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Dual labelling by 2H and 15N revealed differences in uptake potential by 
deep roots of chicory 

Guanying Chen *, Dorte Bodin Dresbøll, Kristian Thorup-Kristensen 
Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegårds Alle 13, 2630, Taastrup, Denmark   

A R T I C L E  I N F O   

Keywords: 
Dual labelling 
Dynamics 
Nitrate uptake 
Rhizotrons 
Root intensity 
Water uptake 

A B S T R A C T   

Aims: Deep-rooted crops have been widely used in agricultural systems to access deep resources such as water 
and nitrogen (N). However, the potential of deep roots to take water and N at various depths have not been well 
studied. Here we used chicory (Cichorium intybus L.) to study the potential and dynamics of water and nitrogen 
uptake in deep soil layers (below 1 m). 
Methods: Chicory plants grown in outdoor rhizotrons were labelled by injecting a 2H2O and Ca(15NO3)2 mixture 
into the soil column at 1.1, 2.3 and 3.5 m depth. Five, ten and twenty days after injection, 2H and 15N were traced 
in transpiration water and leaves. 
Results: We found enriched 2H and 15N in water and plant samples, and both water and N uptake were observed 
down to 3.5 m. The 2H enrichment after injection at 1.1 m depth was 1552‰, almost 10 times higher than after 
injection at 2.3 m depth, which was 156‰. In contrast, injection at 1.1 and 2.3 m depth resulted in similar 15N 
enrichment of leaf samples. 
Conclusion: Deep water uptake was found to be more sensitive to increased depth and reduced root intensity than 
N uptake, and labelled N was used more rapidly than labelled water. We propose several possible explanations 
for the discrepancies between deep water and N uptake, and further discuss the challenges of using isotopes and 
models in deep root studies.   

1. Introduction 

Excessive application of nitrogen (N) leads to an accumulation of N 
in soils and a risk of leaching, which can cause subsequent pollution of 
groundwater (Cameron et al., 2013; Ju and Zhang 2017). Effective use of 
deep-stored water and nutrients in the soil profile by crops is therefore 
crucial to obtain high yields and minimize nutrient losses to the envi
ronment. Several strategies have been proposed to improve deep rooting 
and subsoil water and N use, in both genetic and agronomic ways 
(Gregory 2007; Kell 2011; Thorup-Kristensen and Kirkegaard, 2016). 

Deep rooting has been highlighted for its potential use of unexploited 
soil water and nutrients (Thorup-Kristensen 2006a; White and Kirke
gaard 2010; Lynch 2013), yet few studies have adequately investigated 
details of deep resource uptake. Thorup-Kristensen et al. (2020a) sug
gested that the main limitation of deep root research is that current 
methods for deep root research are costly and labour-consuming with 
insufficient throughput. Deep root growth is restricted in various ways 
such as soil acidity, soil compaction, hypoxia and suboptimal tempera
ture (Lynch and Wojciechowski 2015), and the resource uptake is often 

constrained by plant demands as well as soil nutrient availability. These 
limitations make it even harder to isolate the value of deep roots in 
resource uptake. 

Compared with topsoil, typically there are fewer unevenly distrib
uted roots in deep soil layers (Fan et al., 2016). As crops usually do not 
reach maximum rooting depths until the end of their lifecycle, roots in 
deep soil exist for a shorter time. This leads to lower exploitation of deep 
soil resources. However, deep roots can contribute notably to crop water 
and nitrogen supply (Kristensen and Thorup-Kristensen, 2004; Lilley 
and Kirkegaard 2016). Nielsen and Vigil (2018) found that wheat and 
corn extracted water from 0 to 1.8 m in the soil profile, with more than 
20% coming from the 0.9–1.8 m soil profile, despite the fact that more 
than 95% of the root biomass could be found within the top 1.04 m for 
wheat, and 0.9 m for corn. White cabbage, with a rooting depth of 2.5 m, 
remarkably reduced Ninorg by as much as 113 kg N ha− 1 below 1 m soil 
depth (Thorup-Kristensen 2006a). Deep-stored water is important to 
dryland crops (e.g. wheat) as such water can be the only available 
source, and is particularly crucial during the grain filling period when 
water deficit may lead to great yield losses. During seasonal drought 
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periods, a small number of deep roots that can take up the 
growth-limiting water could also be highly valuable to grain yield 
(Kirkegaard et al., 2007). 

Water and N are the two resources with the greatest impact on crop 
productivity and have been widely studied. Despite the similarities, such 
as high mobility in soil, there are differences in transport and uptake 
processes of water and N. Water and dissolved nutrients are brought to 
the root surface from the soil by mass flow, while N also moves to the 
root surface independently of water movement via diffusion (Comerford 
2005; Chapman et al., 2012). Given that water and N transport and 
uptake are interrelated (Plett et al., 2020), it is necessary to consider 
both when relevant studies are made. Being highly mobile, water and N 
can be acquired from the subsoil by deep roots. Unlike upper soil layers, 
where soil water and N availability are usually the limiting factors for 
root resource acquisition, the low root density and the short active 
period of the deep roots make root uptake potential and dynamics 
particularly important for efficient root uptake. Therefore, studies on 
deep root uptake capacity and dynamics are urgently needed. 

