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• Organic soil management increased soil
quality in agroforestry systems

• Zero-input and organic agroforestry sys-
tems enhanced soil microbial activity
compared to conventional monocropping.

• Fungal community composition changes
in response to organic management prac-
tice and agroforestry

• Distinct soil bacterial community compo-
sition especially between organic and con-
ventional systems

• Taxonomically diverse indicator species
are associated with organically managed
systems
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 Maintaining soil quality for agricultural production is a critical challenge, especially in the tropics. Due to the focus on
environmental performance and the provision of soil ecosystem services, organic farming and agroforestry systems are
proposed as alternative options to conventionalmonoculture farming. Soil processes underlying ecosystem services are
strongly mediated bymicrobes; thus, increased understanding of the soil microbiome is crucial for the development of
sustainable agricultural practices. Therefore, we measured and related soil quality indicators to bacterial and fungal
community structures in five cocoa production systems, managed either organically or conventionally for 12 years,
with varying crop diversity, frommonoculture to agroforestry. In addition, a successional agroforestry system was in-
cluded, which uses exclusively on-site pruning residues as soil inputs. Organic management increased soil organic car-
bon, nitrogen and labile carbon contents compared to conventional. Soil basal respiration and nitrogen mineralisation
rates were highest in the successional agroforestry system. Across the field sites, fungal richness exceeded bacterial
richness and fungal community composition was distinct between organic and conventional management, as well as
between agroforestry and monoculture. Bacterial community composition differed mainly between organic and con-
ventional management. Indicator species associatedwith organic management were taxonomicallymore diverse com-
pared to taxa associated with conventionally managed systems. In conclusion, our results highlight the importance of
organic management for maintaining soil quality in agroforestry systems for cocoa production.
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1. Introduction

Within the last century, agricultural production was intensified to sus-
tain the global population growth, and today agricultural activity has trans-
formed~40% of the earth's land surface (FAO, 2021; Kopittke et al., 2019).
Consequently, biosphere integrity and biochemical flows have exceeded
the planetary boundaries, and severe impacts on ecosystem functioning
have been predicted (Steffen et al., 2015). Therefore, it is a critical chal-
lenge to develop agricultural practices that reduce their toll on biodiversity
(Brondizio et al., 2019) and maintain ecosystem services provided by agri-
cultural landscapes, especially soils (Adhikari and Hartemink, 2016).

In this regard, Lehmann et al. (2020) emphasise the role of “soil health
as overarching principle that contributes to sustainability goals”. The con-
cept of soil health perceives soils as a living entity and is closely related to
the concept of soil quality, which is defined as the continued capacity of
soils to provide ecosystem services, such as sustaining biological productiv-
ity and regulation of elemental and water cycles (Lehmann et al., 2020).
Within the last decades, soil quality assessment was mainly based on chem-
ical and physical indicators (Lehmann et al., 2020). Thanks to a growing
focus on environmental health, biological soil indicators such as soil respi-
ration and nitrogenmineralisation (Bünemann et al., 2018) have gained in-
creasing attention. In recent years, the number of studies investigating soil
microbial communities via high throughput sequencing has grown, and
characterization of microbial community structure evolved as emerging
tool to complement biological assessments of soil quality (Fierer et al.,
2021). Although the relationship between soil microbial diversity and eco-
system functioning is still not well understood, there is growing evidence
that soil microbial diversity is an important biological resource at the
base of ecosystem functioning and must be considered in agricultural man-
agement decisions (Wagg et al., 2021).

Organic farming is discussed as one possible option formore sustainable
food production and aims at making optimal use of internal natural re-
sources and processes to secure productivitywhileminimising environmen-
tal impacts such as loss of biodiversity, nutrient leakage and soil
degradation (Seufert and Ramankutty, 2017). Despite lower yields, organic
farming increasingly gains shares in food production (Seufert et al., 2012;
Willer and Lernoud, 2017). Since synthetic fertilisers and pesticides are
not allowed in organic farming systems, crop production heavily relies on
soil fertility management via organic inputs and the inclusion of legumes
in the crop rotation (Mäder et al., 2002). Consequently, organic manage-
ment enhances topsoil carbon contents (García-Palacios et al., 2018;
Gattinger et al., 2012) and soil microbial abundance and activity (Lori
et al., 2017). While in temperate climates, the effect of organic farming
on soil microbial community structure has been demonstrated (e.g.
Hartmann et al., 2015), studies from the tropical region are still scarce
(Lori et al., 2017; Pajares et al., 2016).

The diversification of food production systems, e.g. through the inclu-
sion of perennial crops in agroforestry systems, aims to enhance environ-
mental and economic performance of agricultural systems and is
proposed as a multifunctional land-use strategy especially for the tropical
climates (Niether et al., 2020; Ramachandran Nair et al., 2010). Agrofor-
estry systems are supposed to enhance soil quality through root exudates
and enhanced root structures (Dollinger and Jose, 2018), but the accurate
determination of soil quality across agroforestry systems is inherently chal-
lenging due to spatial soil heterogeneities introduced by root structures of
tree crops and/or shade trees (Lorenz and Lal, 2014). Therefore, soil analy-
sis in agroforestry systems is often based onmultiple sampling locations de-
pendent on the distance to the tree crop (Cardinael et al., 2020).

