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Quantitative mapping 
and spectroscopic characterization 
of particulate organic matter 
fractions in soil profiles 
with imaging VisNIR spectroscopy
Markus Steffens1,2*, Lilli Zeh3, Derek M. Rogge4 & Henning Buddenbaum5

Organic matter is an important constituent of soils that controls many soil functions and is of vital 
importance for ecosystem services like climate regulation and food security. Soil organic matter 
(SOM consists of a wide spectrum of different organic substances that are highly heterogeneous in 
terms of chemical composition, stability against microbial decomposition and turnover time. SOM is 
heterogeneously distributed in the soil profile impeding its fast assessment. A technique to accurately 
measure SOM quality and quantity with a high spatial resolution in the soil profile is presently lacking. 
Imaging visible light and near infrared spectroscopy (imVisIR) is a promising technique for the fast and 
spatially resolved assessment of SOM quality and quantity. In this study, we evaluate the potential of 
imVisIR to quantitatively map the labile particulate organic matter fraction in undisturbed cores from 
mineral soils.

Organic matter is an important constituent of soil, strongly affecting most chemical, physical and biological soil 
properties. The pertinence of its accurate quantitative and qualitative assessment will even increase, because 
of the rising awareness of its role in climate change mitigation and adaptation1, and food security. It is widely 
accepted that soil organic matter (SOM) is not adequately represented purely by its quantity, but that its quality 
is of equal importance for soil functioning. SOM consists of a wide spectrum of different organic substances 
varying in bio-chemical and –physical structure and complexity, size, age and turnover time2. It contains both 
undecomposed, large and highly complex plant and animal tissue, and small and microbial-processed molecules 
in close interaction to the mineral phase. In order to understand and model the impacts of climate change and 
land use effects, SOM is often defined to be composed of a few conceptual pools with different turnover times3–5. 
The labile pool is the one that is first and mostly affected by human management and climate change6. This labile 
pool is composed of the particulate organic matter7–9 (POM)—rather large (> 20 µm), less decomposed remains 
of plants and animals, that are not stabilized through the intimate interaction with soil minerals but through 
occlusion in macroaggregates10. This stabilization is active for periods of weeks to months, leaving this fraction 
of SOM relatively prone to decomposition5,11. Hence, it is of great importance for nutrient cycling, plant nutri-
tion and sustainable land management. Most authors agree that the stabile SOM pool is represented by the OM 
that is intimately associated with the mineral phase and thus stabilized for longer periods up to decades and 
centuries5,12,13. This pool is vital for the formation of a stable (micro)aggregate structure and the adsorption 
capacity of a soil. In the context of climate change and the ongoing discussion if and how carbon sequestration 
in soils should be considered as a natural carbon sink, a deeper understanding of carbon dynamics and especially 
the stability and turnover of SOM is of vital importance.

State-of-the-art methods of physical fractionation to derive qualitative and quantitative assessment of SOM 
is a time- and work-intensive process14. Furthermore, this fractionation requires rather large amounts of sample 
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material (> 20 g), which in most studies are taken as a homogenised or sieved sample that represent a diagnos-
tic horizon. This procedure complicates the assessment of SOM dynamics at a high spatial resolution beyond 
diagnostic horizons, and could even reduce the accurate determination of POM fractions due to the disturbed 
aggregate structure in the homogenised sample. In addition, the fractionation is a destructive method, preventing 
additional analyses of the intact soil volume. In order to comprehensively understand, measure, and model the 
effects of climate and land use change on soils, an accurate and high-resolution assessment at the pedon or soil 
profile scale is mandatory15,16. The importance of high-resolution mapping is even more striking when recalling 
the recent developments in international agricultural policy, where direct payment for climate change mitigation 
through agricultural management is discussed (Koronivia Joint Work on Agriculture). Presently, a technique that 
accurately measures SOM quality and quantity at a high spatial resolution in the soil profile is lacking. Having 
such a technique that can be automated would enable the evaluation of management and environmental effects 
on bulk SOM and its more dynamic fractions.

