FiBL

Research Institute of Organic Agriculture FiBL info.suisse@fibl.org, www.fibl.org

Modelling Organic Agriculture and Agroforestry

Adrian Muller (adrian.mueller@fibl.org)

FABLE Technical Working Group Online, 25.5.2021 Why is modelling organic agriculture / agroforestry / etc. important?

"Direktzahlungen" = "direct payments"

www.admin.ch 2021

2030 Targets for sustainable food production

Reduce by 50% the overall use and risk of chemical pesticides and reduce use by 50% of more hazardous pesticides

Reduce **nutrient losses** by at least 50% while ensuring no deterioration in soil fertility; this will reduce use of **fertilisers** by at least 20 %

Reduce sales of antimicrobials for farmed animals by 50%

Achieve at least 25% of the EU's agricultural land under organic farming and a significant increase in organic aquaculture

The state of humanity and our planetary home

The Aotearoa Circle 2019

Raworth (2017) Steffen et al (2015)

What would happen if we went for large-scale implementation of alternative production and food systems?

Key topics

- trade-offs and synergies
- (biophysical) **viability** of various options
- (biophysical) **consistency** of various options
- total versus relative assessments **sufficiency vs. efficiency**

Some thoughts on model types:

- biophysical vs. economic
- optimisation vs. **no optimisation**
- internal consistency vs. consistency with existing databases (e.g. FAOSTAT)

1

0

0

-2

-4

Schader et al. 2015

Share of animal source protein in diets

Key aspects of modelling organic agriculture and agroforestry

Organic agriculture:

Assumptions on

- Yield gaps
- Crop rotations
 - in particular on legume shares
- No mineral fertilizer use
 - alternative N sources: legumes on set-aside land, human excreta, etc.
- Reduced pesticide use
- Different assumptions on various (emission) factors
 - organic fertilizers, C-sequestration, ...
- Biodiversity effects

Key aspects of modelling organic agriculture and agroforestry

Agroforestry

Assumptions on

- Crop and tree shares per area
- Yields
- Sequestration in woody biomass
- Different assumptions on various (emission) factors
 - organic fertilizers, C-sequestration, ...
- Biodiversity effects

Challenges of modelling organic agriculture and agroforestry

Challenges of modelling organic agriculture and agroforestry

- crop rotations
- component area shares (trees crops)
- yields in agroforestry
- N cycle
 - characteristics of organic fertilizers vs. mineral fertilizers and their dynamics in the soils, etc.
- P and C cycles
- many data issues, such as related to
 - suitability of soils and regions
- (economic and social aspects)

Ongoing work and future plans with SOLm

SOLm is available on Bitbucket (Code, Documentation) and an ftp-server (Data)

- Better representation of the N-Y-dynamics (MA thesis I)
- Better representation of crop rotations (MA thesis 2)
- Better representation of P and soil C (PhD thesis I)
- Agroforestry scenarios for the EU (EU project I)
- (Bio-)vegan scenarios (MA thesis 2)
- Bioenergy in sustainable food systems (PhD thesis 2)
- Country scenarios built on National GHG Inventory reports (no plan yet)
- Comparison of LCA footprints with food-system-derived footprints (no plan yet)
- Landscape-level biophysical food-systems model for localised policy advice (PhD thesis 3; EU project 2)
- Output: Shiny-App interface, etc. (maybe MA thesis 2)