While insights on the impact of organic farming on soil quality and soil
microbial diversity are accumulating under temperate climates, few studies
have addressed tropical climates. Moreover, it is still unclear whether or-
ganic farming in diversified agroforestry systems has a beneficial impact
on soil quality. Therefore, we used a long-term field trial investigating or-
ganic and conventional management of monocultures and diversified
cocoa production systems to assess soil quality and the underlying soil mi-
crobial community structure. We focused on biological soil quality
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indicators associated with organic matter mineralisation and hypothesised
that agroforestry and organic management in cocoa production systems
would: 1) enhance chemical and biological soil quality indicators, 2) result
in higher microbial diversity with distinct community structure, and 3) en-
hance the diversity of soil bacterial and fungal indicator species.

2. Materials and methods

2.1. Study site and experimental set up of the field trial

The system comparison trial in Bolivia is located in Sara Ana (15°27′
36.60″S and 67°28′20.65″W), in the Alto Beni region at an altitude of 380
m.a.s.l. at the eastern foothills of the Bolivian Andes. The site covers
~9 ha and soil types vary between lixisols and luvisols classes. Clay content
across the field site ranges from 17 to 35%, and the average initial organic
carbon (Corg) content of the field site was 1.5% (Schneidewind et al.,
2019). The climate is tropical humid with dry winters (1535 mm) and a
mean annual temperature of 26 °C. In 2007, a secondary forest was cleared
and the field trial was set up in a complete randomised block design with
four repetitions comparing five cocoa production systems. The cocoa pro-
duction systems include two monoculture systems, under organic (MONO
O) and conventional (MONO C) management. Furthermore, two agrofor-
estry systems under organic (AF O) and conventional management (AF
C) are included. Lastly, a highly diverse successional agroforestry system
without external input use (SAFS) is included. The plot size is 48 m × 48
m, with a net plot for data collection of 24 m× 24 m located in the center
of each plot (Fig. S1).

Cacao trees grow at a distance of 4 m × 4 m (36 cocoa trees in the net
plot, 625 trees ha−1). In the agroforestry systems bananas, fruit (e.g.
Theobroma grandiflorum), timber (e.g. Swietenia macrophylla), and legumi-
nous (e.g. Erythrina spp. and Inga spp.) trees grow in between cacao tree
lines. A complete list of trees grown in the AF system can be reviewed in
Schneider et al. (2016). In the SAFS, the same planting scheme for cocoa
trees was followed but trees from the natural succession were kept, and ad-
ditional seeds of trees and other crops were dispersed or planted. The total
density of shade trees was 243 trees ha−1 for AF O and AF C and about
1181 trees ha−1 for SAFS, respectively (Niether et al., 2018).

In conventionally managed plots, weeds were controlled using brush-
cutters and herbicides (mixed with adherents), with 4–5 applications per
year. AF C and MONO C received 150 and 300 kg synthetic fertiliser
(Blaukorn BASF, 12-8-16-3 N-P2O5-K2O-MgO) per ha and year, which
was applied around each cacao tree by spreading the fertilisers at a distance
of 0.25–1 m from each tree stem. In the organically managed plots, cacao
trees were fertilised with compost prepared with biomass of the surround-
ing area (e.g. banana stems and pruning residues), purchased sawdust and
chickenmanure. Each tree received 21 l of compost inMONOO, which cor-
responds to ~8 kg of compost ha−1 and year−1. Until 2016 the AF O sys-
tems received half the compost dose used in MONO O and was left
unfertilized thereafter. Additionally, in the organically managed plots, a le-
guminous perennial cover crop (Neonotonia wigthii) was planted at the be-
ginning of the trial to maintain soil cover and suppress weeds. In 2019,
Neonotonia wigthii was still present in MONO O but almost completely
vanished in the AF O system due to the development of the shade trees.
The successional agroforestry system did not receive any external fertiliser
input, but intensive pruning was regularly performed. In all production sys-
tems, pruning and crop residues were deposited at around 0.25–1 m dis-
tance to the stem of cacao trees together with the fertiliser and left for
decomposition. Plant protection in the conventional plots is based on syn-
thetic pesticides, while indirect measures and manual work are employed
in the organic systems. Detailed management of the field trial can be re-
viewed in Schneider et al. (2016) and Pérez-Neira et al. (2020).

2.2. Soil sampling procedure

Soil sampling took place during the dry season, the peak cacao harvest,
from the 28th until 31st of July 2019. After removing course organic
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residues from the soil surface, soil cores were taken with an auger to 0–10
cm depth. Accounting for the possible impact of fertilisers addition around
cacao trees and the impact of root structures of the shade trees in the agro-
forestry systems, separate soil samples were taken at 0.5 m (“under cacao”)
and 2 m (“between row”) distance to the cacao tree. Across the field plot,
composite soil samples from 20 and 16 soil cores were collected at 0.5 m
and 2 m distance to cacao trees, respectively. Soil samples were sieved to
5 mm and homogenised. For molecular biological analysis, a subsample
of around 50 g was oven-dried at 80 °C for 2 h as described in Pfeiffer
et al. (2017). By quickly removing soil moisture we aimed to preserve soil
microbial community structure during transport, as an uninterrupted cold
chain was not guaranteed. Soil samples for geochemical analysis and quan-
tification ofmicrobial activities were air-dried for 48 h. Packs of silica beads
were added during transport to Switzerland to avoid humidification of soil
samples. After arrival and before analysis, samples for molecular biological
and geochemical analyses were stored at−20 °C, and subsamples for bio-
logical activity analyses were stored at 4 °C.
2.3. Geochemical analysis