Spectroscopic methods make use of the fact that elements and molecules of simple to complex structure 
selectively absorb or reflect electromagnetic radiation depending on wavelength. For opaque media like soil, 
only reflectance spectroscopy can be applied and due to their surface roughness diffuse reflectance is mostly 
measured. Spectroscopic methods are non-destructive and can be acquired in a fast, robust and easily stand-
ardisable process. The interpretation of the data is commonly done by comparing the spectra to standardized 
spectral libraries or calibrated to other analytical techniques using various statistical approaches. In the visual 
light (400–700 nm = Vis) and near to shortwave infrared domain (700–2500 nm = NIR), the identification of 
materials is complex because the signals of different elements and molecules are superimposed. In soil sciences, 
infrared (IR) reflectance spectroscopy is a standard analytical method to determine various soil properties17–21. 
Many studies have shown that the organic carbon content22 and soil texture23 can be determined precisely. 
Fractions24,25 and/or chemical composition of SOM26–28, mineralogy29, and aggregate stability30,31 were deter-
mined spectroscopically in soil samples. In the context of carbon sequestration and stabilisation, Hermansen 
et al.32 showed even a good predictability of the clay/SOC ratios using VisNIR spectra. In addition to these 
methodologically interesting studies on small data sets, it could be shown that both the grain size distribution 
and the organic carbon content can be determined with sufficient accuracy with commercially available VisNIR 
spectrometers even for the nationwide survey “Bodenzustandserhebung” in Germany33,34. Riedel et al. 35 prove 
the potential of VisNIR spectroscopy in a continuous soil monitoring for SOC, pH and various metals on the 
state level in Germany and Clairotte et al.36 describe similar results for France. Several authors showed that the 
European soil database LUCAS and its new spectral database for Europe37 can be used for the comprehensive 
estimation of soil organic carbon in Europe38,39. Viscarra Rossel and Hicks40 analysed the potential of VisNIR 
spectroscopy to estimate total SOC content and stocks and of specific carbon fractions for Australia where they 
conclude that spectroscopic determination requires minimal sample preparation, is rapid, practical and cheap.

Imaging IR spectroscopy is a rather new spectroscopic application where hyperspectral cameras are used 
to acquire spatially resolved IR spectra of undisturbed soil cores41–50. In previous studies, we could show that 
imaging VisNIR spectroscopy (further denominated as imVisNIR) can be used to map SOC content41 and even 
discriminate SOM particles with different chemical qualities non-destructively in cores of organic soils with a 
high spatial resolution42. In this study, we evaluate the potential of imVisNIR to quantitatively map the POM 
fraction in undisturbed cores from mineral soils. We used two hyperspectral cameras to capture the visible 
(400–1000 nm) and near infrared (1000–2500 nm) reflectance of soil cores from two adjacent sites with similar 
soil types but different OM inputs due to different grazing intensities. After the soil cores were imaged with the 
hyperspectral camera, they were sampled and physically fractionated to quantify the amount of POM. The POM 
fractions were spectroscopically characterized and these spectra were used for image processing and POM iden-
tification in hyperspectral images using a supervised classification approach. Using this measurements acquired 
we have developed an image analysis procedure based on a limited number of spectral features, representing 
known physical characteristics of the analysed materials. This procedure reduces computing time, and allows for 
the direct and intuitive interpretation of the results by the user. The successful application of this new technique 
will allow the rapid and non-destructive assessment of quality, quantity and spatial distribution of the labile OM 
pool for complete soil profiles. Furthermore, our approach has the potential to significantly improve nationwide 
soil monitoring systems that rely on core samples51 and add to novel soil sampling and analysis systems like the 
Australian Soil Condition Analysis System (SCANS)52.

In order to evaluate the potential of imVisIR and our image analysis procedure, we will test the following 
hypothesis using two differently grazed plots: (1) The two sampled plots represent similar soil types, are com-
posed of comparable soil constituents, and the SOM is qualitatively similar between the two grazing systems. The 
ungrazed plot contains more SOM than the grazed plot; (2) the separated SOM fractions show similar spectra 
between the two plots and a limited number of spectral bands is sufficient to discriminate SOM from mineral 
soil material and even identify SOM fractions; and (3) imVisIR can be used to quantitatively map the labile OM 
pool in undisturbed mineral soil profiles.

