reason to generally round up.

Precision requirement specified in terms of the allowable
deviation of a mean estimate from its true parameter value
Using the SEM for specifying the desired precision requires hav-
ing a sense of the interpretation of this quantity. This is facilitated
if we can assume an approximate normal distribution for the sam-
ple mean. This assumption requires either normality of the indi-
vidual responses yj, or it requires the sample size to be sufficiently
large for the central limit theorem to kick in. This theorem
implies that the sum, and hence the mean of independently and
identically distributed random variables has an approximate nor-
mal distribution when the sample size becomes large, independ-
ently of the shape of the distribution of the individual random
variables from which it is computed (Hogg et al., 2019, p. 341).
It is not possible to give a general rule of thumb on how large
a sample size is large enough. A common recommendation is
that n⩾ 30 is required, but it really depends on the shape of
the distribution what sample size is required for a sufficient
approximation to normality (Montgomery and Runger, 2011,
p. 227). If in doubt and the non-normal distribution from
which the data stem can be specified, alternative methods may
be employed, particularly the model-based simulation approach
depicted later in the paper. It may be added that even if the sam-
ple mean is not perfectly normal, equations that assume normal-
ity still can give a useful rough indication of the necessary sample
size, also in cases where the sample size is small.

Table 1. Mean, variance, smallest relevant difference, and required sample size per treatment for α = 5% and a power of 85% for four traits in a dairy cow population

Trait (units) Mean Variance (σ2)
Smallest relevant
difference (δ)

Required
sample size (n)

Standard error of a
difference (SED)

Milk yield (kg day−1) 31.6 88.4 5.0 64 1.66

Fat (%) 3.79 0.464 0.5 34 0.165

Protein (%) 3.46 0.103 0.2 47 0.0663

Laktose (%) 4.83 0.204 0.2 92 0.0666

2 Hans‐Peter Piepho et al.
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Under the assumption of approximate normality, we expect
that over repeated sampling about 68% of the sample means
�y† will fall within the interval μ ± SEM. Likewise, we may say
that a single sample mean �y† is expected to fall within the
range μ ± SEM with a probability of 68%. Thus, the SEM gives
some indication of the expected closeness of �y† to μ. The
main limitation of the μ ± SEM interval is that the probability
68% is pretty low, leaving a probability of 32% that the sample
mean �y† falls outside this interval. Thus, for specifying the sam-
ple size, we may consider increasing the probability by widening
the interval. For example, further exploiting the properties of the
normal distribution, we may assert that the sample mean falls
within the interval μ ± 2SEM with a probability of approximately
95%.

To formalize and generalize this approach, we may consider
the deviation between the sample and population mean:

d = �y†−m (3)

This deviation has expected value zero and variance n−1σ2.
The precision requirement may now be specified by imposing a
threshold τ on the size of the absolute deviation |d| that we are
willing to accept. This threshold may be denoted as the allowable
absolute deviation of the estimate �y† from the population mean μ.
Specifically, we may require that the probability that |d| exceeds τ
takes on a specific value α, which we want to be small, e.g. 5%.
Thus, we require:

P(|d| . t) = a (4)

where P(.) denotes the probability of the event given in the brack-
ets. This requirement may be rearranged slightly as:

P(|d| . t) = 2P(d . t) = 2P
d�������

n−1s2
√ .

t�������
n−1s2

√
( )

= a (5)

Now observing that d/
�������
n−1s2

√
has a standard normal distri-

bution, it can be seen that t/
�������
n−1s2

√
= t/

��������
var(�y†)

√
must be

the (1− α/2) × 100% quantile of the standard normal distribution,
denoted as z1−α/2 (for α = 5% we have z1−α/2≈ 2). Equating the
two and solving for n yields:

n = s2z21−a/2

t2
(6)

Thus, if we accept a probability of α for the sample mean �y† to
deviate from the population mean μ by more than τ units, we
need to choose n according to Eqn (6). An equivalent interpret-
ation is that choosing n as per Eqn (6) ensures that the sample
mean �y† will deviate from the population mean μ by no more
than τ units with pre-specified probability 1− α. A very common
choice for α is 5%, in which case z1−α/2≈ 2 and hence:

n ≈ 4s2

t2
(7)

Example 1 (cont’d): If we want to ensure that the sample mean
for milk yield is within τ = 2 kg day−1 of the population mean with

a probability of 95%, we need to choose:

n ≈ 4× 88.4
22

= 88.4 ⇒ 89

which is about four times the sample size we need when our
requirement is SEM = 2 kg day−1. With this sample size, we
achieve SEM ≈ 1 kg day−1, which is half the desired τ. This obser-
vation is no coincidence, as can be seen by comparing (7) with
(2), which essentially just differ by a factor of 4 when choosing
the same value for the desired SEM and τ, translating as a factor
of 2 when comparing the resulting SEM. Note that here we have
specifically chosen the same required value for τ as for SEM in the
example immediately after Eqn (2) to illustrate this important dif-
ference in impact on the necessary sample size.

Precision requirement specified in terms of an allowable half
width of a confidence interval for a mean
Recalling that (�y†−m)

�����
n/s2

√
is t-distributed when yj is normal

(Hogg et al., 2019, p. 215), a confidence interval for μ with
(1− α) × 100% coverage probability can be computed as

�y†+tn−1;1−a/2

��
s2

n

√
(8)

where tn−1;1−α/2 is the (1− α/2) × 100% quantile of the
t-distribution with n− 1 degrees of freedom and
s2 = (n− 1)−1 ∑n

j=1 (yj − �y†)
2 is the sample variance, estimating

the population variance σ2. The half width of this interval is
HW = tn−1;1−a/2

�����
s2/n

√
, which may be used to make a specifica-

tion on precision. The challenge here compared to the approaches
considered so far is that even for given values of the population
variance σ2 and sample size n, HW is not a fixed quantity but
a random variable. Thus, for a specification of precision, we
need to consider the expected value of HW, i.e.

EHW = E tn−1;1−a/2

��
s2

n

√( )
(9)

This expected value, in turn, is not a simple function of n,
because both tn−1;1−α/2 and s2 involve n. Hence there is no explicit
equation for n that can be derived from (9). Instead, numerical
routines need to be used to solve (9) for n for given population
variance σ2, α and specification of EHW, for example in SAS
(PROC POWER) or R (Rasch et al., 2011). Alternatively, one
may obtain an approximate solution by making two simplifying
assumptions: (i) The sample variance s2 is replaced by the popu-
lation variance σ2 and (ii) the quantile tn−1;1−α/2 of the
t-distribution is replaced by the corresponding quantile z1−α/2 of
the standard normal distribution, assuming that n will not be
too small. These two simplifications lead to the approximation:

HW ≈ z1−a/2

���
s2

n

√
(10)

Here, the approximation on the right-hand side is no longer a
random variable, so we can use this to approximate the desired
EHW and solve for n to obtain the approximation:

n ≈ s2z21−a/2

EHW2
(11)
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This equation is equivalent to (6) when replacing τ with EHW.
It will tend to yield smaller sample sizes than the exact numerical
solution. When also taking into account the probability that the
realized HW remains within pre-specified bounds (Beal, 1989),
a larger sample size would be required, but this is not pursued
here.

Example 1 (cont’d): If we want to ensure that a 95% confidence
interval for the population mean of milk yield per day has an
EHW of 2 kg day−1, we need to choose:

n ≈ 88.4× 22

22
= 88.4 ⇒ 89.

This is the same result as per Eqn (6), and the SEM ≈ 1 kg
day−1, which is half the desired EHW. Again, this equality is no
coincidence, as can be seen from the equivalence of (6) and
(11), if we equate τ and EHW.

Summary and the 1-2 rule
We can summarize the procedures under the three types of spe-
cification for the precision in the previous three sub-sections as
shown in Table 2. Importantly, all procedures involve the SEM,
so the rules based on specifications for τ and EHW can be cast
as rules for the choice of SEM:

SEM = t

z1−a/2
= EHW

z1−a/2
(12)

For α = 5% this amounts to the simple rule that SEM should
be no larger than τ/2 or EHW/2. It also emerges that the preci-
sion measures τ and EHW are exchangeable from a practical
point of view, even though they have somewhat different under-
lying rationales. We can also turn this around and first just
compute the SEM for a given design to evaluate its precision.
Then 2 × SEM is the allowable deviation τ or EHW the design
permits to control. Because of the factors involved (1 for the
SEM itself, and 2 for τ or EHW), we call this the 1-2 rule for
a mean.

How to get a prior value for σ2

General: The ideal is to find reports on similar studies as the one
planned that report on the variance. Alternatively, a pilot study
may be conducted to obtain a rough estimate of σ2. Desirable
though this may be, it is not always easy to get such information
quickly.

A rule of thumb that may be useful here and does not make
any distributional assumptions, is that the range in a sample of
n observations, defined as the difference between the largest
and smallest observed value in the sample, can be used to derive

upper and lower bounds on the sample standard deviation
s =

��
s2

√
(van Belle, 2008, p. 36):

Range����������
2(n− 1)

√ ≤ s ≤ n
n− 1

Range
2

, (13)

This rule is most useful in making quick assessments of pro-
blems in a given dataset, but it may also be useful in deriving a
rough estimate of the standard deviation σ.

Normality: Welham et al. (2015, p. 245) propose to approxi-
mate the standard deviation by:

s ≈ max −min
4

(14)

where min and max are ‘the likely minimum and maximum value
for experimental units receiving the same treatment’. The actual
rationale of this equation stems from the normal assumption
and the fact that 95% of the data are expected within two standard
deviations from the mean. This means that for this approximation
to work well, the data must have an approximate normal distribu-
tion, and min and max must be estimates of the 2.5 and 97.5%
quantiles of the distribution. In other words, min and max
must be the bounds of an interval covering about 95% of the
expected data from experimental units receiving the same
treatment.

Example 2: It is not easy to accurately guess the 2.5 and 97.5%
quantiles. To illustrate the difficulty, consider random samples of
different sizes n from a normal distribution. Of course, if such
samples were available when planning an experiment, the sample
variance could be computed directly and used in place of σ2, and
this would be the preferred thing to do. However, for the sake of
illustrating the challenge with (14), imagine that we determine the
observed minimum and maximum value in a sample of size n and
plug these into the equation. Table 3 shows results for n = 4, 8, 15,
30, 50, 100. It is seen that with a sample size of n = 30 the
expected range and median range come closest to the value of 4
that is postulated in (14). It emerges that a smaller sample size
leads to under-estimation and a larger sample size to over-
estimation of the standard deviation as per (14), if we simply
plug in the observed minimum and maximum. But unless
the sample size is very small, the approximation will be in the
right ballpark, and that is usually sufficient for most practical
purposes.

Binary: Up to here, for the most part, we have assumed the
normality of the response y. Often, the observed data are counts,
and these are not normal. The simplest case is binary data, where
the count is either 0 or 1. The response is then said to have a bin-
ary distribution, which has one parameter, the probability that the
response is 1. This probability, in turn, is equal to the mean μ of

Table 2. Overview of procedures for determining sample size for a single mean

Parameter for specification of
precision Interpretation of precision parameter Solution(s) for n in main text

Further prior specification
needed

SEM Standard error of a mean (2) σ2

τ Allowable absolute deviation from the
population mean

(5), (6) σ2, α

EHW Expected half width of confidence
interval for a mean

Exact only numerically, use (11) for an
approximation

σ2, α

4 Hans‐Peter Piepho et al.
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the binary random variable. For this distribution the variance
equals:

s2 = m(1− m) (15)

with 0 < μ < 1. Thus, to approximate the variance in this case, we
need a guess of the mean μ. To be on the conservative side, we
may consider the worst case with the largest variance σ2, which
occurs when μ = 0.5.

Example 3: A research institute conducts an opinion poll and
considers the worst-case scenario that the proportion of voters
favouring a particular party is μ = 0.5, in which case σ2 = 0.25.
The proportion of each party is to be estimated with precision
SEM = 0.01. Thus, using (2), the sample size is chosen as:

n = s2

SEM2
= 0.25

0.012
= 2500.