To determine Corg and total nitrogen (Ntot) contents, subsamples of the
air-dried soil were ground and homogenised. For each sample two times 1 g
was analysed via dry combustion method on a CN analyser (Elementar
Analysensysteme GmbH, Vario MAX Cube, Hanau, Germany) at 500 °C
and 950 °C to quantify inorganic and total C, respectively. Since inorganic
C was negligible across the field site, total C was assumed to be similar to
Corg. Soil pH was determined with a pH-Meter in an aqueous suspension
1:2,5 (w/v). Permanganate oxidisable carbon (PoxC) was extracted and
analysed following the principles described inWeil et al. (2003) with slight
modifications. Briefly, 2.5 g air-dried soil was weighed into a polyethylene
tube, amended with 2 ml of a 0.2 M K2MnO4 solution and shaken for 2 min
at 120 rpm. After an undisturbed reaction time of 8 min, 0.5 ml of the sus-
pension was transferred to 49.5 ml of demineralised water and absorbance
at 550 nmwasmeasured using a GENESYS 10S UV–VIS Spectrophotometer
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) as described in
Bongiorno et al. (2019).
2.4. Quantification of microbial activity

Before microbial activity measurements, air-dried soil samples were
rewetted to 40% water holding capacity and incubated at constant 25 °C
for 7 days. Aerobic C mineralisation was determined by incubation of soil
samples for 28 days in hermetically sealed microcosms and the capture of
CO2 in alkali acid trap (0.025 M NaOH) as described in von Arb et al.
(2020). Alkali traps were replaced after 1, 4, 7, 14 and 28 days. Soil basal
respiration was defined as the average Cmineralisation rate during the sec-
ond week of incubation (Haney et al., 2001). Aerobic N mineralisation was
determined by quantifyingmineral N contents (NH4

+-N and NO3
−-N) before

and after the incubation period via automated flow injection analysis
(Smartchem 450 Discrete Analyser, AMS France, Frepillon, FR). All incuba-
tions were performed with 15 g dry soil equivalents and technically repli-
cated four times.
2.5. Molecular biology

DNA was extracted with the “NucleoSpin 96 Soil” kit (Machery-Nagel,
Germany) according to the manufacturer's instructions. For each biological
replicate, two technical replicates (400 mg dried soil each) were individu-
ally extracted and pooled afterwards. DNA quantity was assessed using
Qubit system reagents (ThermoFisher Scientific, Waltham, USA), and rela-
tive fluorescent units were measured on a CFX96Touch Real-Time PCR De-
tection System (Bio-Rad, Switzerland). Dilution series of DNA extracts were
tested for inhibitor presence and, consequently, DNA extracts were diluted
1:10 before further downstream application.
3

2.5.1. Amplicon sequencing
DNA extracts were processed in a two-step polymerase chain reaction

(PCR) approach using fluidigm tagged primers targeting the 16S rRNA
(314F - CCTAYGGGDBGCWSCAG and 806R - GGACTACNVGGGTHTCTA
AT, modified by Frey et al. (2016)) and ITS2 genes (TS3ngs - CANCGAT
GAAGAACGYRG and ITS4ngs - CCTSCSCTTANTDATATGC (Tedersoo and
Lindahl, 2016)). The first PCR was performed in triplicates using a SYBR
green approach (Kapa SYBR Fast qPCR Kit Master Mix (2×) Universal;
Kapa Biosystems, Wilmington, MA, USA) on a CFX96 Touch Real-Time
PCR Detection System (Bio-Rad, Switzerland) (Table S1). PCR triplicates
of each sample were subsequently pooled and purified using a magnetic
bead solution (https://openwetware.org/wiki/SPRI_bead_mix). A subsam-
ple of the purified DNA was loaded on agarose gels (1.25%) for visualisa-
tion and validation. The subsequent second PCR, library preparation and
sequencing on an Illumina MiSeq sequencing platform (Illumina, San
Diego, CA, USA), was performed at the Genome Quebec Innovation Center
(Montreal, Canada) according to the amplicon guidelines provided by
Illumina. PE300 bp Reagent Kit was used for the ITS2 and 16S
rRNA amplicon libraries. Raw sequences are deposited on NCBI
(PRJNA747886). The bioinformatics pipeline was conducted at the Scien-
tific Computer Cluster Euler at ETH Zurich. USEARCH v11.0.667 (Edgar,
2010) was used to remove phiX and merge read pairs with a minimum
overlap of 30 bp and minimum merge length of 100 bp. Primer sequences
were removed, and paired reads were size selected, quality filtered and
denoised using USEARCH v11.0.667 (Edgar, 2010). Removal of chimaera
and clustering into zero radius operational taxonomic units (ZOTUs) was
done via UNOISE (Edgar, 2016a). Additionally, clustering at 97% sequence
identity was done by UPARSE (Edgar, 2013). Taxonomy was assigned via
SINTAX (Edgar, 2016b) using SILVA v128 (Quast et al., 2013) and
UNITE_v82 (Bengtsson-Palme et al., 2013) as reference for the 16S rRNA
and ITS2 dataset at 0.85 and 0.5 tax filter identity threshold, respectively.
After removal of chloroplast, mitochondrial and archaeal sequences, 1366
bacterial and 3806 fungal ZOTUs were found across the field trial.

2.5.2. Functional gene quantification
The abundance of alkaline (apr) and neutral (npr) metallopeptidase genes

(Bach et al., 2001) was assessed by quantitative PCR (qPCR) using primer
sequences and cycling conditions listed in Supplementary Table S2 and as
described in Lori et al. (2018).

