

UNDERSTANDING & IMPROVING THE SUSTAINABILITY OF AGRO-ECOLOGICAL FARMING SYSTEMS IN THE EU

Territorial impacts of agro-ecological farming practices and food systems transformation in the European Union in 2050

Input to the symposium on Agroecological transitions of farming systems: Strategies and their implications for sustainability and governance in different European contexts

Elin Röös, Andreas Mayer, Adrian Muller, Shon Ferguson

AES 94th Annual Conference | 29-30 March 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 773901.

Five storylines for future EU food systems

High level of agro-ecological farming practices

Storyline 1: Business-as-usual

- Globalisation of the EU food system continues
- Farmers incentivised to produce low value commodities leading to further specialisation of farming systems and regions
- Current production and consumption trends in the EU continue

Storyline 2: Agro-ecology for exports

- Globalisation of the EU food system continues
- Strong support for agro-ecology driven mainly by export opportunities
- Substantial expansion of agro-ecology for export oriented products
- Cropland expansion allowed

Storyline 3a: Localisation for protectionism

- Nationally or locally produced foods, regardless of production methods, are prioritised over foods produced in agro-ecological farming systems
- Drivers: rise in nationalism and protectionism
- Focus is on increased production of bulk commodities
- Diet develops according to current BAU-projections

Storyline 3b: Localisation for sustainability

- As Storyline 3a but developments are driven by sustainability objectives
- No cropland expansion allowed
- Still a moderate implementation of agro-ecological practices
- Diets change toward more plant based and food waste is reduced

Storyline 4: Local agro-ecological food systems

 Drivers: A rapid increase in climate and environmental concerns among large population groups

- In 2050, on average across member states between 20-50% of land is farmed with strong agro-ecological practices serving mostly local markets.
- Healthier and more sustainable diets aligned to the local availability
- Animal species consuming human edible feeds (pigs and poultry) decrease, ruminant production is mainly grass-based

Modeling results

Two types of models:

- Biophysical
- Complementary economic equilibrium model
- Main aim: to identify robust strong patterns, in particular related to trade-offs and synergies

Patterns behind the results:

- The food system becomes smaller in particular: less animal source food (and thus less feed production)
- Commodity group shares change (e.g. more vegetables)
- Regional production patterns change

Cropland and grassland use

Biophysical outcomes

Greenhouse gas emissions Mt CO2eq Europe

Greenhouse gas emissions with vegetation regrowth

Irrigation water use (relative to the baseline)

Irrigation water - water stress adjusted (relative to the baseline; country level)

Production of animal-based food (rel. to BAU 2050)

Labour productivity (Total; relative to the baseline; country level)

Economic modelling: goals and caveats

- Goal:
 - Which price changes would be needed to see the biophysical outcomes as economic equilibria?
 - i.e.: which combination of economic taxes or subsidies are needed to reach the alternative 2050 scenarios?
 - 3 policies:
 - EU Production tax/subsidy
 - EU Consumption tax/subsidy
 - EU import tariff
- Caveats
 - We model policies required to reach the desired production, and consumption
 - We do NOT model policies to induce agro-ecological production methods
 - The model does not include the welfare benefits from agro-ecological production (ecological services etc)

Economic modelling: main results

- Agro-ecology leads to higher prices, lower economic welfare for many commodities
- The required changes in prices are very large
- Results highly dependent on how responsive future production is to policies
 - Highly responsive ("elastic supply"): smaller price and welfare impacts to reach agro-ecology
 - Non-responsive ("inelastic supply"): large price and welfare impacts to reach agro-ecology

Economic modelling: Takeaways

- Agroecology requires fundamental shifts in production and consumption
 - Infeasible to reach agroecology using market-based economic policies alone
 - Consumer preferences need to change
 - Production mandates may be more feasible than taxes
- Need to "flatten the (supply) curve" / avoid lock-in in the long run
 - Future production systems need to be flexible, responsive to market conditions

Key messages

- Agro-ecological transformation in the EU can be a promising option, but need to be complemented with dietary changes to avoid leakage of environmental pressures
- Drastic changes are needed that likely are not achievable with known market-based policies alone
- Particularly, healthy low-meat diets and reduced food waste allow for several important measures
 - Increasing self-sufficiency
 - Nature-based climate solutions (i.e. re-/afforestation)
 - A general extensification of crop yields
 - Agricultural reserves for the future, if needed (higher resilience)
- **Potential trade-offs** require particular attention:
 - e.g. increased water use with increased vegetable production
- The biggest effects relate to changes that address the total production, and not on improving efficiencies – "make the food system smaller"

Contacts

Elin Röös, <u>elin.roos@slu.se</u> Adrian Muller, <u>Adrian.Mueller@fibl.org</u> Andreas Mayer, <u>Andreas.Mayer@boku.ac.at</u> Shon Ferguson, <u>shon.ferguson@slu.se</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 773901.

#UNISECOresults https://uniseco-project.eu

UNISECO

European Union's Horizon 2020 Programme GA N° 773901

Understanding and Improving the Sustainability of Agro-ecological Farming Systems in the EU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 773901.