Example 4: Monitoring foot pad health is an important task in
rearing turkey. The prevalence of foot pad dermatitis in a given
flock may be estimated by random sampling. Any animal with
symptoms on at least one foot is considered as affected (Toppel
et al., 2019; for details on the scoring system see Hocking et al.,
2008). Typical prevalences range around 0.5, so it is suitable to
determine the sample size under the worst-case scenario μ = 0.5.
If we set the allowable deviation from the true mean at τ = 0.1
with α = 5%, the sample size based on Eqn (6) is

n = z21−a/2s
2

t2
= 1.962 × 0.52

0.12
= 96.04 ⇒ 97

Note that in using (6), we have assumed that the sample size n
will be large enough for the central limit theorem to apply. We
have further assumed that sampling is without replacement and
that the population from which we are sampling is large relative
to sample size (but see next sub-section entitled ‘Finite
populations’).

Binomial: If on each experimental unit, we have m observa-
tional units, each with a binary response with the expected
value μ (a proportion or probability), then the binomial distribu-
tion may be assumed, which has variance:

s2 = m(1− m)/m (16)

for the observed proportion y = c/m, where c is the binomial count
based on the m observational units. Thus, to approximate the
variance in this case, we also need a guess of the mean μ.
Again, the worst-case scenario is μ = 0.5. In practice, the data
may show over-dispersion relative to the binomial model. A sim-
ple way to model this is to assume variance:

s2 = fm(1− m)/m (17)

where ϕ is an over-dispersion parameter (McCullagh and Nelder,
1989, p. 124). In this scenario, estimating the mean alone does not
help in approximating the variance; we also need an estimate of
the over-dispersion, and this puts us back to the general case,
where independent prior information on the variance needs to
be obtained.

Example 5: In a large potato field, n = 347 control points were
distributed to assess the abundance of the potato weevil
(Leptinotarsa decemlineata) (Trommer, 1986). At each control
point, m = 20 potato plants where assessed for the presence or
absence of the weevil. The counts of affected plants (c) per control
point are reproduced in Table 4.

For each control plot, we can compute the observed proportion
y = c/m. The sample mean of y across the n = 347 control points is
�y†=0.2987, which is an estimate of the proportion μ of infested
plants on the field. Under a binomial distribution, the variance of y
would be estimated as �y†(1− �y†)/m = 0.2987× 0.7013/20 =
0.010474. This is considerably smaller than the sample variance
s2 = 0.10788. From this, the overdispersion is estimated as f̂ = s2/
[�y†(1− �y†)/m] = 10.2999. This value corresponds to the one
obtained from Pearson’s chi-squared statistic for over-dispersed bino-
mial data (McCullagh and Nelder, 1989, p. 127). Thus, the variance is
about ten times the variance expected under a binomial model. The
reason for this overdispersion is the clustering of patches of infested
plants amidst areas of plants infested little or not at all, which is typ-
ical of crop diseases and pests. Incidentally, the hat symbol on ϕ indi-
cates that this is the corresponding sample estimator of the parameter.
We will subsequently use the hat notation in several places, also for
other parameters. Further note that we could use m̂ and ŝ2 in
place of �y† and s2 to denote the sample mean and variance,
respectively.

Now assume that we go to a new field and want to determine
the number of control points (each with m = 20 plants) needed to
achieve a half width of HW = 0.05 for a 95% confidence interval.
A first rough assessment suggests that the infestation in the new

Table 3. Expected and median of range (maximum −minimum) for samples of different sample size n from standard normal distribution

Sample size n

Expected range Median range

Numericala Simulatedb Numericalc Simulatedb

4 2.09 2.06 1.98 1.99

8 2.85 2.85 2.79 2.76

15 3.46 3.48 3.42 3.45

30 4.06 4.08 4.04 4.04

50 4.47 4.52 4.45 4.46

100 4.98 5.04 4.97 5.00

aApproximated as 2Φ−1(0.52641/n) (Chen and Tyler, 1999).
bSimulated based on 1000 runs, computing the mean in each run, and then taking the mean or median.
cComputed using the PROBMC function of SAS (Westfall et al., 1999, p. 45) as the 50% quantile of the studentized range distribution with infinite degrees of freedom.
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field is in the order of μ = 0.1. The variance is σ2 = ϕμ(1− μ)/m =
10.299 × 0.1 × 0.9/20 = 0.04635. Using this in Eqn (11), we find:

n ≈ s2z21−a/2

EHW2
= 0.04635× 1.962

0.052
= 71.22 ⇒ 72

Thus, n = 72 control points would be required to achieve this
precision.

Poisson: Under the Poisson model for counts, the count y can
take on any non-negative integer value (0, 1, 2,…). The variance
of y is:

s2 = m (18)

So again, a rough estimate of the mean is needed to approxi-
mate the variance. There is no worst-case scenario that helps as
the variance increases monotonically with the mean μ.
Moreover, it needs to be considered that there is often over-
dispersion relative to the mean, so the variance is:

s2 = fm (19)

where ϕ is an over-dispersion parameter (McCullagh and Nelder,
1989, p. 198). As with the over-dispersed binomial distribution, in
this scenario, estimating the mean alone does not help in approxi-
mating the variance; we also need an estimate of the over-
dispersion, and this, yet again, puts us back to the general case.

It is stressed that exact methods should be used for small bino-
mial sample sizes m and also for small means in case of the
Poisson. These exact methods, which are somewhat more
involved (see, e.g., Agresti and Coull, 1998; Chen and Chen,
2014; Shan, 2016), will not be considered here.

Example 6: Inoculum density of Cylindrocladium crotalariae
was assessed on 96 quadrats in a peanut field. On each quadrat,
the number of microsclerotia was counted (Hau, Campbell and
Beute, 1982). The frequency distribution is given in Table 5.

The mean count is �y†=7.990, whereas the sample variance is
s2 = 30.47, showing substantial over-dispersion. The overdisper-
sion is estimated as f̂ = s2/�y† = 30.47/7.990 = 3.841. Again,
this corresponds to the value obtained from Pearson’s generalized
chi-squared statistic (McCullagh and Nelder, 1989, p. 328). Now a
new field is to be assessed on which first inspection by eyeballing
suggests a mean infestation of μ = 20 microsclerotia per quadrat.
We would like to estimate the population mean of the field
with a precision of SEM = 2. The variance is expected to be σ2

= ϕμ = 3.841 × 20 = 76.28. From Eqn (2) we find:

n = s2

SEM2
= 76.28

22
= 19.07 ⇒ 20

Thus, n = 20 quadrats are needed to achieve the targeted
precision.

Finite populations

So far we have assumed that the population from which we are
sampling (without replacement) is infinite, or very large. When
the population is small, it is appropriate to consider a finite popu-
lation correction, meaning that the VM equals (Kish, 1965, p. 63):

var(�y†) =
N − n
N − 1

n−1s2 (20)

where N is the population size. The methods for sample size
determination in the previous sub-sections are applicable with
this modification. Note that when n =N, i.e. under complete enu-
meration of the population, the variance in (20) reduces to zero as
expected, because the finite population correction (N− n)(N−
1)−1 is zero in this case. For illustration, we consider the specifi-
cation of an allowable absolute deviation τ of the sample mean
from the population mean with probability α. Thus, we may
equate t2/var(�y†) = z21−a/2 as we have done in the previous sub-
sections. Solving this for n using (20) yields:

n = Ns2

(N − 1)(t2/z21−a/2)+ s2
(21)

Note that this is equal to (6) when N approaches infinity.
Applying this to the binary case with σ2 = μ(1− μ) yields
(Thompson, 2002, p. 41)

n = Nm(1− m)
(N − 1)(t2/z21−a/2)+ m(1− m)

(22)

Example 3 (cont’d): In opinion polls, the population from
which a sample is taken usually has size N in the order of several
millions, which is huge compared to the customary sample sizes
in the order of n = 2500. In this case, the finite population correc-
tion may safely be ignored.

Example 4 (cont’d): If the flock size is N = 4000 (Toppel et al.,
2019), and we use the same specifications as before, the sample
size as per (22) is n = 94, down from n = 97 when the finite popu-
lation correction is ignored (Eqn 6).

Table 4. Frequency distribution of the number of plants infested with the potato weevil (c) in samples of m = 20 plants at n = 347 control points (Trommer, 1986)

Count (c) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Frequency 104 33 20 16 20 21 9 8 7 9 11 9 10 6 11 8 5 4 8 13 15

Table 5. Frequency distribution of the number y of microsclerotia (Cylindrocladium crotalariae) per quadrat on n = 96 quadrats in a peanut field (Hau et al., 1982;
Figure 3(b))

Count ( y) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 20 21 22 26

Frequency 2 5 5 13 5 6 9 6 7 4 5 9 6 2 2 1 1 2 2 1 2 1

6 Hans‐Peter Piepho et al.

https://doi.org/10.1017/S0021859622000466 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859622000466


Comparing two means

In comparative studies and experiments, the objective is usually a
pairwise comparison of means (Bailey, 2009). Thus, we are inter-
ested in estimating a difference δ = μ1− μ2, where μ1 and μ2 are
the means to be compared. Here, we consider the case where
the observations of both groups are independent. In this case,
the variance of a difference (VD) between two sample means
�y1† and �y2† equals var(�y1† − �y2†) = n−1

1 s2
1 + n−1

2 s2
2, where n1

and n2 are the sample sizes and s2
1 and s2

2 are the variances in
the two groups. If we assume homogeneity of variance, this sim-
plifies to var(�y1† − �y2†) = (n−1

1 + n−1
2 )s2, where σ2 is the com-

mon variance. Further, if the sample size is the same (n) in
each group, which is the optimal allocation under homogeneity
of variance, this further simplifies to var(�y1† − �y2†) = 2n−1s2.
Here, we make this assumption for simplicity. Note that the vari-
ance is just twice the variance of a sample mean. Thus, apart from
this slight modification, all methods in the previous section can be
applied without much further ado, so the exposition of these
methods can be brief here.

Determining sample size based on a precision requirement

In this section, we assume approximate normality of the response
or sufficient sample size for the central limit theorem to ensure
approximate normality of treatment means.

Precision requirement specified in terms of the standard error of
a difference
The standard error of a difference (SED) of two sample means equals:

SED =
����
2s2

n

√
(23)

Equation (23) may be solved for n to yield:

n = 2s2

SED2
(24)

Example 7: Ross and Knodt (1948) conducted a feeding
experiment to assess the effect of supplemental vitamin A on
the growth of Holstein heifers. There was a control group and a
treatment group, both composed of 14 animals. The allocation
of treatments to animals followed a completely randomized
design. One of the response variables was weight gain (lb.). The
pooled sample variance was s2 = 2199 lb.2, and treatment means
were in the order of 200 lb. Suppose a follow-up experiment is
designed to compare the control to a new treatment with an
improved formulation of the vitamin A supplementation with
an SED of 20 lb. Setting σ2 = 2199 lb.2 based on the prior experi-
ment, the required sample size is

n = 2s2

SED2
= 2× 2199

202
= 11

Precision requirement specified in terms of the allowable
deviation of estimate of difference from its true parameter value
The sample size required per treatment to ensure with probability
1− α that the deviation of the estimated difference from the true

difference is no larger than td is:

n = 2s2z21−a/2

t2d
(25)

For α is 5%, this is approximately:

n ≈ 8s2

t2d
(26)

Example 7 (cont’d): Suppose we are prepared to allow a devi-
ation of td = 20 lb. Thus, using σ2 = 2199 we require:

n ≈ 8s2

t2d
= 8× 2199

202
= 43.98 ⇒ 44

This is four times the sample size required to achieve an SED
of 20 lb. The precision achieved here is SED = 10 lb., which is half
the desired td.