2.6. Statistical analysis

Statistical analysis was conducted in R version 4.0.2 (R Core Team,
2017) andR STUDIO (RStudio Team, 2020). The effect of experimental fac-
tors on soil quality indicators andmicrobial alpha-diversity was assessed by
linear mixed effect models. Lme1 targeted the experimental factors produc-
tion system (MONOO,MONOC, AFO, AF C and SAFS), location (“between
row” and “under cacao”) and their interaction while lme2 assessed the ef-
fect of management (organic versus conventional), crop diversity
(agroforest versus monoculture) and their interaction. For lme2, SAFS
was excluded to maintain a balanced experimental design. Lme1 and
lme2 were run with “plot” nested in “block” as a random effect (Pinheiro
et al., 2020). The anova_lme functionwas used to retrieve the statistical sig-
nificance of factors tested in linear mixed effect models and the emmeans
function of the EMMEANS package (Russell et al., 2020) was used to calcu-
late estimated marginal means. Tukey post-hoc tests were calculated for
lme1 and can be reviewed in Supplementary Tables S3–S5. To satisfy the as-
sumption of normal distribution and variance homogeneity of model resid-
uals, raw data was log or sqrt transformed.

A total of 823,560 bacterial (1366 ZOTUs) and 2,262,979 fungal se-
quences (3806 ZOTUs) were used to calculate α-diversity indices (Shannon
diversity (H) and observed richness (S)) using the ‘estimate_diversity’ com-
mand within the PHYLOSEQ package (McMurdie and Holmes, 2013).
Evenness was calculated with H/log(S). For assessment of β-diversity,
ZOTUswith fewer than 20 reads and occurring in fewer than 5%of the sam-
ples were removed. The filtered dataset contained 818,197 bacterial (1194

https://openwetware.org/wiki/SPRI_bead_mix
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ZOTUs) and 2,224,724 fungal sequences (2285 ZOTUs). Rarefaction plots
are shown in Supplementary Fig. S2. Formicrobial community composition
analysis, zeros in bacterial and fungal ZOTU tables were replaced by a
Bayesian-multiplicative replacement strategy implemented as the
cmultRepl function in the zCompositions package (Palarea Albaladejo
et al., 2015), followed by centered log-ratio (clr) transformation as sug-
gested by Gloor et al. (2017). Permutational multivariate analyses of vari-
ance (PERMANOVA) based on Euclidean distance metrics were
conducted using the adonis command of the VEGAN package (Oksanen
et al., 2019). The effect of production system and location (PERMANOVA1)
and the effect of management and crop diversity (PERMANOVA2, omitting
SAFS) were tested with 104 permutations, and block set as strata. Fdr p-
value correction was used for pairwise PERMANOVA, to test for distinct
community structure between production systems (Arbizu, 2017). For visu-
alisation of microbial community structure, unconstrained ordination by
principal component analyses (PCA) based on clr transformed ZOTU tables
(Euclidean distancemetrics) was performed, followed by distance-based re-
dundancy analyses (db-RDA) constraining for statistically significant fac-
tors identified in PERMANOVA1 and conditioning for block (Oksanen
et al., 2019). Correlations of environmental variables with the projections
of the db-RDA ordination were assessed using the envfit function of the
VEGAN package (Oksanen et al., 2019), and the graphical display was lim-
ited to a threshold of p-value> 0.001. Due to the complex experimental de-
sign, indicator ZOTUs associated to one but also multiple groups
(production systems) were identified using multilevel pattern analysis of
the INDICSPECIES package (De Cáceres et al., 2012; Dufrêne and
Legendre, 1997). Therefore, we run the multipatt functionwith 104 permu-
tations and the “r.g” function to correct for unequal group sizes on untrans-
formed data filtered to a minimum abundance of 300. p-value distribution
of identified indicator ZOTUswas visualised via histograms (Fig. S3) before
Fig. 1. Chemical soil quality indicators in cocoa production systems. Estimated margin
model assessing effect of production systems and location (lme1) on chemical soil qu
MONO C = conventionally managed monoculture, MONO O = organically manage
managed agroforest, SAFS = successional agroforest sequence. The main effects of lm
management (M) and crop diversity (CD) effects are given as well and significances abb
Extended statistical detail is listed in SI Table 3.
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correction for multiple testing was performed using the QVALUE package
(Storey et al., 2020). A bipartite network was generated via Cytoscape
3.8.2 with ZOTUs as target nodes, treatments as source nodes and associa-
tion strength as connecting edges. Fungal and bacterial indicator ZOTUs
were merged, and an edge-weighted spring-embedded layout algorithm
was used for visualisation of treatment associations with p < 0.01 and a
minimum relative abundance of 0.05%, as described in Hartmann et al.
(2015). Herein performed indicator species analysis could not take in ac-
count the compositional nature of sequencing data (Gloor and Reid,
2016), and is thus more sensitive to sparsity and false-positive identifica-
tion of indicator species (Thorsen et al., 2016).

3. Results

3.1. Chemical soil quality indicators

The chemical soil quality indicators Corg, Ntot, PoxC and soil pH were
enhanced in production systems under organic management (Fig. 1,
Table S3). Across the field site, chemical soil quality indicators were similar
between sampling locations, except for higher Corg contents close to cacao
trees in MONO O and higher soil pH close to cacao trees in SAFS compared
to between the rows. In detail, between the rowswe identified highest Corg
content in AFO soils, followed by SAFS, MONOO andMONOC, and lowest
values in AF C. Close to cacao trees, highest Corg content was found in
MONO O, followed by AF O, SAFS, and AF C, while lowest amounts were
found in MONO C (Fig. 1, Table S3). Soil pH, Ntot and PoxC contents
followed the pattern of Corg (Fig. 1, Table S3). Consequently, chemical
soil quality was higher under organic management, while increased crop
diversity through the implementation of agroforestry system could not en-
hance key indicators for chemical soil quality.
al means, confidence intervals (95%) and raw data (n = 4) of a linear mixed effect
ality indicators are shown. The production systems are abbreviated as followed:
d monoculture, AF C = conventionally managed agroforest, AF O = organically
e1 assessing production system (PS) and location (loc) effects and lme 2 assessing
reviated as followed: ns = non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.2. Biological soil quality indicators