Materials and methods
Study area and soil sampling.  Soils were sampled near the Inner Mongolia Grassland Ecosystem 
Research Station (IMGERS, administered by the Chinese Academy of Sciences; 43°38′ N, 116°42′ E). IMGERS is 
located in the autonomous region Inner Mongolia (northeastern China) approximately 450 km north of Beijing, 
near the city of Xilinhot. All soils were classified as Calcic Chernozems53, derived from aeolian sediments above 
acidic volcanic rocks. Generally, secondary carbonates occur in a depth of approximately 30 cm54 and down-
wards, but were not found in the sampled soil volumes.
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The study area is located in a gently rolling landscape (average altitude = 1270 m above sea level) and is domi-
nated by Stipa grandis and Leymus chinensis grasslands. Its climate is classified as a dry and cold middle latitude 
steppe climate (Bsk). Mean annual temperature and mean annual precipitation are 0.8 °C and 326.5 mm, with the 
highest values for both between June and August (mean from 1982 to 2003). Before 1979, the whole experimental 
area was grazed at low intensity. In 1979, plot 1 (24 ha) was fenced and excluded from grazing until now (further 
denominated as Ungrazed). After 1979, the grazing intensity in the region increased to a moderate level. Plot 2 
(24 ha) is grazed by sheep and goats during the whole year, with the highest intensity during summer, equivalent 
to a grazing intensity of 1.2 sheep units ha−1 yr−1 (further denominated as Grazed). Further information on the 
region can be drawn from the synthesis paper of the research group MAGIM55.

In 2012, we sampled one soil profile in each plot with a custom-made stainless steel box (100 × 100 × 300 mm3). 
This box was designed to sample an undisturbed, representative volume of a soil profile and allow imaging tech-
niques to be applied on a profile face. The steel box was vertically inserted into the soil from the surface after the 
litter layer was removed. Both samples contained soil material from the Axh horizons56. Then the soil core was 
carefully excavated and dried in the stainless steel box at 30 °C to a constant weight.

Imaging setup and pre‑processing.  Hyperspectral images of the soil profile were taken at the Depart-
ment of Environmental Remote Sensing and Geoinformatics at the University of Trier. After one image was 
taken, we sampled the profile face with a grid of 10 squares (2 × 5; each 4.5 × 6 × 1  cm3) for further analyses 
(regions of interest; referred to as “ROI samples”). Then a layer of approximately 15 mm was manually removed 
from the profile face, the new surface carefully planished and the next image was taken. In total, we took three 
images and sampled 30 ROIs per core (60 samples in total).

Images of all soil cores were acquired with a HySpex VNIR-1600 (further denominated as VNIR; 410–990 nm) 
and a HySpex SWIR-320 m-e (further denominated as SWIR; 970–2500 nm) hyperspectral line scanner camera 
(Norsk Elektro Optikk, Norway). The cameras were set up in a laboratory frame 30 cm above the sample with 
two tungsten halogen light sources, which are connected via fibre optic cables to two lenses that concentrate the 
light in a line at the camera’s field of view. This set-up illuminates the sample from a distance of about 35 cm and 
at an angle of about 45° in front of and behind the camera to reduce shadow and shading. All lamps and cameras 
were pre-heated for 15 min. The sample was placed on a translation stage, which moved the sample under the 
cameras, so that images with square pixels were formed from the single lines that the cameras record at a time. 
The translation speed is automatically aligned to the optimum integration time by the HySpex software. Prior to 
each experiment the integration time was adjusted by increasing it until we got over-saturation on a grey refer-
ence and then decreasing it by 5%. In the direction perpendicular to the movement of the sample (across-track 
direction), the VNIR camera recorded 1600 pixels with a field of view of 17° and the SWIR camera 320 pixels 
with a field of view of 14°. The instantaneous field of view for each pixel was 0.18 mrad across the track and 
0.36 mrad along the track for VNIR and 0.73 mrad for SWIR. The area that was recorded by the camera from 
30 cm distance was 10 cm wide, so that a single pixel was 62.5 µm wide in VNIR and 250 µm in SWIR. A soil 
profile of 30 cm in length consisted of 4800 image lines in VNIR and 1200 lines in SWIR. The spectral bands 
were recorded in the spectral range of 410 to 990 nm with a spectral sampling distance of 3.7 nm and from 970 
to 2500 nm with a sampling distance of 5.5 nm. The VNIR and SWIR data were recorded in 12-bit and 14-bit 
radiometric resolution, respectively57, and the dark current was automatically removed by the HySpex software. 
A certified reflectance standard white reference panel of known reflectivity (Spectralon) was recorded with each 
image. The object reflectance was calculated for each image line (along track) separately following Eq. (1) because 
the illumination was not perfectly uniform across the whole sample:

where Lobj is the radiance from the object in camera units, Lref is the radiance from the white reference panel 
and ρref is the reflectance of the white reference panel49,58,59. All images were spatially and spectrally resampled 
to increase the signal-to-noise ratio. By calculating the mean value of n pixels, the signal to noise ratio can be 
improved by √n. Furthermore, by taking the mean value of several neighbouring spectral bands, the signal to 
noise ratio is also improved. Thus, we resampled all three images spatially and spectrally to increase the signal to 
noise ratio: four pixels were combined to one and the spectral bands were resampled from 3.7 to 10 nm bands. 
The third layer in both cores showed artefacts in the SWIR > 2300 nm that obstructed the data evaluation. The 
artefacts were not associated to natural phenomena like different water contents or variations in illumination 
and could not be considered in the following data analyses. Therefore, we discarded the third layer in both cores 
and did all image analyses just on the first and second layer. All image processing and analyses were conducted 
in the software ENVI version 4.8 (Exelis Visual Information Solutions, Boulder, Colorado, USA). All statistical 
tests (ANOVA with the least significant difference test as post hoc test) were carried out using SPSS 19 (IBM, 
Armonk, USA).

Qualitative and quantitative characterization of soil samples.  Referring to the procedure described 
in Steffens et al.60, all 60 air-dried samples were dry-sieved to 2 mm and afterwards separated by a physical frac-
tionation procedure in order to obtain soil fractions that represent distinct SOM pools14,61,62. The free particulate 
organic matter (fPOM) was separated with a Sodium polytungstate solution (ρ = 1.8 g cm-3). The floating fPOM 
was extracted by aspiration with a water jet pump. For the determination of the occluded particulate organic 
matter fraction (further denominated as oPOM), the heavy fraction (> 1.8 g cm-3) was treated by ultrasonication. 
An energy input of 150 J ml-1 was applied to disrupt all macro-aggregates and to obtain the greatest similarity 

(1)ρobj =
Lobj

Lref
× ρref
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of clay yields compared with standard particle size analysis, but also to minimize the production of artefacts 
following intensive ultrasonication63. With a subsequent density fractionation step (Sodium polytungstate solu-
tion, ρ = 1.8 g cm-3), the oPOM floating on the suspension was obtained after centrifugation (10 min at 4000 g). 
To remove the Sodium polytungstate from all POM fractions, the samples were washed with de-ionized water 
over a 20 µm sieve and the remaining filtrate was then passed through a 0.22 µm filter to collect a small oPOM 
fraction (further denominated as soPOM), which was subsequently washed with de-ionized water. The remain-
ing sediment (further denominated as MinRest) was centrifuged (20 min at 4000 g) and washed with de-ionized 
water several times in order to remove excessive salt.

All bulk soils and physical soil fractions were dried at 40 °C after washing, ground and analysed in duplicate 
for organic carbon (OC) and total nitrogen concentrations by dry combustion on a EuroEA elemental analyser 
(Hekatech GmbH, Wegberg, Germany). All samples were free of carbonates, so that the total C concentration 
equalled the OC concentration.

For each ground sample (60 bulk soil and 240 physical soil fraction), we collected reflectance spectral meas-
urements (over the 350–2500 nm wavelength range with 2151 bands at a spectral resolution of 1 nm with 
an average band sampling interval of ~ 2 nm) using the ASD (Analytical Spectral Devices Inc., Boulder, CO, 
USA) FieldSpec-Pro spectroradiometer that was equipped with an 8°-fore optic. The sample measurements 
were acquired at the Land Surface Department (German Aerospace Center) spectroscopy lab with constant 
illumination conditions from two Quartz halogen lamps (300 W each) at a zenith angle of 30°. All samples 
were measured in triplicate and the spectra were smoothed using a three-band sliding mean to reduce noise. 
Wavelength resampling was applied to match the HySpex wavelengths to the VNIR and SWIR cameras using 
the standard ENVI resampling tool.