Precision requirement specified in terms of the allowable half
width of a confidence interval for a difference
A confidence interval for δ with (1− α) × 100% coverage prob-
ability can be computed as:

�y1† − �y2† + tw;1−a/2

����
2s2

n

√
, (27)

where tw;1−α/2 is the (1− α/2) × 100% quantile of the
t-distribution with w = 2(n− 1) degrees of freedom and s2 is the
pooled sample variance, estimating the population variance σ2.
Again, the exact method to determine the sample size for the
confidence interval of a difference requires numerical methods
as implemented in software packages. Here, we consider an
approximate method. The half width of the interval is
HW = tw;1−a/2

������
2s2/n

√
. It is worth pointing out that this HW is

equal to the least significant difference (LSD) for the same α as
significance level, a point which we will come back to in the
next section. The approximation replaces tw;1−α/2 with z1−α/2
and s2 with σ2, yielding a expected half width (EHW) of

EHW ≈ z1−a/2

����
2s2

n

√
, (28)

which we may also regard as the expected LSD (ELSD). Then solv-
ing for n yields:

n ≈ 2s2z21−a/2

EHW2
(29)

This equation is seen to be equivalent to (25) when replacing
td with EHW. This approximate solution will tend to yield some-
what smaller sample sizes than the exact numerical solution.

Example 7 (cont’d): Suppose we want to achieve EHW = 20 lb.
with α = 5%. This requires:

n ≈ 2s2z21−a/2

EHW2
≈ 2× 2199× 22

202
= 43.98 ⇒ 44

which is the same sample size as requires to achieve an allowable
deviation of td = 20 lb., and also leads to SED = 10 lb., half the
desired EHW.
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Precision requirement specified in terms of difference to be
detected by a t-test
A t-test may be used to test the null hypothesis H0: δ = 0 against
the alternative HA: δ≠ 0. The t-statistic for this test is:

t = �y1† − �y2†������
2s2/n

√ (30)

This has a central t-distribution on w = 2(n− 1) degrees of free-
dom under H0: δ = 0 and a non-central t-distribution under the
alternative HA: δ≠ 0. There are two error rates to consider with a
significance test, i.e. α, the probability to falsely reject H0 when it
is true, and β, the probability to erroneously accept H0 when it is
false. The complement of the latter, 1− β, is the power of the
test, i.e., the probability to correctly reject H0 when it is false. To
plan sample size, we need to make a choice for the desired values
of both α and β. Moreover, prior information on the variance σ2 is
needed, as well as a specification of the smallest relevant value of
the difference δ that we want to be able to detect with the test.
These choices then determine the required sample size. Again, an
exact solution for n requires numerical integration using the central
t-distribution under H0 and the non-central t-distribution under
HA (Welham et al., 2015, p. 248). Some authors approximate the
non-central t-distribution with the central one (Cochran and
Cox, 1957, p. 20; Bailey, 2009, p. 36). A more portable approximate
solution that replaces the central and non-central t-distributions
with the standard normal, and the sample variance s2 with the
population variance σ2, is obtained as (van Belle, 2008, p. 30):

n ≈ 2s2(z1−a/2 + z1−b)
2

d2
(31)

where z1−α/2 is as defined before and z1−β is the (1− β) × 100%
quantile of the standard normal distribution. This equation is
easily derived by observing that under H0, t is approximately
standard normal, with the critical value for rejection at ±z1−α/2,
the (1− α/2) × 100% quantile of the standard normal. Under HA,
t is approximately normal with unit variance and mean δ/SED,
with SED depending on n as shown in (23). This distribution has
its β × 100%-quantile at δ/SED− z1−β. These two quantiles under
the H0 and HA distributions must match exactly for the desired α
and β, so we can equate them and solve for n, yielding Eqn (31).

A conventional value of α is 5%, but 1% or 10% are also some-
times used. Typical choices for β are 5%, 10% and 20%. For routine
application, it is convenient to define Cα,β = (z1−α/2 + z1−β)

2 and
compute this for typical choices of α and β (Table 6). These values
of Cα,β can then be used in the equation:

n ≈ 2s2Ca,b

d2
(32)

A portable version of (32) for the very common choice α = 5%
and β = 10% is:

n ≈ 21s2

d2
(33)

Other portable equations can of course be derived for other
desired values of α and β. It is instructive to compare Eqn (33)
for the t-test with the precision-based Eqn (26). Importantly,
unless the power we desire is small, (33) yields a considerably

larger sample size when we use the same values for the difference
to be detected (δ) in (33) and the allowable deviation of the esti-
mated from the true difference (td) in (26). As we have explained,
the latter can also be equated to the desired ELSD. Specifically,
this means that choosing sample size so that a desired value for
td or ELSD is achieved does not at all ensure sufficient power
(1− β) to detect a critical difference δ of the same size. In fact,
if δ = ELSD, the t-test has an expected power of 50% only,
which will hardly be considered satisfactory. We will need an
ELSD substantially smaller than td to achieve a reasonable
power. For our portable example with a power of 90%, the ratio
of required ELSD over δ can be approximated by dividing (33)
by (26) and solving for the ratio:

td
d
= ELSD

d
=

���
8
21

√
≈ 0.62.

It may also be noted that if the desired power indeed equalled
50%, we would have z1−β = z0.5 = 0, in which case (31) takes the
same form as (25). So in this special case of a power of 50%, we
may say that the specification of a value for δ in (31) is equivalent
to specifying the same value for td (equivalent to ELSD) in (25).
This coincidence is of little practical use, however, because a
power of 50% is rarely considered sufficient. The more important
point here is that in all other cases, specifying the same value for
δ in (31) and for td in (25) does not lead to the same sample size.

Example 7 (cont’d): A difference of δ = 20 lb. is to be detected
at α = 5% with a power of 90%. This can be achieved with an
approximate sample size of:

n ≈ 21s2

d2
= 21× 2199

202
= 115.4 ⇒ 116

As expected, this sample size is larger still than when we
required EHW = 20 lb. or td = 20 lb.. The precision attained
here is better as well, amounting to SED ≈ 6 lb.

We also use this example to assess the degree of the approxi-
mation involved by replacing the central and non-central
t-distributions with the standard normal in (31). For the case at
hand, the exact result (obtained with PROC POWER in SAS)
yields n = 117, which is very close to the approximate result of
n = 116. To explore this further, we also did the exact and
approximate calculations for a range of larger values of the rele-
vant difference δ. The results in Table 7 show that the approxi-
mation is very good, even when the exact sample size is as
small as n = 3. It emerges that if one wants to be on the safe
side, adding one or two to the approximate sample size per
group should suffice.

The equations considered so far require specifying the difference
to be detected (δ) in absolute terms. It is sometimes easier for

Table 6. Values of Cα,β = (z1−α/2 + z1−β)
2 for typical choices of α and β

β

5% 10% 15% 20%

α 1% 17.8 14.9 13.0 11.7

5% 13.0 10.5 9.0 7.8

10% 10.8 8.6 7.2 6.2
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researchers to specify this in relative terms instead, i.e., as a propor-
tion or percentage difference. For this purpose, Eqn (31) can be
slightly rewritten. To do so, we define the relative difference as:

dr = d

m
(34)

where μ = (μ1 + μ2)/2 is the overall mean. The standard deviation
can also be expressed in relative terms, and this is known as the
coefficient of variation, CV = σ/μ. With these definition, Eqn (31)
can be rearranged to yield the approximation:

n ≈ 2CV2(z1−a/2 + z1−b)
2

d2r
(35)

The portable version of (35) for the very common choice α = 5%
and β = 10% is (see Table 6):

n ≈ 21CV2

d2r
(36)

These equations work equally with δr and CV expressed as
proportions or as percentages.

Example 7 (cont’d): The means for the control and treatment
groups were 187.6 and 235.9 lb. From this, the coefficient of vari-
ation is computed as CV = 22.15% = 0.2215. Suppose that in a
new experiment we want to be able to detect a relative treatment
difference of δr = 10% = 0.1 compared to the overall mean at α =
5% with a power of 90%. Here we need a sample size of:

n ≈ 21CV2

d2r
= 21× 22.15%2

10%2 = 103

Example 8: Four traits are to be assessed to compare two dif-
ferent milking methods, i.e. a milking robot and a milking
parlour. Long-term records on these four traits are available
from 142 cows of the same population from which the animals

for the experiments are to be drawn and allocated to the two treat-
ments at random. Sample means and variances are reported in
Table 1. Discussions with the animal scientists conducting this
experiment identified the smallest relevant differences δ for the
four traits as shown in Table 1. Based on these specifications,
the sample size n per treatment for an unpaired t-test for α =
5% and a power of 85% were determined using Eqn (32) for
each trait. It is seen that the sample size differs between traits,
illustrating that when an experiment involves several traits, a com-
promise must be struck regarding a common sample size. We also
note that the SED achieved with these sample sizes is about 1/3 of
the smallest relevant difference δ for each trait, a point we will
take up again in the next section.

We note in passing that it is quite common to express effect
size not relative to a mean but relative to the standard deviation
(d = δ/σ; Cohen, 1977, 1992), a measure also known as Cohen’s
d, but agree with Lenth (2001) that it is difficult, if not misleading,
to think about effect size in these terms.

Summary and the 1-2-3 rule
We can summarize the procedures under the four types of speci-
fication in this section so far as shown in Table 8. It is instructive
at this point to highlight that all procedures involve the SED. This
important fact can be exploited to convert all procedures into
simple rules in terms of the choice of SED. Thus, for achieving
a desired value of td, EHW or ELSD, we need to choose:

SED = td
z1−a/2

= EHW
z1−a/2

= ELSD
z1−a/2

. (37)

It is also seen that in practice, the three precision measures td,
EHW or ELSD are exchangeable, despite differences in their der-
ivation. For detecting a minimal effect size δ, we need to choose:

SED = d

z1−a/2 + z1−b
(38)

This latter fact led Mead (1988, p. 126; also see Mead et al.,
2012, p. 137) to suggest the rule of thumb that SED should be
no larger than |δ|/3, corresponding to an approximate power of
1− β = 0.85 at α = 5% because z1−α/2 + z1−β≈ 3. By comparison,
using z1−α/2≈ 2 for α = 5% in Eqn (37) yields the rule that SED
should be no larger than td/2 = EHW/2 = ELSD/2. As in the
case of a single mean (previous section), we can turn this around
and first compute the SED for a given design to evaluate its pre-
cision. Then 2 × SED is the allowable deviation td (EHW, ELSD)
the design permits to control. Similarly, 3 × SED is the smallest
absolute difference |δ| the design can detect. Because of the divi-
sors and multipliers involved (1 for SED itself, 2 for τδ, EHW or
ELSD, and 3 for δ), we refer to this set of portable equations and
rules as the 1-2-3 rule for a difference.

Procedures for counts

As was already pointed out in the previous sub-section, the com-
mon distributional models for counts (e.g., binary, binomial,
Poisson) imply that the variance depends on the mean. When
it comes to the comparison of means between two groups, the
consequence is that there is the heterogeneity of variance between
the groups unless the means are identical. Therefore, all

Table 7. Required sample size for unpaired t-test at α = 5% with a power of 90%
for σ2 = 2199 lb.2 and a range of values for the smallest relevant difference δ in lb

Relevant difference (δ)

Required sample size (n)

Approximatea Exactb

20 116 117

30 52 53

40 29 30

50 19 20

60 13 14

70 10 11

80 8 9

90 6 7

100 5 6

120 4 5

150 3 4

200 2 3

aUsing Eqn (31).
bUsing PROC POWER of SAS.

The Journal of Agricultural Science 9

https://doi.org/10.1017/S0021859622000466 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859622000466


specifications for sample size need to be made explicitly in terms
of the two means, and not just their difference, which is a slight
complication compared to the normal case assuming homogen-
eity. As a result of this slight complication, there are several
approximate approaches for determining the sample size. Most
of them rely on the approximate normality of estimators of the
parameters, which is a consequence of the central limit theorem.
This is not the place to give a full account of all the different
options. Many of these are nicely summarized in van Belle (2008).