Similar to chemical soil quality indicators, the biological indicators
basal respiration, nitrogen mineralisation, DNA yield and apr abundance
were enhanced in production systems under organic management (Fig. 2,
Table S4). The sampling location had no effect on biological indicators.
Soil from the SAFS system showed highest basal respiration, nitrogen min-
eralisation rates and DNA yields, followed by AF O, MONO O, AF C and
MONO C (Table S4). Interestingly, MONO O outperformed AF C in terms
of soil basal respiration, nitrogen mineralisation, DNA yields and apr abun-
dance. MONO C soils mostly showed the lowest values for biological soil
quality indicators. Consequently, biological soil quality was higher under
organic compared to conventional management, despite enhanced crop di-
versity in conventional agroforestry systems.
3.3. Microbial α-diversity indices

The three most abundant bacterial phyla were Firmicutes, Proteobacteria
and Actinobacteria, while Nitrospira, Planctomycetes, Chloroflexi,
Verrucomicrobia and Gemmatimonadetes were less abundant (Fig. S4).
Higher bacterial richness and Shannon diversity and lower community
evenness was found in production systems under organic compared to con-
ventional management (Table S5). Close to cacao trunks, higher Shannon
index was found in SAFS and MONO O compared to MONO C, while be-
tween the rows, higher richness was found in MONO O compared to AF C
and MONO C (Table S5). Across the field site, total fungal richness was
higher compared to total bacterial richness (Fig. S2). On the phylum
level, fungal communities were dominated by Ascomycota, Basidiomycota
and sequenceswhich remained “not assigned” (Fig. S4). Higher fungal rich-
ness was found in agroforestry compared to monoculture systems,
Fig. 2. Biological soil quality indicators in cocoa production systems. Estimated margin
model assessing effect of production systems and location (lme1) on biological parame
conventionally managed monoculture, MONO O = organically managed monocult
agroforest, SAFS = successional agroforest sequence. The main effects of lme1 as
management (M) and crop diversity (CD) effects are given as well and significances abb
Extended statistical detail is listed in SI Table 4.
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especially when sampled close to cocoa trunks (Fig. S5). Overall, we identi-
fied highest fungal richness in SAFS and lowest in MONO C (Fig. S5).

3.4. Microbial community structure

PREMANOVA1 and PERMANOVA2 identified distinct fungal communi-
ties in different production systems and sampling location locations. Differ-
ing soil fungal community structure was found between organic and
conventional management (p < 0.001), as well as between agroforestry
and monoculture systems (p < 0.001) (Table 1). Pairwise PERMANOVA re-
vealed distinct fungal communities in all production systems, except when
comparing AF O with SAFS (Table 1). In line with this, constrained (db-
RDA) and unconstrained (PCA) ordinations showed an apparent clustering
of fungal communities for the distinct production systems, while the effect
of sampling location was especially present in MONO O (Fig. 3A and C).

Similarly to fungi, PERMANOVA1 and PERMANOVA2 identified bacte-
rial communities to differ between organic and conventional management
(p < 0.001), as well as between agroforestry and monoculture (p = 0.48)
(Table 1). Yet, pairwise PERMANOVA only revealed statistically significant
dissimilarities in bacterial community structure between conventional
(MONO C and AF C) and organic (AF O, SAFS and MONO O) systems
(Table 1). Unconstrained ordination (PCA) of bacterial community compo-
sition mainly separated organic and conventional systems (Fig. 3B),
whereas the constrained ordination (db-RDA) shows clustering of manage-
ment and crop diversity (Fig. 3D).

3.5. Linking microbial community structure and soil quality indicators

Correlation of soil chemical and biological indicators with projections
of the ordination revealed four and five associative indicators at p <
0.001 for the bacterial and fungal communities, respectively (Fig. 3C and
al means, confidence intervals (95%) and raw data (n = 4) of a linear mixed effect
ters are shown. The production systems are abbreviated as followed: MONO C =
ure, AF C = conventionally managed agroforest, AF O = organically managed
sessing production system (PS) and location (loc) effects and lme 2 assessing
reviated as followed: ns = non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001.



Table 1
Microbial beta-diversity in cocoa production systems. Effects of production system, sampling location, crop diversity and management on fungal and bacterial community
composition were assessed by PERMANOVA (9999 permutations) based on filtered and center log-ratio transformed operational taxonomic units (ZOTUs) (ITS2 for fungi
and 16S rRNA for bacteria) using Euclidean distances. Pairwise PERMANOVA assessed differences between each production system with false discovery rate p-value correc-
tions.