Stable isotope labelling is a widely used tool in studying soil water 
and N uptake (Calder 1992; Kahmen et al., 2008; Rasmussen et al., 
2020a). Dual labelling with 15N and 2H/18O has been successfully used 
in water and N uptake studies in the top 1.5 m soil over 1–3 days 
(Bakhshandeh et al., 2016; Kulmatiski et al., 2017). These studies 
showed that water and nitrogen uptake occur in various depth of root 
zones, suggesting that root systems have independent uptake strategies 
for different resources. Similarly, we expect that water and N uptake 
from deep soil layers (>1.5 m) differ. In general, when there are fewer 
roots, water and N uptake decreases. However, with increased depth, 
deep water uptake occurs against gravity and hydraulic resistance 
(Lobet et al., 2014), while deep N uptake is not affected by these factors. 
As a result, root water uptake tends to be more influenced by increasing 
depth than nitrogen uptake. Further, water and N uptake are mainly 
driven by plant demand. Plant N uptake peaks during the early repro
ductive stage and then declines (Imsande and Touraine 1994), while 
plants maintain a high water demand also after the canopy has been 
built. Here, we may infer that deep water and N uptake will vary during 
the growing season, especially during the early reproductive stage, 
depending on the different plant demands. 

Models provide us with an alternative way to study root water and N 
uptake (Wang and Smith 2004; Pedersen et al., 2010; Lilley and Kirke
gaard 2016). Model simulations can be used to generalize the results and 
simulate the dynamics of uptake during the season, but experimental 
validation of such simulation results are required. Characteristics of the 
soil and root system, such as soil water and N availability, root distri
bution and soil and root hydraulic conductivities are used to evaluate 
water and N uptake (King et al., 2003; Pedersen et al., 2010). Although 
studies indicate that deep roots have great potential for water and N 
uptake (Kell 2011; Rosolem et al., 2017), to our knowledge, indirect 
comparisons against plant N uptake from subsoil have only been made 
down to 2 m (Pedersen et al., 2009). Further information on deep water 
and N uptake may provide inputs to evaluate and validate resource 
uptake modules in the model and get more detailed and precise pre
dictions of root resource uptake. 

In this study, we used 15N and 2H dual labelling to investigate tem
poral and spatial water and N uptake dynamics by deep roots. The 
following hypotheses were put forward 1) the uptake potential for water 
is more sensitive to increased depth and reduced root density than the 
uptake potential for N, 2) the dynamics of deep water and N uptake 
differ, labelled N being used more rapidly after injection than labelled 
water. With this study, it is also our aim to show that dual labelling with 
15N and 2H labelled water can be used for the study of short term dy
namics of water and N uptake from deep soil layers. Chicory (Cichorium 
intybus L.), which is known as a deep-rooted forb (Vandoorne et al., 
2012; Thorup-Kristensen and Rasmussen, 2015), was used as a model 
plant. 

2. Material and methods 

2.1. Experimental site 

The research was conducted using the rhizobox facility (Thor
up-Kristensen et al., 2020b) in Taastrup, Denmark (55◦ 40′ 90.35̋ N and 
12◦ 18′ 24.84̋ E, 23 m above sea level). The rhizobox facility is built for 
investigation of deep root growth and function. The experiment was 
performed in the spring/summer 2018 with chicory (cv. “Chicoree Zoom 
F1′′) grown in the facility. 

2.2. Experimental design 

The rhizoboxes are 4 m tall, 1.2 m wide, 0.6 m thick, and fixed on the 
concrete ground. They are filled with subsoil to 0.25 m from the top 
taken from below the plough layer at Store Havelse, Denmark, while the 
top 0.25 m is topsoil collected from fields nearby the facility (Table 1). 
The average soil bulk density in the facility was 1.6 g cm− 3, with little 
variations among depths. 

Each rhizobox is split into two 4 × 1.2 × 0.3 m chambers (Fig. 1), 
facing two opposite directions. The front of each chamber is divided into 
20 panels being either 0.21 m or 0.17 m (every third) tall. Each panel is 
covered by an acrylic window, which is fixed by a metal frame. A white 
PVC board that can slide in the metal frame is placed outside the acrylic 
window to block solar radiation. The PVC boards can be removed to 
allow root imaging with a camera via the transparent acrylic windows. 
The acrylic windows can be removed temporarily for tracer injection. 
The rhizoboxes are outside and receive precipitation, with the option to 
supply additional with a drip irrigation system that is installed on top of 
the rhizoboxes with an irrigation rate of 14 mm h− 1. 