Here, we will just mention one particularly handy approximate
approach that employs a variance-stabilizing transformation of the
response variable y. For the Poisson distribution with large mean,
the square root transformation z = ��

y
√

stabilizes the variance at
var(z) ≈ 1/4 (McCullagh and Nelder, 1989, p. 196). For the bino-
mial distribution with large m (number of observational units per
sample), the angular transformation z = arcsin {(c/m)1/2}, where c
is the binomial count, approximately stabilizes the variance at
var(z) ≈ 1/(4m) (McCullagh and Nelder, 1989, p. 137). Allowing
for over-dispersion, which is the rule rather than the exception in
comparative experiments in agriculture (Young et al., 1999), the
variance needs to be adjusted to var(z) ≈ f/4 and
var(z) ≈ f/(4m) for the Poisson and binomial distributions,
respectively. The advantage of using these variances on the trans-
formed scale is that they are independent of the mean, simplifying
the sample size calculation a bit. Thus, we can use:

s2 = f/4 (39)

for the over-dispersed Poisson and:

s2 = f/(4m) (40)

for the over-dispersed binomial distribution in equations in the
preceding sub-sections. At the same time, however, the specifica-
tions for td and δ need to be made on the transformed scale,
and this, in turn, requires that the two means need to be specified
explicitly, rather than just their difference. For example, under the
(over-dispersed) Poisson model we use:

d = ���
m1

√ − ���
m2

√ (41)

and under the (over-dispersed) binomial model we use:

d = arcsin (m1/2
1 )− arcsin (m1/2

2 ) (42)

where the means correspond to the binomial probabilities being

compared (Cohen, 1977, p. 181, 1992). These expressions can be
inserted in Eqns (31)–(33), leading to explicit equations for the
Poisson and binomial models if desired (Cochran and Cox, 1957,
p. 27; van Belle, 2008, p. 40 and p. 44). With over-dispersion,
which should be the default assumption for replicated experiments,
a prior estimate of the over-dispersion parameter ϕ will be required
to evaluate the variances in (39) and (40) for use in the expressions
in the preceding sub-sections. Such an estimate can be obtained via
Pearson’s chi-squared statistic or the residual deviance based on a
generalized linear model (GLM; McCullagh and Nelder, 1989).
Later in this paper, we will consider a simulation-based approach
that can be applied for count data when the simplifying assump-
tions made here (e.g., large binomial m or large Poisson mean)
are not met. Also, we note in passing that the angular transform-
ation, originally proposed for binomial proportions, may sometimes
work for estimated (continuous) proportions, but see Warton and
Hui (2011) for important cautionary notes, Piepho (2003) and
Malik and Piepho (2016) for alternative transformations, and
Duoma and Weedon (2018) on beta regression as an alternative.

Example 9: A field experiment is to be conducted in randomized
complete blocks to compare a new herbicide against the weed gras
Bromus sterilis to a control treatment. The number of weed plants
per m2 will be assessed by sampling five squares of 0.25m2 per plot
and dividing the total count of weed plants by 1.25 m2. A previous
trial with the same kind of design yielded the total counts per plot
shown inTable 9. Analysis of this trial using aGLM foroverdispersed
Poisson data using a log-link (McCullagh and Nelder, 1989) yielded
the overdispersion estimate f̂ = 2.59. For the future trial, the smal-
lest relevant effect is specified in terms of the mean μ1 = 15 plants per
1.25m2 for the control and the mean μ2 = 3 plants per 1.25 m2 for a
new herbicide, corresponding to a reduction of weed infestation by
80%. Using a square-root transformation with variance in (39) and
effect size in (41), we find from (31) for α = 5% and a power of
90% that d = ���

15
√ − ��

3
√ = 2.14, σ2 = 2.59/4 = 0.648 and:

n ≈ 2× 0.648× (1.96+ 1.28)2

2.142
= 2.97 ⇒ 3

Incidentally, the variance specification based on a GLM (σ2 =
0.648) is quite close to the estimate by an analysis of the square-root
transformed counts (s2 = 0.607), confirming the utility of the simple
data transformation approach. It may be added that this sample size
is smaller than the one actually used (n = 4). That sample size, how-
ever, would not have been sufficient to detect a weed reduction by
50% at the same level of significance and power.

Table 8. Overview of procedures for determining sample size for a mean difference

Parameter for specification
of precision Interpretation of precision parameter

Solution(s) for n in main text
(equation numbers in brackets)

Further prior
specification needed

SED Standard error of a difference (24) σ2

τδ Allowable absolute deviation from the
true difference

(24), (26) σ2, α

EHW Expected half width of confidence
interval for the difference

Exact only numerically; (28) for an
approximation

σ2, α

δ Smallest absolute difference to be
detected

Exact only numerically; (31), (32) and (33)
for an approximation

σ2, α, β

δr Smallest relative difference to be
detected

Exact only numerically; (35) and (36) for an
approximation

CV, α, β
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Example 10: A field experiment is to be conducted to assess the
effect of a neonicotinoid on the abundance of an insect species.
The expected abundance for the control is in the order of ten
individuals per trap. The smallest relevant difference for the treat-
ment corresponds to a 25% drop in abundance, amounting to 7.5
individuals per trap for the treatment. We set μ1 = 10, μ2 = 7.5, α
= 5% and β = 20%. Assuming a Poisson distribution, we initially
set σ2 = 0.25 as per (39) on the optimistic assumption of no over-
dispersion. We find d = ���

m1
√ − ���

m2
√ = 0.4237 and use all of

these specifications in Eqn (31), finding n = 21.86 ⇒ 22. From a
previous study, we expect an overdispersion of ϕ = 1.3. Hence,
we adjust our sample size upwards to n = ϕ × 21.86 = 1.3 × 21.86
= 28.42 ⇒ n = 29.

Example 11: Diseases or traits due to hereditary defects can
often be detected by gene tests which require a population-wide
evaluation. The principal idea is to test for an association between
the status of a gene (which may have three outcomes/genotypes in
a diploid organism) and the occurrence of a disease. For instance,
being horned or hornless in cattle is caused by a mutation at the
‘polled locus’, and a gene test has already been established to
increase the frequency of polled cattle in future through selective
mating. To test whether the horned or hornless phenotype in cat-
tle is caused by a specific variant in the genome, we distinguish
factor level A (genotype pp) and B (genotype Pp or PP) and con-
sider the 2 × 2 classification in Table 10.

The task is to approximate sample size allowing the detection
of differences in probabilities μ1 and μ2 between groups. Table 10
reflects the expected counts and an obvious solution is to continue
with the binomial model using, e.g., μ1 = 0.9 and μ2 = 0.5 in Eqn
(42) and σ2 = 1/4. Using σ2 = 1/4 instead of 1/(4m), as you would
expect from the binomial model, is justified by treating the binary
variable as a limiting case here (see Paulson and Wallis, 1947;
cited in Cochran and Cox, 1957, p. 27; also see the Appendix).

Assuming a balanced design and δ = 0.4637 from (42), yields
n1 = n2 = n = 25 using Eqn (31) with α = 5% and a power of
90% (also see Cochran and Cox, 1957, p. 27). Using a more spe-
cifically tailored formula due to Fleiss (1981; also see eq. 2.50 in
Rasch et al., 2011) yields n1 = n2 = 26, and further using a correc-
tion due to Casagrande et al. (1978; also see eq. 2.51 in Rasch
et al., 2011, p. 49) yields n1 = n2 = 30, so our approximate
approach lands us in the right ballpark. We conclude by noting
that the task above could also be tackled with a chi-square test
of independence on 1 degree of freedom or by a test of the
log-odds ratio, as will be discussed later.

Paired samples

This section so far focused on unpaired, i.e. independent samples.
When paired samples are considered, we may resort to procedures
for a single mean, replacing the observed values yj with observed
paired differences dj between two treatments or conditions.
Accordingly, mean and variance of yj need to be replaced by
mean and variance of paired differences dj. Because of this
one-to-one relation with the case of a single mean, procedures
for paired samples are slightly simpler than for unpaired samples.
We note that the section for a single mean does not explicitly con-
sider significance tests, but the confidence interval for a difference
may be used to conduct a significance test of H0 that the expected
difference equals zero, exploiting the close relation between both
procedures. The H0 is rejected at the significance level α when the
(1− α) × 100% confidence interval for the difference does not
include zero. Thus, all options can be implemented with the pro-
cedures for a single mean. As regards significance testing, Eqn
(31) needs to be modified as:

n ≈ s2
d(z1−a/2 + z1−b)

2

d2
(43)

where s2
d is the variance of pairwise differences dj and approxi-

mate normality is assumed.
Example 12: An experiment was conducted with Fleckvieh

dairy cows to compare the lying time per day indoors and out-
doors on an experimental farm (Benz et al., 2020). Sufficient
lying time is an important trait for claw health. A total of 13
cows, sampled randomly from the current population at the
farm (∼50 animals), were included in the experiment and their
average lying time per day assessed in both phases using ped-
ometers (Table 11). The indoor phase in the barn took place in
early September 2017 and the outdoor phase was conducted in
late September 2017.

From these data, the variance s2
d of the 13 pairwise differences (d1

= 745− 614 = 113, etc.) is estimated at s2d = 7355. If for a new study
we want to be able to detect a lying time difference of δ = 40min
day−1 at α = 5% with a power of 80%, the required sample size is:

n ≈ s2
d(z1−a/2 + z1−b)

2

d2
= 7355× (1.96+ 0.84)2

402
≈ 28

Thus, we would require 28 cows. This sample size is expected to
yield SED = 14.29 (Eqn 1) and EHW = td = 28.01 (Eqns 6 and 10).

It is noted that the size of the population at the farm from which
the cows are to be sampled, is relatively small. One might therefore
consider a finite-sample correction to account for this as in
described in the previous section for a single mean, which would

Table 10. Expected counts in a 2 × 2 classification of groups and treatments

Factor level (e.g.
treatment or status)

A B Sum total

Group 1 (e.g. affected
individuals)

n1 × μ1 n1 × (1− μ1) n1

Group 2 (e.g. unaffected
individuals)

n2 × μ2 n2 × (1− μ2) n2

Sum total nA nB n1 + n2 = nA + nB

The parameters μ1 and μ2 are the probabilities of occurrence of level A in the two groups,
and n1 and n2 are the sample sizes for the two groups.

Table 9. Total counts of Bromus sterilis on 1.25 m2 per plot in an experiment
laid out as a randomized complete block design with four treatments and
four blocks (Büchse and Piepho, 2006)

Treatment

Block

Sample mean m−2I II III IV

1 (control) 20 20 6 14 12.0

2 6 5 0 3 2.8

3 13 3 0 0 3.2

4 10 11 9 5 7.0
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lead to a slightly smaller sample size, but would restrict the validity
of the results to the farm population studied. An alternative view is
that the ∼50 animals at the farm are themselves a sample from the
much larger Fleckvieh population and that the objective of the
study is not to characterize the limited population at the farm,
but to characterize conditions at the farm itself. In this view,
which provides a somewhat broader inference, it makes sense to
regard the n = 28 animals as a sample from the broader
Fleckvieh population, raised under the conditions of the farm at
hand. In this case, a finite-population correction is not needed.

More advanced settings

More than two means

When more than two means are to be compared, the same meth-
ods as in the previous section can be used, as in the end we usu-
ally want to compare all pairs of means. The only additional
consideration is that there may be a need to control the family-
wise Type I error rate in case of multiple pairwise tests. In case
of normal data, this means using Tukey’s test rather than the
t-test (Bretz et al., 2011), and sample size calculations may be
adjusted accordingly (Horn and Vollandt, 1995; Hsu, 1996). A
simple approximation is afforded by the Bonferroni method
which prescribes dividing the targeted family-wise α by the num-
ber of tests. That number equals v(v− 1)/2 for all pairwise com-
parisons among v treatments, so the t-tests would be conducted
at significance level α′ = α/[v(v− 1)/2]. In a similar vein, the
Tukey or Bonferroni methods can also be used when considering
confidence intervals desired to have joint coverage probability of
(1− α) × 100%; with the Bonferroni method this is achieved by
computing (1− α′) × 100% confidence intervals using the method
in the previous section for the individual comparisons.

We note here that pairwise comparison of means are usually
preceded by a one-way analysis of variance (ANOVA) F-test of
the global null hypothesis of no treatment differences (though
this is not strictly necessary when pairwise comparisons are done

controlling the family-wise Type I error rate). It is also possible
to determine sample size based on the power of the one-way
ANOVA F-test (Dufner et al., 1992, p. 196; Dean and Voss,
1999, p. 49f.; Rasch et al., 2011, p. 59), and we will come back to
this option in the next section. It is emphasized here that we
think the consideration of pairwise comparisons is usually prefer-
able for determining sample size also when v > 2, because it is more
intuitive and easier in terms of the specification of the precision
required. When the focus is on individual pairwise mean differ-
ences, all equations for unpaired samples remain valid with the
variance σ2 for the design in question. Specifically, these equations
can be applied with the three most common and basic experimen-
tal designs used in agricultural research, i.e. the completely rando-
mized design, the randomized complete block design, and the Latin
square design (Cochran and Cox, 1957; Dean and Voss, 1999).