Results and discussion
Partitioning of soil organic matter in physical fractions in steppe soils as affected by graz‑
ing.  The ungrazed soil core contained significantly more SOM than the grazed core in the two uppermost 
sampling depths (0–6 cm and 6–12 cm; Table 1 and Figs. 1 and 2). This applied for the total content of SOM and 
for each individual fraction. In the third sampling depth (12–18 cm), fPOM and oPOM were still significantly 
higher in the ungrazed core, but we found no significant differences for the soPOM and the MinRest fractions. 
In the fourth sampling depth (18–24 cm), only fPOM was higher in the ungrazed core, while in the fifth depth 
(24–30 cm), no significant differences could be found at all. We explain the difference between the plots with 
two processes—first, long-term grazing cessation leads to significantly higher amounts of SOM in the ungrazed 

Table 1.   Characteristics of physical soil organic matter fractions (PhysPOM) and spectroscopically identified 
organic matter (SpecPOM) fractions. Characteristics are given as mean values and standard deviations and 
were calculated from four data points (two profiles per plot × two blocks per sampling depth in each profile). 
The first section shows the carbon concentrations, the second section the C/N ratio, and the third section 
the carbon stocks as calculated from carbon concentrations and masses. Different letters in the third and 
fifth section show significant differences between the five sampled depths for the respective plot (ANOVA with 
the least significant difference test as post hoc test). Asterisks in the third and fifth sections show significantly 
different numbers between the two plots in the respective fraction and sampling depth.

Plot Grazed Ungrazed

Depth (cm) 0–6 6–12 12–18 18–24 24–30 0–6 6–12 12–18 18–24 24–30

Bulk soil

(mg C g-1 
fraction)

19.9 ± 1.1 17.9 ± 0.2 15.0 ± 1.3 13.5 ± 0.6 11.7 ± 0.6 32.8 ± 4.9 27.0 ± 0.8 21.0 ± 0.2 15.7 ± 0.6 13.1 ± 0.6

fPOM 68.6 ± 14.7 26.8 ± 6.6 24.0 ± 1.0 22.4 ± 2.6 22.7 ± 3.2 102.4 ± 12.4 56.0 ± 25.7 29.5 ± 4.9 21.6 ± 4.1 25.3 ± 7.2

oPOM 363.5 ± 27.9 286.3 ± 43.6 288.9 ± 18.6 285.2 ± 39.5 308.0 ± 12.1 431.8 ± 25.3 416.6 ± 12.4 380.9 ± 22.6 378.5 ± 8.0 385.7 ± 41.9

soPOM 229.7 ± 50.1 164.8 ± 118.2 222.0 ± 17.8 221.4 ± 115.4 200.6 ± 101.4 231.6 ± 36.8 217.6 ± 36.6 234.7 ± 52.4 247.5 ± 19.9 244.5 ± 105.5

Min. Rest 12.9 ± 0.7 12.8 ± 0.7 11.2 ± 0.2 10.3 ± 0.7 8.6 ± 0.3 18.1 ± 2.2 18.7 ± 1.8 14.3 ± 0.5 10.5 ± 0.6 9.3 ± 0.6

Bulk soil

C/N

10.4 ± 0.3 10.3 ± 0.1 10.2 ± 0.2 10.1 ± 0.1 10.0 ± 0.1 10.9 ± 0.5 10.5 ± 0.1 10.1 ± 0.1 10.1 ± 0.1 10.1 ± 0.2

fPOM 14.9 ± 1.1 11.2 ± 1.0 11.4 ± 0.2 11.1 ± 0.6 13.0 ± 1.1 16.0 ± 1.6 13.6 ± 1.3 11.3 ± 0.6 10.7 ± 0.9 12.1 ± 0.6

oPOM 16.8 ± 0.3 18.4 ± 0.9 20.1 ± 1.8 18.9 ± 1.2 18.9 ± 1.3 14.5 ± 0.2 16.9 ± 0.2 17.1 ± 0.5 18.3 ± 1.1 18.2 ± 0.6

soPOM 14.1 ± 1.0 12.2 ± 2.4 13.5 ± 1.5 13.6 ± 1.3 14.5 ± 0.7 12.6 ± 0.2 12.3 ± 0.4 12.2 ± 0.5 13.2 ± 0.2 12.9 ± 0.6