Chicory plants were sown in a greenhouse on 11 April and trans
planted to the rhizoboxes on May 3, 2017. Six chicory plants were 
planted in each chamber, corresponding to a density of 17 plants m− 2. 
All chambers were fertilized with a nutrient solution equivalent to 50 kg 
N ha− 1, 8 kg P ha− 1, 40 kg K ha− 1 on April 12, 2018. On May 28, 2018, 
all chicory plants were cut down to 0.5 m, and on 14 June the plants 
started flowering. The main measurements of the experiment were 
initiated from 28 May to 29 June, after which the biomass was har
vested. The weather data was obtained from a meteorological station on 
site. The mean temperature during this period was 18.0 ◦C and the total 
precipitation was 5.03 mm. To prevent drought stress, all chambers 
were irrigated for four, three, and 3 h on 4, 16 and 25 of June, 
respectively. 

2.3. 2H and 15N labelling 

Chicory’s uptake of water and nitrate were studied by injecting an 
enriched 2H2O and Ca(15NO3)2 solution into the soil volume at three 
different depths (1.1, 2.3 and 3.5 m), repeated in four chambers for each 
depth. 4.35 g Ca(15NO3)2 (>98 at% 15N) was mixed with 600 ml 2H2O 
(2H content = 99.94%) and 600 ml distilled water. The following as
sumptions were made to determine the amount of tracer added: 1) the 
soil volumetric water content is no less than 15% and soil contains 50 kg 
N ha− 1; 2) the abundance of 2H and 15N in the pre-labelled soil pool is 
natural; 3) 10% of the 2H and 15N injected at a specific soil depth is taken 

Table 1 
Characteristics of soil used in the rhizoboxes (Rasmussen et al., 2020b).  

Depth (m) Organic 
matter 
(%) 

Clay(%) 
<0.002 
mm 

Silt(%) 
0.002–0.02 
mm 

Fine sand 
(%) 
0.02–0.2 
mm 

Coarse 
sand 
(%) 
0.2-2 
mm 

pH 

0–0.25 2.0 8.7 8.6 46.0 35.0 6.8 
0.25–4.00 0.2 10.3 9.0 47.7 33.0 7.5  
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up, and 4) tracer distributes evenly at the targeted depth, with a labelled 
soil volume of 61.2 L. A 100 ml mixture of 2H2O and Ca(15NO3)2 was 
injected per injection layer. At the selected soil layer, two parallel rows 
of ten injection points distributed 10 cm apart were made using a steel 
rod, resulting in a total of 20 holes. In each hole, the tracer solution was 
injected at five different points, giving an even distribution of the tracer 
mixture in 100 injection points in total for each injected depth (Fig. 1). 
Each point received 1 ml of the mixture. The injection was conducted 
between 13:00 and 16:00 on May 29, 2018. The injection of 15N and 2H 
was proven to significantly increase the fraction of 15N and 2H in the 
targeted depths (Table 2). 

Collection of transpiration water and leaf samples to capture tracer 
uptake signals was conducted in the morning right before the injection 
as a control, and five, ten, twenty days after the injection. The transpi
ration water collection method has been validated previously (Calder 
1992; Lambs and Saenger 2011; Beyer et al., 2016). From 9 to 11 a.m. on 
a sampling day, all plant biomass of each target plant was covered with a 
plastic bag and tightened by rubber bands at the bottom (Fig. 1). 
Transpiration water was collected 2 h later as droplets of condensed 
water gathered inside the bags. The water was transferred from bags to 
sealed plastic bottles. At the end of the experiment, all transpiration 
water samples were filtered with 2 μm filter paper to remove any leaf 

fractions, pollen and dust. Filtered water from all plants grown in the 
same chamber was pooled into one sample. 

For 15N analysis, leaf samples were collected by using a puncher with 
a diameter of 9 mm on the third to fifth leaves from the top on the same 
day as the transpiration water sample collections (Fig. 1). Two to three 
pieces of leaf samples were collected from each plant. Leaf samples from 
the same chamber were mixed and dried at 70 ◦C over 48 h to constant 
weight. 

2.4. Soil water content and water uptake 

Time-domain reflectometry sensors (TDR-315/TDR-315 L, Acclima 
Inc., Meridian, Idaho) were installed at four depths (0.5, 1.4, 2.3 and 3.5 
m) and soil volumetric water content (VWC; %) was recorded every 10 
min on a datalogger (CR6, Campbell Scientific Inc., Logan, Utah). 