Example 7 (cont’d): Suppose we want to add three further new
formulations with vitamin A, increasing the total number of treat-
ments to v = 5. If the specifications for the required precision or
power remain unchanged, so does the required sample size per
treatment group. Only the total sample size increases from 2n
to vn = 5n. If we want to cater for a control of the family-wise
Type I error rate at the α = 5% level, we may consider a
Bonferroni approximation of the Tukey test and use a pairwise
t-tests at α′ = α/[v(v− 1)/2] = 5%/[5 × 4/2] = 0.5%. Thus, we
would replace z1−α/2 with z1−a′/2, which for α′ = 0.5% equals
z1−a′/2 = 2.81, compared to z1−α/2 = 1.96 for α = 5%. Thus, sam-
ple size requirement according to (31) for δ = 20 lb. at α = 5% with
a power of 90% would increase from n = 115 to n = 184 per group.

Regression models

The simplest case in regression is a linear regression of a response
y on a single regressor variable x. Apart from sample size, the
placement of the treatments on the x-axis needs to be decided.
For a linear regression, the optimal allocation is to place half
the observation at the lower end, xL, and the other half at the
upper end, xU, of the relevant range for x (Rasch et al., 1998,
p. 273; Rasch et al., 2011, p. 127f.). Optimal allocation for higher-
order polynomials or intrinsically nonlinear models is more com-
plex and will not be elaborated here (see, e.g., Dette, 1995). But it
is stressed that the optimal allocation for such models will almost
invariably involve more than two x-levels.

The simplest linear case, however, can be used to make a rough
assessment of the required sample size. The optimal design with
observations split between xL and xU essentially means that at
both points the mean needs to be estimated. If we denote these
means by μL and μU, the linear slope is given by γ = (μU− μL)/
(xU− xL), showing that estimating the slope is indeed equivalent
to comparing the two means. This, in turn, suggests that we
can use the methods in Section ‘Comparing two means’ to deter-
mine the sample size. We just need to quantify the relevant
change in the response from xL to xU, given by δ = μU− μL.

With many nonlinear models, more than two x-levels will be
needed, and the definition of a relative effect may be more diffi-
cult. Often, parts of the expected linear response can be well
approximated by linear regression, and relevant changes defined
by parts. Therefore, consideration of the simplest linear case
may be sufficient to determine a suitable number of observations
per x-level. It may also be considered that higher-order polyno-
mials (quadratic or cubic) can be estimated based on orthogonal
polynomial contrasts (Dean and Voss, 1999, p. 261), which also

Table 11. Lying times (min day−1) of 13 cows indoors and outdoors

Cow

Lying time (min day−1)

Indoors Outdoors Difference (dj)

6_Eva_158 745 614 131

14_Fiury_951 678 561 117

18_Olympia_048 682 568 114

19_Gitti_184 738 551 187

26_Zirbel_507 819 861 −42

27_Mila_172 548 615 −67

33_Mirzl_031 688 768 −80

34_Distel_077 631 551 80

36_Olina_214 621 630 −9

37_Olga_179 612 586 26

39_Frieda_239 742 612 130

52_Alma_540 716 691 25

53_Gundi_025 605 494 111

Mean 678.8 623.2 55.6
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constitute a type of mean comparison, giving further support to
our portable approach.

Our considerations here do not imply that we would normally
recommend doing a linear regression with just two x-levels, unless
one is absolutely sure that the functional relationship will indeed be
linear. In order to be able to test the lack-of-fit of any regression
model (Dean and Voss, 1999, p. 249; Piepho and Edmondson,
2018), one or two extra x-levels will be needed. Also, for each par-
ameter in a nonlinear regression model to be estimated, one add-
itional x-level will be required. This leads to the following
rule-of-thumb for the number of x-levels: (i) Determine the num-
ber of parameters of the most complex nonlinear model you are
intending to fit (there may be several). (ii) That number plus
one or two should be the number of x-levels in the experiment.
The number of replications per x-level can then be determined
as in the previous section. More sophisticated approaches for allo-
cating samples to x-levels are, of course, possible, especially when
several x-variables are considered, and these may involve unequal
sample sizes between x-levels (Box and Draper, 2007). Also, the
x-levels are usually equally spaced, even though depending on
the assumed model unequal spacing may sometimes be preferable
(Huang et al., 2020). These more sophisticated approaches are not
considered here, however, because they are less portable.

Continuing with the idea that a rough assessment of sample size
is possible by considering the linear case and the comparison of the
response at xL and xU, and keeping in mind that usually we want to
test more than just the two extreme levels xL and xU, we may con-
sider the case of v treatments equally spaced on the x-axis.
Generally, the variance of the estimate of the linear slope γ equals
σ2, divided by the sum of squares of the x-levels. If we assume that
the v x-levels x1, x2,…, xv are equally spaced and each level is repli-
cated n times, the standard error of a slope (SES) equals:

SES =
����������������
s2

Dv

n(xU − xL)
2

√
(44)

where Dv = [12(v− 1)2]/[v(v2− 1)]. Values of Dv for typical values
of v are given in Table 12. An interesting limiting case occurs when
v = 2, for which Dv = 2. If, without loss of generality, we assume xL
= 0 and xU = 1, then SES equals SED in (23), confirming our sug-
gestion that considering a comparison of the means at xL and xU
provides a useful rough guide to sample size per treatment level for
linear regression. Further considering (44) and the values of Dv for
v > 2 in Table 12 confirms that this provides a conservative esti-
mate of sample size. Solving (44) for n yields the sample size
per treatment required to achieve a preset value of SES:

n = s2 Dv

SES2(xU − xL)
2 (45)

Similar derivations give the equations based on the allowable
deviation of the estimate of γ from its true value, tg, as:

n = s2
z21−a/2Dv

t2g(xU − xL)
2 (46)

and based on the EHW as:

n = s2
z21−a/2Dv

EHW2(xU − xL)
2 (47)

Finally, the sample size based on a t-test ofH0: γ = 0 v. HA: γ≠ 0 is:

n ≈ Dvs
2(z1−a/2 + z1−b)

2

g2(xU − xL)
2 (48)

where γ is the smallest absolute value of the slope that we consider
relevant. By way of analogy to procedures in the two previous sections
(1-2 and 1-2-3 rules), all of these rules could be converted into speci-
fications in terms of the required SES, but this is not detailed here for
brevity.

Example 7 (cont’d): In the experiment conducted by Ross and
Knodt (1948), the basal ratio contained 114 000 USP units of vita-
min A per daily allowance per heifer (USP is a unit used in the
United States to measure the mass of a vitamin or drug based
on its expected biological effects). This was supplemented with
129 400 USP units of vitamin A for the 14 heifers in the vitamin
A group. Now assume a follow-up experiment is planned in which
v = 5 equally spaced levels of supplementation between xL = 0 and
xU = 129 400 USP units are to be tested. We use σ2 = 2199 as
before. When illustrating Eqn (31) for a t-test to compare two
means, we had considered the difference of δ = 20 lb to be the
smallest relevant effect size. In our regression, this increase corre-
sponds to a linear slope of γ = (μU− μL)/(xU− xL) = δ/129 400 =
20/129 400. Also note that γ(xU− xL) = δ = 20 lb. Hence, using
(48) the sample size needed per treatment for linear regression
with v = 5 levels at α = 5% with a power of 90% is:

n ≈ Dvs
2(z1−a/2 + z1−b)

2

g2(xU − xL)
2 = 1.60× 2199× (1.96+ 1.28)2

202

= 92.42 ⇒ 93

This is somewhat smaller than the sample size needed per
treatment for comparing two means, where we found n = 116.
The ratio of these two sample sizes, 93/116 ≈ 0.8, equals the
ratio of the values for Dv for v = 5 and v = 2 (Table 12), 1.60/
2.00 = 0.8, which is no coincidence. The example confirms our
assertion that sample size based on comparing two means pro-
vides a rough guide to sample size for linear regression based
on more than two x-levels.

Pseudoreplication

The number of replications in a randomized trial is given by the
number of experimental units to which treatment is independ-
ently and randomly allocated. In a field trial, the experimental

Table 12. Values of Dv (see near Eqn 44) for v = 2, 3, …, 8 treatment levels

v 2 3 4 5 6 7 8

Dv 2.00 2.00 1.80 1.60 1.43 1.29 1.17
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unit is the plot. In some cases, there may be multiple observations
per experimental unit so the number of observational units
exceeds that of experimental units. It is generally important to
bear in mind that observational units and experimental units do
not necessarily coincide (Bailey, 2009). If there are multiple obser-
vations per experimental unit, these are denoted as sub-samples
(Piepho, 1997; Welham et al., 2015, p. 47) or pseudo-replications
(Hurlbert, 1984; Davies and Gray, 2015).

There are two ways to properly analyse such data: (i) Compute
means per experimental unit and then subject these to ANOVA in
accordance with the randomization layout. (ii) Fit a mixed model
in accordance with the randomization layout that has two random
effects, one for experimental units and one for observational units.
In case the number of observations per experimental unit is con-
stant, both analyses will yield identical results, unless the variance
for experimental units is estimated to be zero under option (ii), in
which case option (i) is preferable for better Type I error control.
With an unequal number of observations per experimental unit,
option (ii) is to be preferred because it gives proper weights to
experimental units depending on the respective number of obser-
vational units (Piepho, 1997). In this section, we will restrict
attention to the equi-replicated case, which is also preferable in
terms of overall precision.

The sample size here has two components, i.e., the number
of experimental units (ne) and the number of observational
units per experimental unit (no). The latter number may be a
given, depending on the circumstances. Where no can be freely
chosen, its optimal value depends on the variance components
for two sources of variation, i.e. the variance between experimen-
tal units (s2

e ) and the variance between observational units within
the same experimental unit (s2

o). A linear model (LM) for the jth
observation on the ith experimental unit ( yij) can be written as:

yij = m+ ei + oij, (49)

where ei is the error of the ith experimental unit, having variance
s2
e , and oij is the observational error of yij, having variance s2

o. The
variance of a mean (VM) is:

var(�y††) = VM = s2
e

ne
+ s2

o

neno
(50)

where �y†† = (neno)
−1 ∑ne

i=1

∑no
j=1 yij is the mean. This equation

shows that increasing ne reduces the impact of both s2
e and s2

o,
whereas increasing no only reduces the impact of s2

o. Hence, an
additional experimental unit is worth more than an additional
observational unit. If ce is the operational cost for one experimen-
tal unit and co is the cost for one observational unit, both mea-
sured in the same units (e.g., in monetary terms or as working
time), the optimal number of observational units per experimen-
tal unit is given by (Snedecor and Cochran, 1989, p. 448):

no =
�����
ces2

o

cos2
e

√
. (51)

For given sample size ne, this minimizes the total cost C = nece
+ nenoco. Once the optimal no is determined, the required ne can
be determined using the methods in the previous two sections

(single mean, two means), setting ne = n and

s2 = s2
e +

s2
o

no
. (52)

We also note that for completely randomized designs or ran-
domized complete block designs or Latin square designs, the vari-
ance of a difference (VD) will be VD = 2 ×VM and the standard
error of a difference will be SED = ����

VD
√ = ��

2
√ × SEM, where

SEM = �����
VM

√
.

Example 13: A trial was conducted to assess the merit of four
different intermediate crops following the main crop oats. The
crops were tested with three different sowing methods, allocated
to main plots in four complete blocks. The five different inter-
mediate crops were allocated to the subplots. Cover by these inter-
mediate crops was assessed based on five randomly placed
counting frames (0.1 m2 each) per plot. One of the traits was
the visually estimated percentage of ground cover by the inter-
mediate crop. Inspection of the residuals indicated that an angular
transformation would stabilize the variance. For the transformed
data, the variance for the main plots was estimated to be zero. The
variance for subplots was 0.000318 and that for samples within
subplots was 0.00840.