Min. Rest 8.3 ± 0.1 8.5 ± 0.3 8.4 ± 0.2 8.2 ± 0.3 8.1 ± 0.2 8.8 ± 0.2 9.0 ± 0.1 8.5 ± 0.1 8.2 ± 0.1 8.0 ± 0.2

fPOM

(mg C g−1 
soil)

4.5 ± 0.6a 4.0 ± 1.9a 2.8 ± 0.3ab 1.3 ± 0.1bc 0.9 ± 0.1c 8.8 ± 2.6a* 5.6 ± 0.3b 4.2 ± 0.8*bc 2.4 ± 0.3*cd 1.4 ± 0.4d

oPOM 1.3 ± 0.3a 0.6 ± 0.4b 0.4 ± 0.3b 0.5 ± 0.4b 0.3 ± 0.1b 3.4 ± 0.6a* 2.1 ± 0.4*b 1.3 ± 0.3*c 0.8 ± 0.1cd 0.5 ± 0.2d

soPOM 1.6 ± 0.4a 0.6 ± 0.6b 0.6 ± 0.5b 0.5 ± 0.4b 0.6 ± 0.3b 3.2 ± 0.9a* 1.6 ± 0.4*b 1.7 ± 0.9bc 1.1 ± 0.5b 0.7 ± 0.5b

Min. Rest 11.4 ± 0.6a 10.3 ± 1.0ab 9.3 ± 0.2bc 9.0 ± 0.5c 7.7 ± 0.3d 15.6 ± 2.0a* 15.7 ± 2.2*a 11.4 ± 0.4*bc 8.6 ± 0.5c 8.1 ± 0.6c

fPOM + oPOM 5.8 ± 0.6a 4.7 ± 2.2ab 3.3 ± 0.6bc 1.8 ± 0.4c 1.2 ± 0.1c 12.2 ± 2.3a* 7.7 ± 0.2*b 5.5 ± 0.7*c 3.3 ± 0.3d* 1.9 ± 0.5d*

POM total 7.3 ± 0.8a 5.3 ± 2.6ab 3.8 ± 1.0bc 2.3 ± 0.5c 1.7 ± 0.3c 15.4 ± 2.4a* 9.3 ± 0.5*b 7.2 ± 0.8*bc 4.4 ± 0.5c* 2.6 ± 0.8e

PhysPOM 
Recovery

(Mass%) 96.3 ± 1.0 95.2 ± 1.8 95.6 ± 0.6 94.7 ± 0.5 93.6 ± 0.1 96.9 ± 0.6 96.8 ± 0.4 95.1 ± 0.4 94.2 ± 0.4 93.5 ± 0.3

(C%) 94.3 ± 5.5 87.5 ± 8.5 87.5 ± 3.7 83.9 ± 3.3 80.4 ± 4.2 95.0 ± 5.2 92.8 ± 8.2 88.3 ± 4.3 82.5 ± 3.0 81.6 ± 1.8

SpecPOM
(%) 3.3 ± 2.6a 1.2 ± 0.3ab 0.7 ± 0.2b 0.2 ± 0.0b 0.2 ± 0.1b 17.0 ± 3.3a* 2.3 ± 1.0b 0.8 ± 0.3b 0.4 ± 0.3b 0.1 ± 0.1b

(Pixels) 22.4 ± 9.3a 12.0 ± 1.4b 11.6 ± 2.4b 7.9 ± 1.4b 6.9 ± 1.4b 240.5 ± 254.4a 17.6 ± 4.4a 12.0 ± 5.5a 12.8 ± 5.1a 7.5 ± 1.2a
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plot because of the higher above- and belowground biomass production due to grazing cessation; and second, 
more deposition of wind-blown material around the recovering vegetation in the ungrazed plot60,64. Differ-
ences between the two plots are pronounced in the uppermost centimeters of the soil profile and diminish with 
increasing sampling depth where we assume that the higher biomass production of the recovering vegetation fol-
lowing grazing cessation leads to higher litter inputs to the topsoil. This process takes longer and needs changes 
in the species composition until wider and deeper ramified rooting system are established and deeper soil layers 
are affected by higher biomass inputs in the ungrazed plot.  