In November, the amount of precipitation fully saturated the soil 
column. Field capacity (FC) was estimated in each 1 m layer as the mean 
of VWC, three days after the highest VWC occurred. Assuming there is 
little water movement when the soil water content is below FC, the 
measured changes in VWC were used as an approximation of plant water 
uptake. As irrigation events triggered water movement in the soil 
(Fig. 2), only VWC data from the periods between irrigation were used, 

Fig. 1. Schematic drawing of a single chamber from the rhizobox facility and main activities conducted in this experiment. The yellow dashed lines indicated depths 
where the TDR sensors were installed. Tracer injection was conducted at 1.1, 2.3 or 3.5 m, as blue dashed lines indicated. 

Table 2 
Soil volumetric water content, soil NO3–N content, original and estimated δ2H and δ15N of targeted depths. Soil water content, NO3–N content and δ15N in non- 
enriched soil were measured right before injection.  

Depth 
(m) 

Soil volumetric 
water content 
(%) 

Soil NO3–N content (mg N 
kg− 1 dry soil) 

Estimated 
δ2H in non-enriched soil 
water (‰) 

Estimated 
δ2H in enriched soil 
water (‰) 

δ15N in non-enriched 
soil (‰) 

Estimated δ15N in enriched 
soil (‰) 

1.1 16.7 0.4 − 36.9 31356.7 55.0 405548.8 
2.3 16.5 0.4 − 36.9 31737.2 137.4 405548.8 
3.5 17.9 0.5 − 36.9 29289.0 162.0 326425.6  
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avoiding any data in the first three days after irrigation and waiting until 
the sensor data indicated that irrigation triggered water movement had 
stopped. Three five-day intervals, 30 May to 4 June, 9 to 14 June, and 19 
to 24 June, were chosen to estimate the average daily water uptake 
during the labelling period. For calculating daily plant water uptake 
estimates, each of the four sensors was taken to represent water content 
in a 1 m soil layer, thereby dividing the whole 4 m soil column into four 
1 m sub-columns. Total water amount (Wa; mm m− 1 soil column) in each 
sub-column was converted from VWC (Wv; %), 

Wa =
Wv × V

S
× 1000 (1)  

where V and S are the volumes and bottom surface area of the sub- 
column. The daily average decrease of water in each sub-column in 
the five-day period was interpreted as daily water uptake (mm m− 1 soil 
column day− 1). The simplification of getting water uptake from changes 
of VWC has been used in previous studies (Gaiser et al., 2012; Ras
mussen et al., 2020a). 

2.5. Root measurements 

A digital camera (Olympus Tough TG 860) was used to record root 
growth on the surface of rhizoboxes via transparent acrylic windows. 
The camera was placed on a half-closed plywood box, with internal LED 
light strips as a light source (Fig. 1). It was designed to slide along the 
metal frames of each panel when the PVC boards were removed. With 
this camera box, four photos that covered the full area of the panel were 
taken on all 20 panels of each rhizobox chamber. During the experi
mental period, root imaging was done three times in total. 

Root intensity (root intersections m− 1 line) at each depth was 
calculated by using the line intersect method. The method was 

developed by Newman (1966), then modified by Marsh (1971) and 
Tennant (1975). It has been successfully used in minirhizotron and 
rhizobox studies previously (Kristensen and Thorup-Kristensen, 2004; 
Rasmussen et al., 2020b). In this experiment, the root images were 
covered from wide panels with 20 × 20 mm grids, and the total length of 
lines per panel was 3.97 m. Images from the first panels were excluded, 
as the upper part of the panels were exposed to sunlight due to the 
sinking of the soil, which gave us low-quality images. Narrow-panel 
images were also excluded as the soil there was disturbed a lot by in
jection, soil sampling, etc. In the rest panels, root intensity was recorded 
by counting the total number of roots intersecting the lines at each 
panel. 

2.6. Soil and isotopic analyses 

Soil samples from the injection layers were collected twice to 
compare soil mineral N and 15N enrichment before tracer injection and 
at the end of the experiment. 20 g sub-samples of soil from each sample 
was mixed with 100 ml 2 M KCl solution. The solution was shaken for 1 h 
and filtered through 2 μm filter paper. After filtering, the samples were 
frozen. 

At the end of the experiment, all collected biomass samples were 
weighed, milled, and encapsulated. 15N concentration in solid and soil 
solution samples was analyzed using a continuous-flow isotope ratio 
mass spectrometer (IRMS). Mineral N content in the frozen soil samples 
was analyzed as well. δ2H in transpiration water samples was analyzed 
using a Laser Water Isotope Analyzer V2 (Los Gatos Research, Inc., 
Mountain View, CA, USA). All analyses mentioned above were done at 
the UC Davis Stable Isotope Facility. 