For a future trial of the same kind, to be laid out as a rando-
mized complete block design, the optimal number of samples per
plot (no) is to be determined. For this purpose, we use values
s2
e = 0.000318 and s2

o = 0.00840, showing that the within-plot
variance dominates. Cost for plots and samples are not quantified
here. Instead, we try different feasible values for no as shown in
Table 13 and compute the associated value of σ2 as per (52).
With these variances, we determine the optimal sample size ne
using Eqn (31) with α = 5% and β = 20%. As we used a data trans-
formation, specification of δ is based on Eqn (42), where μ1 and
μ2 are coverages, expressed as proportions, reflecting the smallest
relevant difference at expected orders of magnitude for both pro-
portions. Here, we set μ1 = 0.1 and μ2 = 0.2.

If we use two samples per plot, we need four replicates. If we
use only a single sample per plot, seven replicates are needed.
Conversely, we may conclude that for a given trial with four repli-
cates, a sample size of no = 5 as used in the current trial is more
than required at the pre-specified level of power.

Example 14: In a field experiment with spring barley, the num-
ber of ears per two metres within rows is to be determined at the
start of ripening (BBCH stage 83; Bleiholder et al., 1989). The
experiment has eight treatments and ne = 4 replications, arranged
in complete blocks. The number of ears is determined by sam-
pling sections of two metre length within rows. A decision
needs to be taken on the spot as to the number no of sections
to be sampled per plot. To this end, initially two sections are

Table 13. Number of plots (ne) required as depending on number of samples
per plot (no) for α = 5%, β = 20%, μ1 = 0.1 and μ2 = 0.2 based on angular
transformation for intermediate crop experiment (Example 13)

no σ2 ne as per (31) ne rounded up

1 0.00872 6.80 7

2 0.00452 3.52 4

3 0.00312 2.43 3

4 0.00242 1.89 2

5 0.00200 1.56 2
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sampled per plot and the data analysed to estimate the variance
components for plots and sections within plots. The data is
given in Table 14. The response is a count but inspection of
residual plots (Kozak and Piepho, 2018) indicated no serious
departure from the homogeneity of variance assumption. Thus,
the untransformed data were analysed using a linear mixed
model (LMM) with fixed effect for treatments and replicates
and random effects for plots and sections (residual effect). The
resulting variance component estimates, obtained using a mixed
model package on a laptop computer during the coffee break,
are ŝ2

e = 12.00 and ŝ2
o = 19.98. These estimates are now used

to plan the final sample size no for a t-test using Eqn (31).
Observing that the plot mean has the variance given in (52), we
plug this equation into (31). Solving for no yields:

no ≈ s2
o

ned
2

2(z1−a/2 + z1−b)
2 − s2

e

( )−1

(53)

It is important to note that this equation can return a negative
value for no. If this happens, the number of replications (ne),
which is a fixed quantity for an ongoing field experiment, is too
small to achieve the desired precision. By way of illustration,
assume that we want to plan for a t-test at α = 5%, a power of
90% and a relevant difference of δ = 5 ears per section. The result-
ing approximate sample size is:

no ≈ 19.98× 4× 52

2(1.96+ 1.28)2
− 12.00

( )−1

= −2.76

A negative sample size is not feasible, of course. It can be
shown algebraically that the reason for this result is that ne = 4
are too few replications to achieve the required precision; even a
very large number of sections (no) would not achieve this, because
as per Eqn (52) the variance s2 ≈ s2

e = 12.00, which is too large.
In the next experiment of this kind, it will therefore be prudent to
increase the number of replications (ne). To illustrate further, con-
sider the less ambitious choice of δ = 10 ears per section. Using
Eqn (53), this yields no = 2.84⇒ 3.

Example 15: A long-term three-factorial experiment is con-
ducted with the factors tillage, fertilization and biodynamic pre-
parations. The experimental design is a strip-split plot design
with four replicates and eight treatments. The total number of

plots is 32 with a size of 12 × 12 m2 each. In 2021 spelt was
grown, which started to lodge due to several heavy rain events.
After a visual assessment of the lodging, it appeared that there
was a significant effect of biodynamic preparations on the lodging
resistance. Therefore, the stability of the plants was examined
more closely. The specific stem weight (in mg per 10 cm stem)
and circumference (in mm) were selected as parameters for stabil-
ity according to Zuber et al. (1999). Forty stems per plot were cho-
sen randomly and harvested by hand. Both traits were measured
on each stem. In addition, no = 2 quadrats of 50 × 50 cm2 each
were assessed on each plot for average plant height (cm) and
number of culms. The data were analysed using a LMM with ran-
dom effects for plots (ei) and stems within plots (oij) and fixed
effects for treatments and blocks. This model is used in order
to obtain variance components for a planned design to be laid
out in randomized complete blocks. The variance components
for all four traits are reported in Table 15.

We first consider the optimal allocation using Eqn (51). The
variable costs per sample (co) range between 0.05 and 0.25 € for
the four traits (Table 15), while the fixed costs per plot and
year (without examinations of samples) are estimated at about
300 €. To illustrate the calculation for stem circumference, we
use co = 0.10 € and ce = 300 €, yielding the optimal allocation:

no =
�����
ces2

o

cos2
e

√
=

���������������
300× 2.4979
0.10× 0.1671

√
= 211.77 ⇒ 212.

This optimal allocation, and also that for the other three traits
(Table 15), are considerably larger than the ones used in the trial,
suggesting that an increase of sample size no would be worthwhile.
However, the optimal allocations seem unrealistically high. This is
mainly a result of the minute cost per sample (co), compared to
the fixed cost per plot (ce). Moreover, the optimal allocation
assumes that we are free in choosing the number of plots (ne),
but in the current trial this is a given. Nevertheless, the optimal
allocation is still instructive, tentatively pointing in the direction
of higher sample size per plot for all traits.

The effect of increasing no and ne on the SED is shown in Figs
1–4. The set of values for no always starts with the one used in the
current trial and ends with the optimal allocation. For traits hav-
ing a very large variance for samples (s2

o) compared to the vari-
ance for plots (s2

e ), i.e. stem weight and circumference,

Table 14. Number of ears per section within rows (2 metres) (Example 14)

Treatment

Block 1 2 3 4 5 6 7 8

1 45 48 32 31 35 72 51 45

47 39 36 45 37 66 49 38

2 51 31 45 49 38 63 53 43

45 42 56 47 42 58 62 37

3 40 37 46 38 40 70 55 54

47 45 51 43 42 65 58 51

4 47 38 54 44 45 62 52 51

42 41 48 50 52 64 56 43
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increasing sample size no for fixed plot numbers (ne) has the most
notable effect.

The analyses so far have provided some insights, but have not
settled the question of optimal sample size. We may consider two
specific questions: (i) Was the chosen sample size no sufficient for
the current trial, where ne = 4? (ii) What are the best numbers of
plots (ne) and samples per plot (no) for a future trial? These are
two different questions, and the answer in each case depends
on the precision requirement. We will consider both questions
in turn, using one trait at a time. For stem circumference, the
smallest difference considered relevant is taken to be δ = 1mm.
For no = 40 as used in the current trial, the variance of a plot
mean equals:

s2 = s2
e +

s2
o

no
= 0.1671+ 2.4979

40
= 0.2295

To detect a difference of δ = 1mm at α = 5% with a power of
80%, we need:

ne ≈ 2× 0.2295× (1.96+ 0.84)2

12
= 3.60 ⇒ 4

plots per treatment (Eqn 31), which is the number of plots in the

current trial. Conversely, using Eqn (53), we find that for a given
number of ne = 4 plots:

no ≈ s2
o

ned
2

2(z1−a/2 + z1−b)
2 − s2

e

( )−1

= 2.4979× 4× 12

2(1.96+ 0.84)2
− 0.1971

( )−1

= 28.49 ⇒ 29

samples would be needed, which is less than the number in the
current trial, so there is scope for reducing sample size a bit for
this trait.

Turning to the second question, we use the optimal allocation
no = 212, for which:

s2 = s2
e +

s2
o

no
= 0.1671+ 2.4979

212
= 0.1789

Here, we would only need:

ne ≈ 2× 0.1789× (1.96+ 0.84)2

12
= 2.81 ⇒ 3

Table 15. Variance component estimates (obtained by residual maximum likelihood) and treatment mean estimates (Example 15)

Trait s2
e s2

o

Range of treatment
means in trial

Cost per sample
co (€)

Optimal allocation for no
(Eqn 51)

Stem circumference (mm) 0.1671 2.4979 11.8 − 13.1 0.10 212

Stem weight (mg) 7.4258 1116.62 96.6− 116.6 0.10 672

Plant height (cm) 68.19 39.13 132 − 152 0.05 59

Culm number per 50 × 50 cm2 123.53 106.49 54− 83 0.25 33

Fixed cost per plot: ce = 300 €.

Fig. 1. Colour online. Plot of SED versus ne for no = 40, 80, 120, 160, 212. Trait: Stem
circumference.

Fig. 2. Colour online. Plot of SED versus ne for no = 40, 150, 300, 450, 672. Trait: Stem
weight.
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plots per treatment. If in consideration of other traits, however, we
decide to stick with ne = 4 plots, we would need to use the sample
size no = 29 found above.

Next, consider the trait stem weight. The individual specific
stem weights were measured here so the two variance components
for plots and samples could be estimated. Otherwise, for statistical
analysis comparing treatments, we only need the plot means. This
suggests that the 10 cm stem sections harvested for a plot can be
pooled and the bulk weight determined and divided by the num-
ber of stems, thus reducing co and facilitating an increase in no.
The fact that the sample variance is very much larger than the
plot variance suggests that a large number of samples per plot
is indeed very advantageous, and the plot in Fig. 2 also bears
this out, considering the marked drop in SED when increasing
no from 40 to 150. If δ = 10 mg is considered as the smallest

relevant difference, then ne = 6 plots per treatment are required
to achieve a power of 80% at α = 5% when no = 40. By compari-
son, when no = 70 the required plot number is no = 4, and when
no = 100, only ne = 3 plots are needed.

To conclude the example, we briefly consider the remaining
two traits. For plant height, δ = 10 cm may be considered the
smallest relevant difference. Applying Eqn (53) yields a negative
value for no, indicating that the number of ne = 4 plots is not suf-
ficient to detect such a difference. Hence, we determine the vari-
ance of a plot mean with the optimal allocation no = 59 as σ2 =
68.85 and find the necessary number of plots per treatment
from (31) as ne = 11 (α = 5%, power = 80%). This is much larger
than the number of plots usually used, and we may not be pre-
pared to increase the trial to this size. The calculations indicate,
however, that with a smaller plot number we cannot expect suffi-
cient precision for this trait. To improve precision (reduce s2

o),
one could also consider estimating individual stem heights rather
than that of a collection of plants on a 50 × 50 cm2 sub-plot.
Measuring the height of 30 or 40 individual stems per plot
seems feasible. For culm number, we may use δ = 10 as the smal-
lest relevant difference (α = 5%, power = 80%). As before, Eqn
(53) shows that ne = 4 plots is not a sufficient number of replica-
tions. Applying the optimal allocation yields σ2 = 126.76, and
using this in (31) yields ne = 20 plots, which is clearly beyond feas-
ible limits, indicating that it will not be possible to detect relevant
treatment differences for this trait. Again, it may be worth devis-
ing an improved method for assessing this trait at the plot level.