Permanova Fungi Bacteria

Df SumOfSqs R2 F-value p-value Df SumOfSqs R2 F-value p-value

PERMANOVA1 Production system 4 166,090 0.19 2.04 >0.001 4 21,077 0.18 1.92 >0.001
Location 1 32,197 0.04 1.58 0.005 1 3534 0.03 1.29 0.083
Production system × Location 4 82,758 0.09 1.02 0.306 4 11,044 0.10 1.01 0.333

PERMANOVA2a Crop diversity 1 49,518 0.07 2.40 >0.001 1 4040 0.04 1.44 0.048
Management 1 45,244 0.06 2.19 >0.001 1 10,486 0.11 3.74 >0.001
Crop diversity × Management 1 25,583 0.04 1.24 0.052 1 3021 0.03 1.08 0.241

Pairwise PERMANOVA MONO C MONO O AF C AF O SAFFS MONO C MONO O AF C AF O SAFFS
MONO C – >0.001 0.0017 >0.001 >0.001 – 0.004 0.065 0.006 0.011
MONO O >0.001 >0.001 >0.001 0.001 0.103 0.233
AF C >0.001 >0.001 >0.001 0.001
AF O 0.011 0.522

The production systems are abbreviated as followed:MONOC=conventionally managedmonoculture,MONOO=organicallymanagedmonoculture, AF C= convention-
ally managed agroforest, AF O = organically managed agroforest, SAFS = successional agroforest sequence. P-values < 0.05 are expressed in bold.

a PERMANOVA2 assessing factors crop diversity (agroforest versus monoculture) and management (organic versus conventional), omits the SAFS production system to
ensure a balanced and full factorial design.
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D). C mineralising capacity showed the strongest correlation with bacterial
(r2=0.66) and fungal (r2=0.53) community structure andwas associated
to SAFS and AF O. Also, N mineralizing capacity was associated with the
bacterial (r2 = 0.40) and fungal (r2 = 0.39) community structure of AF
Fig. 3. Bacterial and fungal community composition based on zero radius operationa
analyses (PCA) and constrained distance-based redundancy analysis (db-RDA) on fun
(clr) transformed data and Euclidean distance. Constraining factors were selected based
system and location, bacteria constrained for production system only) while Block was se
parameters with the ordination scores. Only correlations with p < 0.001 are shown and
variables and ordination axis are shown in Supplementary Tables S6 and S7. The product
culture, MONO O = organically managed monoculture, AF C = conventionally man
agroforest sequence.
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O and SAFS. High PoxC concentrations were linked to organicmanagement
and strongly correlated with bacterial (r2 = 0.45) and fungal (r2 = 0.47)
community structure. Corg (r2 = 0.39) and Ntot (r2 = 0.41) correlated
with fungal community composition, while soil pH (r2 = 0.24) was linked
l taxonomic units (ZOTUs) of the 16S rRNA and ITS2 genes. Principle component
gal (A,C) and bacterial (B,D) community composition based on centered log-ratio
on their significance in PERMANOVA1 (Table 4: Fungi constrained for production
t as conditioning term. Arrows represent correlations of biological and geochemical
arrow length is scaled according to correlation strength. Details on environmental

ion systems are abbreviated as followed:MONOC=conventionallymanagedmono-
aged agroforest, AF O = organically managed agroforest, SAFS = successional
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with bacterial community composition in organically managed plots. R2

and p-values for all environmental parameters are listed in Supplementary
Table S7.

3.6. Indicative fungal and bacterial taxa

The bi-partite network revealed distinct clusters associated with single
production systems to be mainly dominated by fungal ZOTUs (fZOTU)
(Fig. 4). We did not identify a distinct cluster for AF O as this treatment
sharedmost indicative ZOTUswith eitherMONOO or SAFS. The three bac-
terial ZOTUs (bZOTU) indicative for MONO C made up 2.08% of all bacte-
rial sequences, while the twelve fZOTUs associated with MONO Cmade up
1.86% of all fungal sequences. Especially in the MONO O cluster, fungi
played a distinct role, as 6.82% of the total fungal sequences clustered to
ZOTUs indicative for this treatment. The majority of indicative bZOTUs
were either associated with organic or conventional production systems.
Consequently, two bacteria-driven clusters were identified distinguishing
between organic (O-cluster: MONO O, AF O and SAFS) and conventional
(C-cluster: MONO C and AF C) management. The C-cluster did not contain
any indicative fZOTUs and made up 11.95% of the overall bacterial se-
quences (Fig. 4). The O-cluster showed a greater taxonomic diversity and
phylum richness of indicative bZOTUs compared to the C-cluster.

The relative abundance of the six most abundant ZOTUs are shown in
Fig. 5. Most prominently, bZOTU 255, associated to the C-cluster, showed
a relative abundance up to ~17% in MONO C and AF C systems and was
assigned to the genus of Bacillus. Three out of the six most abundant indic-
ative taxawere associated with the O-cluster, namely bZOTU 1825, bZOTU
115 and bZOTU 3 (Fig. 5). The representative sequence for bZOTU 1825
Fig. 4. Bipartite network showing statistically significant and positive associations (p <
radius operational taxonomic units (ZOTUs) with a relative abundance> 0.05 across the
with similar associations. Node size reflects relative abundance of indicative ZOTUs acr
Supplementary Table S8. Relative abundance (rel.abund %) represents the abundanc
followed: MONO C = conventionally managed monoculture, MONO O = organica
organically managed agroforest, SAFS = successional agroforest sequence. C-cluster rep
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assigned to Nitrospirales (Family 0319-6A21). bZOTU 1825 was especially
present in SAFS close to cacao trees, but elevated abundances under organic
management were found across the field trial. Abundance of bZOTU 115
(genus Pedomicrobium) and bZOTU 3 (family Rhodobiaceae) were elevated
under organic management compared to conventional management.
fZOTU 99 assigned to Bisifusarium dimerum, and reached up to 4% of the
fungal community inMONOO soils between the rows. fZOTU 245 assigned
to the genus of Stachybotrus limonispora and highest values were found be-
tween the rows of the SAFS (Fig. 5). Details on the most abundant indicator
species are listed in Supplementary Table S8.

