Sustainability in global agriculture driven by organic farming The impacts of a 100% conversion scenario to organic agriculture with a focus on climate change related indicators #### Adrian Muller Biofach 2021 – Climate Safe Diets # Mitigation paths provided by organic agriculture Ideas from circular food systems – less nitrogen, less feed imports, less animals Partly: Higher soil organic carbon levels ### GHG emissions per kg Total GHG emissions VS. # **Adaptation** | | Performance w | vith respect | to the baselin | e: |--------------------------|---|---|---|--------------|------------|-----------------|-------------------------------|------------------------------|---|-----------------------|---------------------------|---|--------------------------------|-----------------------------------|--------------------------|-------------------|-----------------------|--------------------------------|-------------------------------------|----------|----------------|-------------------------|-------------------------------|------------------------------------|---------------|--------------------------------|------------------|------------------------|--|--| | ✓ | significanlty b | better, but not significant | × | significantly v | worse, but not significant | 0 | no effect | red | Practices reported in meta-analyses that may | | | | eemed agro | ecological in a | II cases | blue | Indicators refe | rring to temporal stability/variability | Soil organic | Soil microbiome soil biodiversity Indicators for climate change adaptation | ln | | | | aptation | Soil health | | | | | Biodi | versity | | Plant protection | | | | | Productivity Employment Hea | | | | | | | | | Health | | | | | | Soil organic
carbon
contents | Soil organic
carbon
sequestrati
on | Total soil N | Soil loss | Soil fertility | Soil
microbial
activity | Soil
microbial
biomass | Soil
biodiversity
(microbial
diversity/
richness) | Nematode
abundance | richness/ab
undance/di | Stability of
species
richness/
abundance | Natural
plant
protection | Level of
biological
control | Animal pest
abundance | Weed
abundance | Pathogen
abundance | Total
biomass
production | Stability in
total
production | Yield | rield stabilit | Pollination
services | Resource
use
efficiency | Ecosystem
services
stability | Profitability | Stability of costs and profits | Rural employment | Exposure to pesticides | | | | Agroecological practices | Organic agriculture | ✓ | ✓ | | 1 | | ✓ | ✓ | 1 | | ✓ | ✓ | | 1 | ✓ / | × | ✓ | | | × | × | | 0 | | | 0 | ✓ | ✓ | | | | | Low-input
systems | | | | | | | | | ✓ | ✓ | | | | | | | | | × | | | | | | | | | | | | | Agroforestry
(incl.
silvopast.) | | | | ✓ | ✓ | 1 | | | | ✓ | | | | | | | 1 | | | | | | | | | | | | | | | No tillage | 1 | | | | ✓ | | | | | | | | | | | | | | × | × | | | | | | | | | | | | Reduced
tillage | ✓ | | ✓ | | ✓ | ✓ | 1 | | | | | | | | | | × | | √ | | | | | | | | | | | | | _ | 1 | | 1 | | | | 1 | - | | | | | Cover crops
Biochar | √ | | • | | | | • | Organic
fertilizers
(incl.
residues) | ✓ | | ✓ | | ✓ | | | | ✓ | √ | | | | | | | × | | √ | | | | | | | | | | | | | Crop rot./
diversity/
intercropping | ✓ | 1 | ✓ | | | | ✓ | ✓ | | ✓ | | ✓ | | | | | | 1 | 1 | ✓ | | | | ✓ | ✓ | √ | | | | | | Grassland
diversity | | | | | | | | | | | | | | | | | | | ✓ | | | | | | | | | | | | | Practices
enhancing
biodiversity &
complex
landscapes | | | | | | | | | | | | 1 | | | | | | | ✓ | | ✓ | ✓ | ✓ | | | | | | | ## Challenges of high shares of organic production - Drastic changes in diets needed - Sufficient nitrogen/nutrient supply - Processing, storage of products ## Challenges of high shares of organic production #### Yield stability ### BUT: Yield gap and diversity ## Challenges of high shares of organic production Plant protection in a conventional / organic context Solutions for climate friendly food systems with organic agriculture: Circularity #### Policy levers driving sustainability in global agriculture ### Recap - Mitigation Less nitrogen, less animals, soil carbon circularity - Adaptation big potential besides productivity - Challenges diets, sufficient nutrients, sufficient diversity, plant protection in organic landscapes - Policies blueprint for all agriculture but no need to have 100% organic