2H and 15N values were assumed to be present in samples with delta 
notation (δ). Definition of δ has been given by Coplen (2011): 

Fig. 2. Soil volumetric water content (VWC; %) dynamics at (a) 0.5, (b) 1.4, (c) 2.3 and (d) 3.5 m depths from 27 May to 18 July in 2018. Data was collected from 
TDR sensors at the corresponding depths. Data from 0.5 to 1.4 m depths were used to estimate VWC changes at 1.1 m depth. Irrigation events can be seen as peaks 
most clearly in (a). The segments represented periods that were selected to calculate daily water uptake in Fig. 6. Field capacity data were obtained subsequently, 
using data measured three days after soil columns were fully irrigated during November in the same year. Bands around the lines denote standard errors (n = 4). 
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δ=
Rsample

Rstandard
− 1 (2) 

In eq. (2), for δ2H calculation, Rsample is 2H/1H ratio in samples and 
Rstandard here is Vienna standard mean ocean water (≈1/6412); for δ15N, 
Rsample is 15N/14N ratio in samples and Rstandard here is 0.003676467. 

In this paper, 2H and 15N enrichment (‰) were calculated as the 
increase of δ 2H and δ 15N from pre-tracer sampling to post-tracer 
sampling. 

2.7. Statistics 

Data were collated and plotted using R (Version 3.5.3, R Core team 
2019). The combined effect of sampling date and depth on root intensity 
was tested in a two-way ANOVA. To test the differences in root intensity 
among injected depths during the experimental period, a linear mixed 
model was used, where the depth was the fixed factor and the chamber 
was a random factor. Analyses of covariance (ANCOVA) was conducted 
to test depth and date mixed effects on 15N enrichment in leaf and 2H 
enrichment in transpiration water, with δ15N/2H in samples before 
labelling as a covariate. 

Linear mixed models were used to test the main effects of soil mineral 
N concentration and 15N and soil, with sampling date and injection 
depth as fixed effects, and the chamber was included as a random effect. 
One soil sample, which was sampled at 3.5 m depth on 16 July, was 
removed due to an unexpected high 15N value compared to the others 
(atom% was 30% while other replicates were lower than 5%). The main 
effects of time and depth on daily water uptake was tested using a linear 
mixed model. Chamber was included as a random factor. 

For 2H enrichment and soil δ15N analysis, data were log-transformed 

to fulfil assumptions of normality and homogeneity. Multiple compari
sons (Tukey HSD; P ≤ 0.05) were done based on values derived from 
linear mixed models, ANOVA or ANCOVA. 

3. Results 

3.1. Root intensity 

Roots were present in the entire soil profile of the 4 m deep rhizo
boxes under the one year old chicory plants before the time of injection 
(Fig. 3a). Root intensity declined with depth, with only few roots 
observed below 3.5 m. Additionally, there was a tendency towards a 
decline in root intensity during the experimental period in the upper 3 m 
of the soil (Fig. 3a), but the decline was not significant at any specific 
depth. To make sure labelling would not affect root growth, we tested 
differences of root intensity between labelled and non-labelled soil 
layers at the same depths, and no significant differences were found. 

During the labelling period, the highest root density among all three 
injection depths was 3.9 intersections m− 1 at 1.1 m depth, and the 
lowest was 0.3 intersections m− 1 at 3.7 m depth (Fig. 3b), while root 
density was intermediate at 2.1 m depth with 1.7 intersections m− 1. 
Root intensity at 1.1 m was significantly higher than at the other two 
labelled depths. 

3.2. 2H and 15N enrichment 

On the first two sampling days, as well as five and ten days after 
injection, 2H enrichment of transpiration water was significantly lower 
when the tracer was injected deeper (Fig. 4a). The enrichment after 

Fig. 3. (a) Root intensity measured on 23 May (six days before tracer injection) and 27 June (two days before harvest) in 2018. (b) Root intensity at three injected 
depths on 14 June. Root intensity at the injected depth was estimated based upon averages of root intensity at soil layers 0.2 m below and above injected depths. 
Error bars denote standard errors among all chambers where we injected tracers at different depths (n = 12). Mean values are shown here (±SE). 
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injection at 1.1 m depth was 1552‰, nearly 10 times higher than after 
injection at 2.3 m depth, which was 156‰. Almost no enrichment was 
observed after injection at 3.5 m depth. Furthermore, the time course of 
2H enrichment of transpiration water was affected by the injection 
depth, as the increase in enrichment was delayed by deeper injection. 

After injection at 1.1 m, maximum enrichment was observed already at 
the first sampling date, followed by a non-significant tendency to a 
decline later. After injection at 2.3 m, a significant increase over the 
sampling times was observed, and after injection at 3.5 m, no effect was 
observed until the last sampling date when a slight but significant 

Fig. 4. (a) 2H enrichment in transpiration water and (b) 15N enrichment in leaf samples measured five, ten, twenty days after tracer injection at 1.1, 2.3, 3.5 m of soil 
depth. Mean values are shown here (±SE). Error bars denote standard errors (n = 4), and letters indicate significant differences across all the treatments (p < 0.05). 