Summarizing, our results show that chemical and biological quality in-
dicators differ between cocoa production systems with beneficial effects
mainly under organic management. Soil quality was highest in organic
and successional agroforestry. In line with this, we found an overall highly
diverse fungal community and specific fungal community structure for each
production system. Distinct bacterial community structure was found be-
tween organic and conventionally managed systems and indicator species
associated with organic management were taxonomically more diverse.

4. Discussion

4.1. Enhanced soil quality in production systems under organic farming

Investigating soil quality in agroforestry systems is inherently difficult
due to the variable spatial impact of crop and/or shade trees and
fertilisation strategy on local soil processes. Consequently, soil quality indi-
catorswere assessed at different distances to cacao trunks. Interaction effect
between sampling location and production system on Corg and soil pH
0.01) between production systems and fungal (circle) and bacterial (diamond) zero
field trial. An edge-weighted spring-embedded algorithmwas used to cluster ZOTUs
oss all samples. Full list of statistically significant associated ZOTUs are provided in
e of given ZOTUS across all samples. The production systems are abbreviated as
lly managed monoculture, AF C = conventionally managed agroforest, AF O =
resents AF C and MONO C while O-cluster represents MONO O and AF O.



Fig. 5. Relative abundance of the six most abundant indicative fungal and bacterial zero radius operational taxonomic units as affected by cocoa production system and
sampling location (ZOTU). Graphs show raw data (n = 4), as well as estimated marginal means and confidence intervals (95%) of a linear mixed effect model assessing
production system and location effects. The production systems are abbreviated as followed: MONO C = conventionally managed monoculture, MONO O = organically
managed monoculture, AF C = conventionally managed agroforest, AF O = organically managed agroforest, SAFS = successional agroforest. C-cluster represents AF C
and MONO C while O-cluster represents MONO O and AF O.
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(Fig. 1, Table S3) can be explained by organic matter inputs around the
cacao trees in the organically managed plots. Cocoa trees in AF O received
only half the amount of composted inputs compared to MONO O and sim-
ilar Corg contents and soil pH was found at both sampling locations. En-
hanced Corg contents were found under organic compared to
conventional management, with highest Corg contents in MONOO around
the cocoa trees (28.22 ± 2.01 mg g−1). In line with our results, a global
meta-analysis showed organic management in arable systems to enhance
Corg contents (Gattinger et al., 2012). Given the strong link of Corg to
other geochemical soil quality indicators, it is not surprising that organic
management also enhances soil pH, soil nitrogen and PoxC contents
(Fig. 1, Table S3). Apart from management, agroforestry's potential as a
measure for Corg buildup is increasingly gaining attention (Lorenz and
Lal, 2018; Nair et al., 2010), but highly variable effects have been observed
(Lorenz and Lal, 2014). Also in this study, Corg contents between the cocoa
rows was highly variable and ranged from 19.53 ± 1.57 to 27.04 ±
1.85 mg g−1 in AF C and AF O respectively (Table S3). A recent meta-
analysis concluded that increased Corg contents in agroforestry systems
mainly occur in silvoarable systems and are highly dependent on soil type
and climatic conditions (Hübner et al., 2021). With the present field trial
we could show that organic production systems can further promote soil
Corg contents in tropical agroforestry systems.

Soil basal respiration rates can describe the activity of the soil
microbiome and the soil capacity for mineralising organic input materials
(Fliessbach et al., 2007). Especially the SFAS system, which showed the
highest respiration rates (Fig. 2, Table S4), soil capacity tomineralize nutri-
ents from pruning residues is the base for plant nutrition (Schneider et al.,
2016). Basal respiration, N-mineralisation rates and apr abundance
followed a similar pattern of lowest values in MONO C and highest in or-
ganically managed systems (Fig. 2, Table S4). This indicates that the aim
of organic management to promote a biologically active soil also translates
into enhanced nutrient provisioning from organic sources through nitrogen
mineralising bacteria. Similar to this study, enhanced biological soil quality
has regularly been reported in organically managed soils under temperate
and tropical climates (Fliessbach et al., 2007; Lori et al., 2018; von Arb
et al., 2020).
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SinceAFO and SAFSmostly present the highest chemical and biological
soil quality, lower soil quality inAF C compared toMONOO systems should
not be interpreted as poor performance of agroforestry systems. Soil quality
in MONO O instead reflects the benefits of compost application around
cacao trunks and maintenance of a leguminous cover crop as a typical or-
ganicmanagement practice.While our data show that organicmanagement
enhances soil chemical and biological quality in cocoa production systems
effectively, it needs to be noted that we only investigated topsoil in this
study. Positive effects from enhanced root structures in agroforestry com-
pared to monoculture systems might improve the quality of the soil below
10 cm depth and needs further investigation (Niether et al., 2019).

4.2. Distinct microbial community structure in cocoa production systems

Across the field site, total fungal exceeded total bacterial richness
(Fig. S2). This is in contrast to what is known for soil microbial communi-
ties in temperate climates (Zhang et al., 2021) and highlights the impor-
tance of fungal communities in tropical soils (Brinkmann et al., 2019;
Thedersoo et al., 2014). Additionally, 28% of the identified fungal ZOTUs
could not be annotated on the phylum level emphasising the need to further
study soil fungal communities in tropical soils.

Especially in perennial systems, plant-fungal symbiosis might affect soil
biodiversity. Indeed we observed enhanced fungal richness in agroforestry
compared tomonoculture systems (Table S5),which is in linewith previous
observations showing plant diversity in agroecosystems promote soil fungal
diversity (Shen et al., 2021). Bacterial richness, however, was less sensitive
to crop diversity and more to management (Table S5).