Series of trials

Several sites
Series of trials have a long history, and in agriculture, perhaps the
most prominent use case is variety of trials (Yates and Cochran,
1938). Consider a set of variety trials conducted at several sites
and each laid out in randomized complete blocks. The purpose
is to assess the mean performance of the tested varieties in a target
population of environments (Atlin et al., 2000), and the sites used
to conduct the trials are thought to be representative of this popu-
lation. Hence, sites are modelled as a random factor and the fol-
lowing LMM is used for analysis:

yijk = m+ gi + sj + (gs)ij + b jk + eijk (54)

where μ is an intercept, gi is the main effect of the ith genotype, sj
is the main effect of the jth site, (gs)ij is the interaction of the ith
genotype and the jth site, bjk is the effect of the kth replicate at the
jth site, and eijk is the plot error. Assuming that the data is entirely
balanced and all effects indexed by sites are random with constant
variance, the variance of a difference (VD) of two genotype means
(μ + gi) is given by (Talbot, 1984):

VD = 2
s2
gs

ns
+ s2

e

nsnr

( )
(55)

where s2
gs is the genotype-by-site (genotype-by-environment)

interaction variance, s2
e is the plot error variance, ns is the number

of sites and nr is the number of replicates per site. The SED is then
given by SED = ����

VD
√

. Notice the similarity of the expression in
brackets in Eqn (55) with the variance given in Eqn (50), which
is no coincidence. In fact, we can exploit this analogy to find
the optimal number of replications per site, provided that variableFig. 4. Colour online. Plot of SED versus ne for no = 2, 5, 15, 50, 72. Trait: Culm number.

Fig. 3. Colour online. Plot of SED versus ne for no = 2, 5, 10, 20, 59. Trait: Plant height.
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costs can be obtained for each additional plot (cr) and for each
additional trial site (cs). Then the optimal number of replications
per site is given by (Snedecor and Cochran, 1989, p. 448):

nr =
������
css2

e

crs2
gs

√
. (56)

Either with this number of replications per site, or the number
of replications determined by other considerations, the required
number of sites ns can be determined using the methods for
two means in the third section, setting ns = n and:

s2 = s2
gs +

s2
e

nr
. (57)

If cost plays no crucial role, returning to Eqn (55), it may be
observed that for a given total number of plots, nrns, VD would
be maximized by setting nr = 1 and thus maximizing the number
of sites, ns. It must be borne in mind, however, that with one rep-
lication only it is impossible to assess the precision of an individ-
ual trial or identify outliers based on an analysis of residuals.

We also note the close links of VD in Eqn (55) with broad-
sense heritability, which is often used by breeders to assess the
efficiency of their trialling system (Atlin et al., 2000). Assuming
that genotypic main effects gi have variance s2

g , this is given by
(Piepho and Möhring, 2007):

H2 = s2
g

s2
g + (1/2)VD

(58)

This equation may appear a bit unusual but is, in fact, easily
seen to be equivalent to the common equation for broad-sense
heritability (Nyquist, 1991):

H2 = s2
g

s2
g + s2

gs/ns + s2
e/(nsnr)

(59)

The main advantage of (58) is that it is amenable to straight-
forward generalization to all kinds of departures from the simple
assumptions made here, including heterogeneity of variance,
incomplete block designs, unbalanced data, or spatial analysis
(Piepho and Möhring, 2007). We are making this link with her-
itability here to point out that maximizing H2 for given s2

g is
much the same thing as minimizing VD or SED. The simple
Eqn (59) can be used with pre-determined value of snr to yield
a portable expression for ns as a function of the desired value of
H2:

ns =
s2
g

s2

H2

1−H2
(60)

where σ2 is as given in (57). This kind of equation was considered
by Yan (2021), who further suggested to generally require H2 =
0.75, in which case (60) simplifies to ns = 3s2

g/s
2. As convenient

as this may seem, we think this latter requirement for H2 is taking
the idea of portability one step too far, as the desirable and achiev-
able level of H2 is usually quite context-specific and, among other
things, depends on the trait and the stage of the breeding
programme.

Several sites crossed with years
A second important case occurs when the trials are also replicated
across years at the same sites. In this case, again assuming
balanced data, the VD in (52) extends to (Talbot, 1984; Casler,
2015):

VD = 2
s2
gs

ns
+ s2

gy

ny
+ s2

gsy

nsny
+ s2

e

nsnynr

( )
(61)

where s2
gy is the genotype-by-year interaction variance, s2

gsy is the
genotype-by-site-by-year interaction variance, and ny is the num-
ber of years. The optimal allocation problem now involves three
variables, nr, ns and ny, which is a bit more complex at first
sight. In practice, however, the number of years, ny, is usually
fixed, or only has very few options, so we can regard this as a
given in most applications. In this case, the term in (61) involving
s2
gy is a constant and does not affect the optimization problem. In

fact, it is sufficient to consider the same optimization as in Eqn
(56) using s̃2

gs = s2
gs + n−1

y s2
gsy and s̃2

e = n−1
y s2

e in place of s2
gs

and s2
e , respectively.

It is also worth stressing that ny is typically smaller than ns,
resulting from the fact that it is more difficult to add more
years than to add more sites. For the same reason, there is some-
times a suggestion to replace years by sites. Such suggestions are
unhelpful, however, when the genotype-year variance is non-
negligible. This is because the only way to reduce its effect on
VD is to increase ny as is apparent from Eqn (61).

Example 16: Post-registration variety trials conducted in the
German federal state of Mecklenburg-Vorpommern typically
comprise 25–30 varieties and fall into two broad categories,
depending on the crop: (i) single-factor experiments with variety
(genotype) as the only treatment factor, and (ii) two-factor experi-
ments with management intensity as a second factor. Trials in cat-
egory (i) usually have four replications, sometimes three, whereas
trials in category (ii) typically have two replications, sometimes
three. We here consider the design for a single-factor scenario.
Variance components for yield (× 10−1 t/ha) were obtained
from regional wheat variety trials (Table 16). The trials were two-
factorial but these were analysed by intensity level, amounting to a
single-factor analysis as appropriate for our purpose here. These
analyses are based on a two-stage approach, in which variety
means and associated standard errors (SEM) are computed in
the first stage and then are submitted to a weighted mixed
model analysis in which the inverse of the squared standard errors
are used as weights (Piepho and Michel, 2000). This approach
accounts for the heterogeneity of error variances between trials.
Here, for the purpose of planning trials, we are assuming a con-
stant variance as an approximation and that designs will be laid
out in complete blocks.

Using the variance components in Table 16, Fig. 5 shows plots
of SED for different values of ny (1, 2, 3, 4, 5), ns (1, 3, 5, 7, 9), and
nr (1, 2, 3, 4). The choice nr = 2 is a frequently used number of
replications used in a series of variety trials, whereas nr = 4 is
less common. The figures show two horizontal reference lines,
one at SED = 4 (× 10−1 t/ha) and one at SED = 2 (× 10−1 t/ha).
These two lines are based on the researchers’ assessment and
delineate the range of precision they require, first to make tenta-
tive recommendations and then making final recommendations at
a later stage. The results show that the most crucial factor is the
number of years ny. With only one year of testing, at least nine
sites are required to achieve SED = 4, the number of replications
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having relatively little impact. By comparison, with two years of
testing, about the same precision of SED = 4, considered appropri-
ate for preliminary recommendations, can already be achieved
with three or four sites. Sufficient precision for final recommen-
dations at SED = 2 is only achieved after four to five years with
more than five sites.

We have assumed here that the error variance is constant and
does not change with the number of replications. In this regard, it
is worth adding that the current practice in the post-registration
trials conducted by the federal state is to use row-column designs,
where complete blocks can be formed by groups of rows or col-
umns, or by single rows or columns (Piepho et al., 2021). A stand-
ard analysis according to a randomized complete block design can
always be used if the additional row or column blocking proves
ineffective. A model selection routine has been implemented
that checks this via information criteria. In addition, spatial
covariance structures are fitted, and this add-on, as well as the
incomplete column blocks often improve precision. This is par-
ticularly true of larger trials showing marked irregular spatial het-
erogeneity throughout the field, and the chances of an improved
fit with such more complex models increase with the number of
replications. Even though this has not yet been comprehensively
evaluated, in practice, there is a tendency for the SED of individ-
ual trials to drop with increased nr at a somewhat higher rate than
expected from the simple Eqn (23). Thus, our usage of the simple
Eqn (61) constitutes an approximation. We also stress the import-
ance of having nr > 1 so that individual trials can be analysed in
their own right, including critical scrutiny of outliers, and trials
can be weighted by their precision in an analysis across environ-
ments (Piepho and Michel, 2000).

Several sites nested within years
A third case occurs when the sites change completely each year,
meaning that sites are nested within years. In this case, the two-
way interaction variance s2

gs is confounded with s2
gsy and so can-

not be separately estimated. The VD becomes:

VD = 2
s2
gy

ny
+ s2

gs + s2
gsy

nsny
+ s2

e

nsnynr

( )
(62)

where ns is the number of sites used in each year, so the total
number of sites used in ny years is nsny. The most important
point here is that this VD will always be smaller than or equal
to that in (61) for the same values of nr, ns and ny and the
same values of the variance components, showing that a change
of sites each year is generally desirable in terms of efficiency.

The advantage is most pronounced when s2
gs is large relative to

the other variance components. Again, the term in (62) involving
s2
gy is a constant and it is sufficient to consider the same

optimization as before this time using s̃2
gs = n−1

y (s2
gs + s2

gsy) and
s̃2
e = n−1

y s2
e in place of s2

gs and s2
e , respectively.

Example 16 (cont’d): Using the variance components in Table 16
with nr = 2, ns = 7, and ny = 5, we find SED = 2.03 (× 10−1 t/ha) for
the crossed design (Eqn 61) and SED = 1.89 (× 10−1 t/ha) for the
nested design, demonstrating the advantage of the latter. Whereas
Eqns (61) and (62) represent the two competing design options
of sites crossed with, or nested within years in pure form, in practice
there is often a mix between both, with some sites used in more
than one year and others used only in single years within a series
of trials. This is especially true when transitioning from a design
where all sites are used in all years, to a trialling system with new
sites being added each year and the number of sites increasing
towards later years, as is the current practice with post-registration
trials in Mecklenburg-Vorpommern. Explicit equations evaluating
the design efficiency are more complex (Laidig and Utz, 1992),
and a computer-based approach as discussed in the next section
is more convenient.

Using a linear model package to compute precision and
power

All examples considered so far were tackled by easy-to-compute
(portable) equations. In this section, we briefly review generaliza-
tions of the methods considered so far that allow determining
sample size, precision and power for any design based on a LM
even when simple explicit equations are not available, e.g. when
using designs with incomplete blocks rather than complete
blocks. As this more general approach is not usually amenable
to manual computation, it is certainly not as portable as the
approaches reviewed so far and so will not be considered in detail
here. However, the underlying principles are the same, and with a
good computer and statistical package computation is straightfor-
ward. Detailed illustrations will be found in the cited references
and in a companion paper, which is under preparation.

Numerical approximations

In all cases considered so far, simple explicit equations were avail-
able for the SED as a function of n, which was the basis for obtain-
ing explicit equations for the necessary sample size. Quite often,
however, the model or the structure of the design may mean
that such convenient expressions for sample size are not available.
In these cases, one can always resort to the matrix formulation of
the LM at hand and corresponding matrix expressions for SED.
We will not consider these matrix expressions here and refer
the interested readers to pertinent textbooks and papers
(McLean et al., 1991; Searle et al., 1992). Suffice it to say that
for LM, having the residual error term as the only random effect,
exact calculations are always possible, whereas with LMM some
kind of approximation is usually needed (Kenward and Roger,
1997). We skip these details because the computation can be
left to a good mixed model package that has a facility to fix vari-
ance components at pre-specified values. The main task for the
researcher then is to set up a dataset for the contemplated design
and fit the model corresponding to the design at hand to a
dummy response variable. The structure of the dataset must be
the exact same as would be used for analysis of data obtained
in the planned experiment. Then for pre-specified variance

Table 16. Variance component estimates (obtained by residual maximum
likelihood) for yield ( × 10−2 t2/ha2) in post-registration wheat variety trials in
Mecklenburg-Vorpommern (Landesforschungsanstalt für Landwirtschaft und
Fischerei)

Variance component Estimate ( × 10−2 t2/ha2)

s2
gs 2.36

s2
gy 6.27

s2
gsy 9.21

s2
e
a 13.78

aTo obtain an estimate of the error variance s2
e , we computed the average SEM, squared this

and multiplied by 2.5, the average number of replications across all trials.
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component values the package will compute the SED for the com-
parisons or contrasts of interest (Stroup, 2002; Casler, 2015). The
main point to appreciate here is that the SED really only depends
on the design and the variance components, but not on the actual
data. Thus, we can set the dummy response in our dataset to any
numerical value. This is what makes the approach feasible at the
design stage. In the special cases considered in the preceding sec-
tions, this package-based approach will return exactly the same
SED as the explicit equations given in this paper. So we are still
doing the same thing as before but just with some more flexibility
as regards the model, the structure of the data and the design.