Fig. 5. (a) Soil nitrate concentration and (b) δ15N at the three injection depths right before injection (29 May), and after final sampling (16 July). Mean values are 
shown here (±SE). Error bars denote standard errors (n = 4; in Fig. 5b and 3.5 m, 16 July, n = 3), letters indicate significant differences across all the treatments (p 
< 0.05). 
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increase in enrichment was seen (Fig. 4a). 
The 15N enrichment of leaf samples showed a somewhat different 

result, and the differences observed were smaller, leaving fewer signif
icant differences (Fig. 4b). The 15N enrichment of leaves after injection 
at the two upper layers showed similar results. Unlike the 2H results, 
enrichment from 1.1 m to 2.3 m injections were high already at the first 
measurement date. As with 2H, no enrichment was observed on the first 
two sampling dates from injection at 3.5 m depth, and only a non- 
significant increase was seen at the last date. Ten days after injection, 
15N enrichment from 1.1 to 2.3 m were significantly higher than from 
3.5 m. However, twenty days after injection, there was no significant 
difference between 15N enrichment from 2.3 m to 3.5 m. 

3.3. Soil nitrate concentration and δ15N 

As 15N labelling provided an extra nitrate source, the soil nitrate 
concentrations tended to be higher at all depths after the experiment 
than before injection (Fig. 5a). Soil nitrate concentration measured 
before and after the injection showed smaller net increases of 0.09, 0.06 
and 0.15 mg kg− 1 at the three depths, respectively, but the effect was not 
significant. 

The soil 15N values also tended to be higher after 15N injection at all 
depths (Fig. 5b), but the increase was much stronger at 3.5 m depth than 
at 1.1 and 2.3 m depth, and only significant there. Before the injection, 
soil δ 15N values were relatively low and there were no differences 
among the depths. 

3.4. Water uptake 

The soil dried out gradually during the experiment at all four depths 
where water sensors were placed. While infiltrated water from irrigation 
events (Fig. 2) reached 2.3 m depth and caused an increase of soil water 

content right after irrigation events, soil water at all depths decreased 
continuously due to plant water uptake. At all depths, the water uptake 
after harvest was negligible, indicating that plants stopped extracting 
water from these depths. 

During the selected five-day intervals, the volume of absorbed water 
decreased with increasing depth (Fig. 6). These intervals started at least 
two days after irrigation to avoid over-estimation of soil water content. 
Among all three periods, plants absorbed the most water from the up
permost 1 m of the soil. Within 1–6 days after labelling, the average 
daily water uptake by plants from 0 to 1 and 1–2 m soil column was 7.2 
mm and 1.4 mm. At the same time, plants took less than 1 mm of water 
per day from the 2–3 and 3–4 m soil layers. Daily water uptake from 0 to 
1 m decreased to 4.4 mm at 11–16 days after labelling, and after 21 days, 
plants still acquired more than 4 mm water from 0 to 1 m soil per day. 
Daily water uptake from 1 to 2 and 2–3 m tended to be higher in the 
middle of the labelling period and decreased thereafter, although none 
of these changes was significant. 

4. Discussion 

Fewer chicory roots were observed in deeper layers than were found 
in previous studies (Sapkota et al., 2012; Thorup-Kristensen and Ras
mussen, 2015). However, despite the fewer roots, considerable water 
and N were taken from the soil below 1 m by chicory. Using a dual 
labelling technique, the work presented here successfully showed the 
short term uptake potential and dynamics of deep water and N. In this 
experiment, the root water uptake was found to be more reduced with 
increased depth and declined root density compared with N uptake. In 
addition, in the labelling period, 15N tended to be exploited more rapidly 
than labelled water. The discrepancies between water and N uptake may 
be caused by various factors, which will be further discussed below. 

Fig. 6. Mean daily water uptake from 0 to 1, 1–2, 2–3 and 3–4 m depths after labelling. The daily decrease in soil volumetric water content per meter soil column was 
interpreted as daily water uptake. Soil volumetric water content per meter soil column was recorded by the TDR sensor located in the column. After isotopic labelling 
at given depths, the soil water content data of corresponded soil columns was collected. Data from 0 to 1 m and 1–2 m helped estimate water uptake from the depth 
where tracers were injected at 1.1 m. To avoid the effect of irrigation, daily water uptake from each depth was calculated as averages of three five-day periods (30 
May to 4 June, 9 to 14 June, and 19 to 24 June), respectively. Error bars denote standard errors (n = 4), letters indicate significant differences across all the 
treatments (p < 0.05). 
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4.1. Deep water uptake 