The strong management effect on bacterial community composition oc-
curred at both sampling locations and suggests that apart from fertilisation
of cocoa trees, management-specific plant protection strategy might shape
bacterial community composition (Table 1) as it has previously been
shown (Meena et al., 2020). Unfortunately, the system comparison ap-
proach of the field trials does not allow us to disentangle the effects of
fertilisation and agrochemicals on the microbial community composition.

The strong correlation between fungal and bacterial community
compositions of organically managed systems and soil respiration,
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N-mineralisation and PoxC (Fig. 3C and D) underpins the crucial role
of heterotrophic soil activity for degradation processes and the provi-
sion of nutrients under organic management. Even though the role of
microbial diversity in promoting multifunctionality (Delgado-
Baquerizo et al., 2016) and stability (Wagg et al., 2021) of terrestrial
ecosystems was demonstrated, it is a complex undertaking to quantify
the contribution of biological soil activity to crop productivity. In
2015 cocoa yields were higher in monocropped systems than agrofor-
estry, with higher yields in MONO C than MONO O but similar yields
in AF O and AF C (Niether et al., 2019). This suggests that agroforestry
systems can benefit from organic management with comparable yields
and enhanced soil quality. Concerning total systems yield including
crops from non-cocoa trees, agroforestry outperformed monocropping
(Niether et al., 2019). SAFS showed the lowest cocoa yields but highly
diversified total system yields similar to AF O and AF C (Niether et al.,
2019). Although it is inherently difficult to directly link the interplay
between soil quality and soil microbial diversity to specific ecosys-
tems services, such as crop productivity or nutrient regulation, there
is growing evidence that the biological base of soil quality especially
benefits from organic management.
4.3. Potential role of identified indicator species

Stachybotrus limonispora (fZOTU 245) was most abundant in the SAFS
(Fig. 5) and is known for its decomposing activity and association to
cellulose-rich habitats (Seifert and Gams, 2011). The high pruning activity
in SAFSmight thus favour the abundance of Stachybotrus limonispora, possi-
bly through increased litterfall and/or root decomposition after pruning
events (Peter and Lehmann, 2000).Bisifusarium dimerum (fZOTU 99), indic-
ative for the MONO O system, reached up to 4% in relative abundance be-
tween the rows. A characteristic trait of this specific sampling location was
a thick leguminous cover crop, yet the functional linkage to the high abun-
dance of Bisifusarium dimerum remains speculative. So far, this taxon has
been found as an inhibitory agent for nematodes and is regarded as a cos-
mopolitan saprotroph in soils (Schroers et al., 2009). The genus Bacillus
(e.g. bZOTU 255) describes a common, gram-positive soil bacterium with
an aerobic lifestyle, which forms dormant endospores in response to nutri-
tional or environmental stress (Alcaraz et al., 2010; Nicholson, 2002;
Nicholson et al., 2000). The high relative abundance of bZOTU 255 in con-
ventionally managed plots (Fig. 5), together with low bacterial diversity
(Table S8) indicates an impoverished bacterial community under conven-
tional management. In contrast, bacterial taxa indicative for organic sys-
tems are related to various soil processes. Members of the Rhodobiaceae
family (bZOTU 3) are known to form symbiotic relationships with legumes
for nitrogen-fixation and might be a response to the maintenance of a legu-
minous cover crop in the organic systems. A high abundance of Nitrospirae
(bZOTU 1825) in soils around cacao trees in SAFS indicates enhanced
nitrogen-cycling activity, and is consistent with elevated abundance of apr
genes in SAFS (Fig. 2). A high abundance of Nitrospirae was previously
shown to be associated with elevated soil nitrogen contents (Banerjee
et al., 2016; Zhang et al., 2021) and organic arable cropping systems
(Zhang et al., 2019). The genus Pedomicrobium (bZOTU 115) is known for
its chemo-organotrophic lifestyle using acetate as a carbon source under
aerobic conditions (Hirsch and Mauchline, 2015). Since Pedomicrobium
mainly uses organic substrates, it occupies an intermediate role for nutrient
cycling in agroecosystems and complements the metabolic capacity of the
soil microbiome under organic soil management.

In summary, we found indicator ZOTUs of versatile metabolic functions
associated with organic management, whereas less metabolic diversity was
associated with the conventional systems. However, we can only speculate
about possible ecological functions of identified ZOTUs. Extended analyses
such as the profiling of microbial metabolic capacity via substrate-induced
respiration assays (Creamer et al., 2016), proteomics (Qian and Hettich,
2017), whole shotgun sequencing metagenomics (Vogel et al., 2009) or
its combination (Martinez-Alonso et al., 2019) could further reveal distinct
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effects of management and crop diversity on soils' ecosystem multi-
functionality.

We finally note that culture-independent techniques offer many advan-
tages but results have to be handled carefully due to manifold reasons
(Hugerth and Andersson, 2017; Semenov, 2021; Schirmer et al., 2015).
Suitable sampling strategies and storage conditions for soil microbial ecol-
ogy were discussed (Schroeder et al., 2021; Nannipieri et al., 2019;
Vestergaard et al., 2017) and in our case soil was oven-dried beforeDNA ex-
traction due to logistical reasons. Thus, comparison to other studies should
be treated with caution.

5. Conclusions

Our results show that organicmanagement inmonoculture and agrofor-
estry systems enhances chemical and biological soil quality and harbors dis-
tinct soil fungal and bacterial communities. Crop diversity had a minor
effect on soil microbial communities, and although highest soil quality
was found in organic agroforestry, organic monoculture outcompeted con-
ventional agroforestry. Consequently, we conclude that organic soil man-
agement facilitates soil quality also in diversified agroforestry systems.
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