INRAO

Porganic, a research organic pig farm: overall presentation and two examples of research programs

A Prunier^a, S Ferchaut^b, E Merlot^a, B Lebret^a, L Canario^c,

^aPEGASE, INRAE, Institut Agro, Saint Gilles, France

^bGenESI, INRAE, Venours, 86480 Rouillé, France

^cGenPhySE, INRAE, 31326 Castanet-Tolosan, France

Location: Rouillé in the mid west of France, 30 km south west of Poitiers

Main characteristics:

- ✓ Organic pig farm
- ✓ Farrow to finish farm.
- ✓ 2 x 12 places in the farrowing building
- ✓ A single dynamic group for weaned/pregnant sows (36 places)
- √ 480 places in the weaning/fattening building
- √ 4 batches of ~12 sows farrowing at 6-week intervals
- ✓ Dam line: pure LW, Sire line: LW or Piétrain or Duroc (experimental needs)
- ✓ Weaning at 7 weeks of age
- √ ~ 10.6 piglets weaned/sow (details presented by Canario)
- ✓ Slaughter at ~125 kg liveweight & ~6 mo of age (details in *Ferchaud et al 2022*)

Porganic: the research unit
Inside overview of the buildings

Building for weaned/pregnant sows

- ✓ Dynamic group (36 places)
- ✓ Some individual stalls
- ✓ An outdoor area
- ✓ Feeding with an automat station + rack containing hay distributed ad libitum

Video of sows eating hay

Building for farrowing/lactating sows:

- ✓ 2 x 12 places
- ✓ Sows can be blocked around farrowing or left always free
- ✓ An outdoor run for 12 farrowing stall
- ✓ A nest covered by transparent plexiglass

Gate to the outdoor run

Piglet's nest

Prunier et al.

Video of a sow with her piglets massaging the teats

INRA

Video of a sow with her piglets active in the resting area

The weaning/fattening building

- √ 16 stalls with 30 places
- ✓ Deep straw inside
- ✓ An outdoor area on concrete floor, covered and opened on 3 sides

Outdoor area

Prunier et al.

More information on youtube

https://youtu.be/GqAMdNValgs

Porganic: three examples of research programs

✓ Research concerning the fulfilment of iron requirements in piglets: head by E Merlot within the EU research program **POWER**

- ✓ Research to optimize the rearing of entire male pigs. (improve animal welfare and meat sensory quality): head by B Lebret within the EU research program PPILOW and the national program Farinelli
- ✓ Research to reduce piglet mortality by genetic selection: head by L Canario within the EU research programs POWER and PPILOW (presentation by L Canario)

Iron requirements of suckling piglets

Iron is necessary to synthesize haemoglobin (red blood cells) and myoglobin (muscles)

- ☐ High needs due to a rapid growth, 5-7 mg/day
- □ During lactation, iron comes from:
 - ✓ Body store acquired during foetal life, consumed in a few days.
 - ✓ Milk intake (~ 1 mg/day)
 - ⇒ Insufficient, additional supplies are necessary
 - ⇒ They come from:
 - ✓ Soil ingestion in piglets reared outdoors
 - ✓ Dry feed consumption, but low until 3-4 weeks of age
 - ✓ Neonatal supplementation of iron by injection or by ingestion of an oral paste

Specificity of organic farming

- □ Systematic supplementation with iron is problematic in organic pig production:
- ✓ Preventive use of allopathic treatment is forbidden (CE 889/2008)
- ✓ A fattener can be sold as organic if only one allopathic treatment (except treatments against parasites, vaccinations and compulsory treatments) is applied,
- ✓ Iron injection can be considered as an allopathic treatment by some certification bodies
- ✓ In addition to legislation, iron injection is a non-natural massive treatment that may induce oxidative stress

=> Many organic farmers do not perform iron treatment inducing a very high risk of anaemia in indoor farms

Objective of the study

Find a solution to supplement with iron piglets raised indoors that:

- ⇒ follows organic rules
- ⇒ allows a physiological and continuous intake of iron

> Experimental design

3 experimental groups

- \Rightarrow Piglets from 8 litters injected with 100 mg dextran-iron injection, n = 98
- ⇒ Piglets from 8 litters receiving soil from 4 days of age, n = 102
- \Rightarrow Piglets from 8 litters receiving peat, n = 102

2 batches: 4 litters/treatment/batch

Briere river mud Sterilized & dry peat (26,1 g iron/kg dry peat)

Soil of the farm

Sterilized and dry (49,7 g iron/kg dry soil)

Peat

Experimental design

69 d

p. 20

> Results: growth

Injectable dextran iron

Farm soil

River peat

> Results: haemoglobin status

> Results: mean globular volume of erythrocytes

⇒ Iron intake

Insufficient in the soil group by D20 and in the dextran iron group by D41

+ other measures suggesting oxidative stress in the dextran group, more diarrhoea and a delay in maturation of the immune system in the soil group

> Conclusions

- Injection with 100 mg iron
 - Sufficient until D20 but not until weaning in organic pigs
 - Suspicion of oxidative stress
- Supplementation with soil
 - Not a reliable solution as shown by anaemia in the present experiment
 - In addition, increased risk of diarrhoea and possible delay in immune maturation

- A promising option
- > To be confirmed by other studies on a higher number of pigs
- Iron from the peat has probably a high bioavailability

Objectives

- Develop strategies to prevent undesired behaviours (mounting, aggressions) in intact male pigs and to avoid boar taint (androstenone, skatole) in the end-products
- > Allow ending of surgical castration in good conditions for animals, producers and consumers
- ➤ 2 experimental trials: one within PPILOW, one within Farinelli, same protocol of measures but different experimental treatments

Experimental aims of the first trial

- ✓ Compare welfare and boar taint according to genotype (Piétrain vs Duroc crossbreeds) -> synergies and trade-offs between various quality dimensions.
- ✓ Predict boar taint at lower live weights (85, 105 vs 125 kg)

Experimental design

- ✓ Two replicates of 60 intact male pigs. In each replicate 30 pigs (= one group) of each genotype
- ✓ Pigs born from LW dams and either Piétrain or Duroc sires with semen provided by Nucleus and selected for low taint risk

Experimental design of the first trial:

- ☐ First replicate: piglets born, start in October -> slaughtering in Feb-March 2022
- ☐ Second replicate: start in December -> slaughtering in April 2022
- ☐ Pig rearing: measure of indicators of behavior, welfare and health. Growth performance
- ☐ Blood sampling for predicting fat androstenone and skatole by measuring oestradiol and skatole in plasma + *in vivo* assessment of body composition at 85, 105 and 125 kg weight

Experimental design of the first trial:

- ☐ At slaughter ~125 kg:
- ✓ carcass traits: weight, lean meat content
- ✓ technological, nutritional and sensory quality traits: boar taint compounds
 content (androstenone, skatole and indole in backfat), loin and ham pH, colour,
 water-holding capacity, loin chemical composition and shear force

Experimental aims of the second trial

- ✓ Compare welfare and boar taint according to feeding (diet enriched in local and fiber components vs "standard" organic diet
- ✓ Predict boar taint at lower live weights (85, 105, 125 kg)

Experimental design

- ✓ Two replicates of 60 intact male pigs. In each replicate 30 pigs (= one group) of each experimental group
- ✓ Pigs born from LW dams and Piétrain sires with semen provided by Nucleus and selected for low taint risk
- ✓ Similar measures to those performed in the first trial

> Conclusion

Porganic a great tool for working on organic pig production Thanks for your attention!