Water in soil moves with various processes, e.g. infiltration, redis
tribution, evaporation, plant uptake and drainage (Hillel 1980). 
Although the isolation of plant uptake from other processes is compli
cated, we are trying to simplify the processes with the current experi
mental setup to get an idea of deep water uptake. To avoid the effect of 
irrigation on water movement, we only selected the periods at least 
three days after irrigation for water use observations. Assuming there is 
little water movement caused by evaporation and drainage in wet, deep 
soil layers in rhizoboxes, details of deep water uptake from different 
depths can be obtained. 2H enrichment of transpiration water decreased 
significantly with decreasing root intensity and increasing soil depth. 
Based on our estimated calculations, daily water uptake from the top 1 m 
soil reached 7 mm m− 1 d− 1 while less than 1 mm m− 1 d− 1 water was 
taken from 2 to 3 m soil during the experimental period. Although 
several studies have shown that deeper roots allow water acquisition 
from subsoil (White and Kirkegaard 2010; Gaiser et al., 2012; Cutforth 
et al., 2013), their limited ability to take up water can be a general 
feature, as indicated in the present results. Compared with topsoil, 
subsoil is hard for roots to penetrate, thus there are fewer roots in deep 
soil layers. The roots that can keep elongating in these conditions also 
prefer to grow in pores and cracks, which would lead to poor root-soil 
contact, making it harder to obtain water (White and Kirkegaard 
2010). Further, due to higher proportions of immature young roots, 
roots in deep soil layers generally have higher axial resistance and 
therefore do not extract water as efficiently as old, shallower roots 
(Garrigues et al., 2006; Pierret et al., 2006). 

4.2. Deep N uptake 

15N enrichment in leaves together with 15N left in the soil after 
harvest indicated little N uptake from 3.5 m, probably as a consequence 
of the low root intensity. 15N signals were seen in leaves five days after 
tracer was injected at 1.1 and 2.3 m, and no significant differences were 
seen for nitrate uptake from 1.1 to 2.3 m. Plant N uptake is affected by 
soil N availability (Kulmatiski et al., 2017) and plant uptake capacity 
(Robinson 1986). The plant uptake capacity is further determined by the 
interactions of plant N demand and root uptake capacity. At the two 
upper layers, where more roots were found than in the deepest layer, 15N 
absorption occurred at high rates shortly after the injection. Even a 
relatively low root intensity at 2.3 m in our experiment was as efficient 
for N uptake as the higher root intensity at 1.1 m. Similarly, efficient 
deep N uptake was also found previously, e.g. Thorup-Kristensen 
(2006a, 2006b). Twenty days after injection, soil 15N had been depleted 
in upper layers, leading to a decrease of 15N in the young leaves sampled 
for 15N analysis. We also noticed a gradual increment of 15N enrichment 
in plants injected at 3.5 m at the same time. In the past few years, while 
root N uptake is often studied at the level of transporters and root sys
tems (Rowe et al., 2001; Nacry et al., 2013; Kulmatiski et al., 2017), the 
intrinsic variation of N uptake among root segments has rarely been 
studied. Our results showed that N uptake may differ within a root 
system with time and N availability. When N is available in the soil, as it 
was in the first few days of labelling in our experiment, root length and 
uptake rate are limiting factors for N uptake. When N is gradually moved 
by plants from the soil, the availability rather than root length becomes 
the limiting factor. This explained the decreasing uptake from the top 
two layers and the lagging absorption from the deepest layer. 

4.3. The disparity in the uptake of water and N 

Due to the different sampling methods, the isotopic results of water 
and N were not directly comparable. By sampling young leaf material for 
15N analysis, the results include the effect of accumulation of 15N in the 
plant material over time, contrary to the real-time isotope enrichment as 
2H enrichment in transpiration water. Also, the water and N content of 

injected depths are only partly comparable in the results, as there were 
no TDR sensors at 1.1 m. Nevertheless, we still conclude that there are 
discrepancies in water and nitrogen uptake. Soil δ15N and plant 
enrichment indicated more rapid uptake of labelled nitrogen than water 
from the subsoil, especially from 2.3 m depth, which supported our 
hypothesis (2) that the dynamics of deep water and N differ. We 
observed low but increasing content of 2H water in transpiration water 
from 2.3 to 3.5 m 20 days after injection, showing that labelled water 
remained in the soil, and was taken up at gradually increasing rates. 15N 
enrichment in leaves showed insignificant changes 10 days after injec
tion. Considering that little labelled N was left at 1.1 and 2.3 m, we 
concluded that a large proportion of labelled N was taken from these two 
depths during the first 10 days. 