The only slight inconvenience of this whole approach is that it
does not give us the optimal sample size in one go. Instead, it
returns the SED for a given design, which among other choices
entails a specific choice of sample size. So what we need to do
is try designs of increasing size until we find one with approxi-
mately the desired SED.

We may also consider planning sample size with a significance
test in mind. Here, we need to compute the power, 1− β, for
designs with increasing sample size until we achieve the desired
power (Stroup, 2002). As before, we will focus on the comparison
of two means (μ1 and μ2), which will always be done by a t-test.
Hence, the exact power calculation involves the central and non-
central t-distributions of the test statistic under the null and alter-
native hypotheses, whereas the approximate calculation uses the
standard normal distribution to approximate both distributions.
Here, we will first consider the normal approximation and then
look at the exact solution. The test statistic is:

t = m̂1 − m̂2

SED
(63)

where m̂1 and m̂2 are the two mean estimates under the fitted
LMM. Equation (63) assumes that the SED is known, in which

Fig. 5. Colour online. Standard error of a difference (SED; in 10−1 t/ha) as per (61) with SED = ���
VD

√
for variance components s2

gs , s
2
gy , s

2
gsy , and s2

e as shown in
Table 16 for different values of ny (1, 2, 3, 4, 5) = number of years, ns (1, 3, 5, 7, 9) = number of sites, and nr (1, 2, 3, 4) = number of replicates. Reference lines on
ordinate at SED = 4 (× 10−1 t/ha) (desirable for early assessment) and SED = 2 (× 10−1 t/ha) (desirable for recommendations).
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case t has a normal distribution. When SED is replaced by an esti-
mate, this turns into a t-distribution. Note that this reduces to
(30) for the simple t-test, which involves arithmetic means of
the data in each group, whereas the model-based mean estimates
here can take different forms and do not usually have such simple
algebraic expressions. Again, we can rely entirely on the package
to do the computations for us.

Under the null hypothesis H0, t in (63) has an approximate
standard normal distribution with unit variance and mean zero.
Hence, we will reject the null hypothesis when |t| > z1−α/2 as
usual. Under the alternative hypothesis HA, when the difference
between the means equals δ = μ1− μ2, t has an approximate normal
distribution with unit variance and mean δ/SED. All we need to do
then is work out the probability under HA that |t| > z1−α/2, i.e. either
t <−z1−α/2 or t > z1−α/2. This probability is the power 1− β for the
given design. For this calculation, we just need a function for the
cumulative distribution function of the standard normal, denoted
as Φ(.). Then the two required rejection probabilities are:

P(t , −z1−a/2|HA) = F(−z1−a/2 − d/SED) and

P(t . z1−a/2|HA) = 1−F(z1−a/2 − d/SED)

Adding up, the power is:

Power = F(−z1−a/2 − d/SED)+ 1−F(z1−a/2 − d/SED) (64)

This approximate calculation is entirely general and works for
any LMM. All we need to do is get the SED from our package
as described above and plug it into (64). The more exact calcula-
tion replaces z1−α/2 with t1−α/2, the critical value of a central
t-distribution with appropriate residual degrees of freedom
(Welham et al., 2015, p. 248). Likewise, the normal distribution
under HA is replaced by the noncentral t-distribution with appro-
priate degrees of freedom and noncentrality parameter δ/SED.
The appropriate degrees of freedom will be the residual degrees
of freedom for LM, in which case the power calculation is indeed
exact, whereas for LMM the degrees of freedom often have to be
approximated (Kenward and Roger, 1997), meaning that the
whole power calculation will still be approximate. A more accurate
power calculation, properly dealing also with the degrees-of-
freedom issue, can be conveniently obtained by simulation, and
this will be discussed in the next sub-section. Here, we restrict
attention to the normal approximation, which is in line with all
the portable equations given so far, and which will be sufficient
for most practical purposes, unless the residual degrees of freedom
are very small.

The general approach just described may also be turned into a
generalization of the simple rule given in Eqn (38), where we pre-
specify the desired power. Even the simple 1-2-3 rule of thumb
can still be applied, i.e. make sure SED is no greater than |δ|/3
when desiring a power of 85% at α = 5%. Similarly, if the focus
is on the estimation of effect size, make sure the SED is no greater
than td/2 or EHW/2 (Eqn 37). These rules are portable indeed, as
they work for any LMM. Also, they obviate the need to explicitly
calculate the power but only require evaluating the SED for can-
didate designs.

Simulating power and precision

The analytical approach described in the previous sub-section
often works fine for LMM when only the SED is required. By

contrast, EHW and power calculations require appropriate
denominator degrees of freedom, and these may need to be
approximated depending on the design and model (Kenward
and Roger, 1997). Generally, in small samples, the plug-in
approach of the previous sub-section may not be sufficiently
accurate. In such settings, a simulation approach may be preferred
(Gbur et al., 2012; Green and MacLeod, 2015). Also, generalized
LMMs involve an extra layer of approximation because the likeli-
hood needs to be approximated, and all inference (significance
tests, confidence intervals) is only approximate as well
(Wolfinger and O’Connell, 1993; Bolker et al., 2009; Stroup,
2013). Thus, simulation is often the method of choice. An import-
ant added benefit of simulation is that it allows assessing the val-
idity of nominal Type I error rates for significance tests and
confidence intervals, which may be worth checking in their own
right, especially when one or several random effects are associated
with only limited degrees of freedom.

The simulation approach works similar to the analytical
approach in that a data frame with the same structure as the con-
templated design is generated. Next, a large number of datasets
with this structure are simulated according to the same model
that will be used for analysing the data. The intended analysis is
then applied to all simulated datasets and measures of precision
(SED, EHW) and power (significance) are computed. These mea-
sures (means, quantiles, etc.) may then be summarized across all
simulated datasets. For assessing the SED, we may compute the
root mean squared deviation of the estimated and true difference.
Thus, in each simulation run (i.e. for each simulated dataset), we
compute (d− d̂)2 and then these squared deviations are averaged
across simulation runs. In general, the mean squared deviation
would also comprise bias, but from the properties of generalized
least squares estimation, we may assume that the estimators are
unbiased for LMM (Kackar and Harville, 1981). Thus, the root
mean squared deviation assesses the SED. This estimate of SED
can be compared to the model-based estimates of SED.
Moreover, for each simulation run, we may obtain the HW of a
confidence interval and average this over the simulation runs.
Power may be assessed by simply computing the proportion of
simulation runs in which the simulated test rejected the null
hypothesis at the nominal significance level α. Since simulations
are based on independent datasets, a confidence interval for the
power of the test can be computed based on a binomial
distribution.

Discussion

Sample size, or the number of replications, concerns only one of
the three basic principles of experimental design, otherwise
known as Fisher’s 3 R’s (Preece, 1990), i.e., replication, random-
ization and (‘r’) blocking (local control). Thus, having determined
a suitable sample size does not settle all design issues. In fact,
good blocking may reduce the error variance σ2, thus allowing
a smaller sample size to be used than under complete randomiza-
tion. When the design involves incomplete blocks, specialized
methods can be used to generate good designs for an increasing
series of replication numbers (e.g. Edmondson, 2020; Piepho
et al., 2021) and then the methods in the previous section can
be used to evaluate the precision and power.

Depending on the textbook one picks up on sample size, one
may end up with different formulae. This can be confusing both
to the consulting statistician and the research scientist. One
potential source of confusion is that equations are often presented
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in isolation from alternative approaches. This tutorial has pro-
vided an overview of different approaches and elucidated the
close interconnections between them. The key quantity that con-
nects all procedures is the standard error of an effect size estimate.
Most of the time, the effect size of interest will be a difference of
means, possible on a transformed scale, in which case the focus is
on the SED. The portable procedures we have reviewed provide
approximate estimates of sample size, and we believe that this is
usually sufficient. Our review does not claim any degree of com-
pleteness. While we have covered basic procedures for one or two
means quite comprehensively, our treatment of other scenarios
was necessarily selective and reflects our own backgrounds. The
general procedures reviewed in the previous section can help prac-
titioners to think effectively and decide about sample size in their
own research or in the statistical consulting they provide, even if
the problem at hand initially does not seem straightforward or
covered by any canned solutions. A detailed exemplification of
these computer-based approaches will be provided in a compan-
ion paper.

In the previous section, we also focused on the SED and pair-
wise comparisons, as in the sections before. The proposal of
Stroup (2002) is focused on significance testing using the F-test.
This is equivalent to a t-test when the F-statistic has a single
degree of freedom for the linear hypothesis being tested, as is
the case with a pairwise comparison. In keeping with our focus
on pairwise comparisons throughout this paper, we have fully
relied on that equivalence. The examples also showed that the
same approach can easily be used to assess SED, and that applying
the 1-2-3 rule to the SED of contending designs provides a con-
venient and simple approach to designing a trial.

Our treatment of significance tests has assumed that the test
will be two-sided, i.e., there is a point null hypothesis such as
H0: δ = 0 and the alternative covers both sides of H0, i.e. δ > 0
and δ < 0. It is emphasized here, however, that in some applica-
tions it may be more appropriate to consider one-sided null
hypotheses of the form H0: δ⩽ 0, with corresponding alternative
hypothesis HA: δ > 0. For example, in experiments with animals, it
may only be of interest to demonstrate that a new treatment is
superior to a control. In the same vein, one may also construct
one-sided instead of two-sided confidence intervals. The practical
consequence of a one-sided significance test or confidence inter-
val is that for the same level α the required sample size is lower
than for the corresponding two-sided procedure. This has
prompted some ethics committees and other official bodies
deciding on the approval of experiments with animals to make
the one-sided procedure the default assumption, requiring the
experimenter to provide convincing arguments in case a two-
sided procedure is proposed. Our view is that in most applications
both sides of departure from a point null hypothesis are relevant,
even though the consequences may depend on the side. This is
why we have only considered two-sided tests or intervals. If
one decides that the procedure needs to be one-sided, then the
1− α/2 quantile of the standard normal distribution can be
replaced by the 1− α quantile in the relevant equations given in
this paper, with an associated drop in the necessary sample size.
For details see, e.g., Rasch et al. (2011).

Conclusion

Here is our portable take-home message in case estimated treat-
ment means are approximately normal, the 1-2-3 rule: Design
your sample size in terms of a suitable requirement for the

value of the standard error of the effect you are targeting. This
will usually be a SED because most experiments are comparative.
According to the 1-2-3 rule, there are three options for setting the
SED:

(1) You can define the required precision directly in terms of a
targeted value of SED itself.

(2) If you target a specific allowable deviation τδ of an estimator
or EHW of a confidence interval, set SED = τδ/2 or SED =
EHW/2. Conversely, based on a given value for the SED, it
may be stated that at α = 5% the EHW of a 95% confidence
interval is 2 × SED.

(3) If you are considering a significance test with the smallest
relevant effect size δ, set SED = δ/3. Conversely, based on a
given value for the SED, it may be stated that the smallest
relevant difference that can be detected with a power of
85% is 3 × SED.
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Appendix

Example 11:We need to point out that on the surface we have determined sample
size here based on the binary distribution for the transformed response of the
individual animals, using σ2 = 1/4. This is the limiting case of a binomial distri-
bution with m = 1. However, the approximate variance for the angular-
transformed binomial in (40), which is based on a Taylor-series expansion,
requires m≫ 1 (McCullagh and Nelder, 1989, p. 137). To justify our approach,
consider the following argument (also see Paulson and Wallis, 1947; cited in
Cochran and Cox, 1957, p. 27). The count of level A in a group may be regarded
as a single binomial count c for sample sizem. In this view, n = 1 for both groups,
and our task is to find the optimal binomial sample size m. So we may set n = 1
and σ2 = 1/(4m) in (31) with δ as given in (42). Solving this for m yields

m ≈ 2(1/4)(z1−a/2 + z1−b)
2

d2

justifying our use of Eqn (31) even for a binary variable.
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