Our results are consistent with McCulley et al. (2004), who suggested 
nutrient uptake as a contributing explanation for the occurrence of deep 
roots. Instead of taking water directly from deep soil layers, deep roots 
played a more important role in altering water and nutrient distribution 
in the soil profile via hydraulic redistribution (McCulley et al., 2004). 
Here, we further examined the extent of water and N uptake at different 
depths and proposed several explanations on their uptake disparities. 
Firstly, the radial and axial resistances mentioned above may inhibit 
root water uptake from subsoil but no evidence has been shown for 
similar inhibition of nitrate uptake. Secondly, the water supply from the 
topsoil may have been sufficient to supply most of the water demand by 
the plants with repeated irrigation to the topsoil, while the N demand by 
the plants exceeded the topsoil supply, leading them to deplete all 
available soil layers. In deep soil layers where the transpirational force is 
absent, N may still move to the roots by diffusion (Comerford 2005; Plett 
et al., 2020). Moreover, from the molecular aspect, when plants are 
exposed to N limitation, the capacity of high-affinity transport systems 
(HATS) would be upregulated to improve the N uptake efficiency (Nacry 
et al., 2013). These mechanisms allow continuous N uptake from the 
deep soil layers, even when little water is taken up from there. Thirdly, 
within the same root system, the root water uptake potential of different 
segments are non-uniform. Upper roots near the soil surface were found 
to have higher radial and axial fluxes, which benefit both root water 
uptake and transport (Zarebanadkouki et al., 2013). Conversely, 
although nitrate uptake kinetics may also vary within root systems, the 
maximum influx rate of nitrate of root segments was most affected by 
plant age and nitrate deprivation time, rather than their position (York 
et al., 2016). This could explain why we observed less and slower water 
uptake from the lower layers, while the uptake rate of N in the top two 
layers did not differ significantly. 

4.4. Methodological considerations in deep root studies 

2H and 15N labelling is a promising way to study the dynamics of 
water and nitrate uptake (Calder 1992; Kahmen et al., 2008; Bakh
shandeh et al., 2016; Kulmatiski et al., 2017). However, there are some 
inevitable problems when the technique is used in deep root studies. As 
2H and 15N are highly mobile in the soil, they can move freely with water 
movement. In previous studies, 2H moved 0.1 m up along the soil profile 
in a mesic savanna after one week of tracer injection at 1.2 m (Kulma
tiski et al., 2010), while capillary rise transported 2H at distances be
tween +0.1 m and − 0.05 m from 1 m in 35 days (Grunberger et al., 
2011). Furthermore, there was a clear sign that a small amount of 
injected 2H can move with the transport of water vapour in a longer 
period (Beyer et al., 2016). Thus, for labelling with these mobile re
sources, short time intervals between labelling and uptake measure
ments are preferable, to be certain that the tracer was taken up at 
approximately the same depth where it was injected. In addition to the 
inconsistencies in sampling methods mentioned above, the short active 
period of the deepest roots makes it even harder to choose the right 
labelling time. To study nitrate uptake from the deepest roots, 15N 
labelling has to be done when the roots reach the deepest layers, which 
usually is at the late growth stages. Since nitrate uptake decreases after 
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flowering (Fischer 1993; Imsande and Touraine 1994), labelled 15N 
accumulation in leaves can be relatively low if the isotope is applied 
after flowering. To obtain more precise results, destructive sampling is 
preferable, so actual 15N uptake, rather than just 15N enrichment can be 
determined, but this will require a higher number of treated plots, 
generally not possible in deep root studies. 

Considering the complexities of root studies, several models have 
been developed and used in simulating resource uptake from soil (Ma 
et al., 2008; Kumar et al., 2015). However, deep root resource uptake 
has rarely been considered in soil-crop models. As we observed signifi
cant water and nitrogen uptake below 2 m, this should be included in 
future soil-crop models. Heterogeneous uptake among different parts of 
roots is often not well accounted for in the models (Rengel 1993; Javaux 
et al., 2013), and uniform estimations for the whole root system may 
lead to over- or under-estimation of uptake, especially for water uptake. 
We expect that our results can be used to better characterize the pa
rameters in future simulations. 

Previous studies already showed the substantial value of deep roots 
for resource uptake (Kristensen and Thorup-Kristensen, 2004; Rasmus
sen et al., 2020a). Our findings not only confirmed the contribution of 
deep roots to water uptake but further indicated their potential to up
take N is considerable as well. This potential can be valuable in main
taining crop productivity, especially under drought stress, where water 
and N uptake in topsoil can be both limited. However, we still lack the 
understanding of where and when the deep roots are active, and how 
efficient they can be. This is crucial information needed to improve deep 
resource use efficiency, as there are few roots in the deepest soil and they 
are only active within a short period. Here, with the help of isotope 
labelling, we have successfully looked into detailed uptake dynamics 
and proved that this method can be used in further studies. 

In conclusion, we confirmed that deep-rooted chicory plants can take 
water and nitrate from the subsoil, and documented uptake to a depth of 
3.5 m, but with different efficiency and dynamics. Compared with N, the 
root water uptake is prone to decrease with increased depth and fewer 
roots. These findings extend our previous observations on deep water 
and nitrogen uptake, and are meaningful for model calibration as well. 
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