In addition, these findings fit well to the idea that the different SOM fractions represent pools with different 
turnover times14,16,65,66. Fresh OM inputs enter the system in the form of litter, which is first physically broken 
down to smaller particle sizes (fPOM). At a given step during their continuous decomposition, these particles 
will be small enough to be included in macroaggregates, during the continuous formation and break-up of soil 
aggregates. This fraction of SOM particles can be isolated via physical fractionation as macro oPOM. With time 
and continuous aggregate turnover cycles, these particles are further broken down in size and chemically altered 
through lysis of easily decomposable molecules by microbial enzymes. These particles are continuously occluded 
in smaller aggregates and at one point become smaller than 20 µm and not being part of the POM anymore due 
to the sieve cutoff of 20 µm (soPOM). It takes longer than 33 years after grazing cessation to increase the amount 

Figure 1.   Partitioning of organic carbon between different physical fractions in grazed and ungrazed soil 
profiles. The contributions of the four physical fractions in each plot and depth increment sum up to the total 
organic carbon content of the respective layer. Differences to the bulk soil organic carbon content are losses due 
to physical fractionation (compare Table 1). Each box gives the mean of four fractionated samples (two profiles 
per plot × two blocks per sampling depth).
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Figure 2.   Scatterplot between bulk soil organic carbon content and the recombined fractions, displaying the 
recovery of the physical fractionation procedure.
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of oPOM and soPOM in soil layers deeper than 12 and 18 cm, and even longer below 24 cm. These findings 
corroborate other studies that were conducted in the same long-term field experiment at IMGERS16,60,67, and the 
widely accepted impacts of grazing on SOM in semiarid grasslands68.

We assume these soil cores to be representative for the two plots with different grazing intensities and to be 
ideal test objects for the hyperspectral assessment of various SOM fractions in undisturbed soil cores.

Spectroscopic characterization of particulate organic matter fractions.  The spectra of the differ-
ent physical fractions are similar across sampling depths and both plots (Fig. 3). This corroborates hypothesis #2 
that the two plots represent the same soil type, are composed of similar soil constituents, and the OM inputs are 
qualitatively similar between the two grazing systems. The applied fractionation method successfully extracted 
qualitatively similar fractions from both profiles. Clearly different spectra were measured for the different physi-
cal fractions. The bulk soil samples showed typical, but rather featureless spectra. Their Vis part is characterised 
by a typical soil reflectance spectrum with a steady convex shape in the visible part and a plateau with water 
absorption features at 1450 and between 1920 and 1940 nm18. The only distinct feature occurs at 2206 nm (line 
3) and marks the characteristic adsorption of the Al-O-bond in the octahedra of phyllosilicates69. We were sur-
prised to find exactly the same spectra for the fPOM fraction, because this fraction should be composed only 
of organic matter. We explain this contradiction with the large amount of mineral soil material sticking to the 
fPOM particles. The fPOM fraction is separated from the bulk sample during the first fractionation step. In this 
step, the bulk sample is put in the density solution and the floating material is removed with the waterjet pump 
the other day. Intimate associations between large OM particles and adhering soil particles are not yet broken by 
the subsequent sonication step as it happens to oPOM particles. Proof can be found in the low OC concentra-
tions of the fPOM fraction (Table 1). The OC concentration of the fPOM varies between 21.6 and 102.4 mg*g−1 
and therefore much below the expected 450 mg g−1 of pure plant material2. This explains the featureless and 
soil-like spectra of the fPOM fraction. Furthermore, this finding underlines the high biological activity in Cher-
nozems, the typical soils of semi-arid grasslands. OM is incorporated mostly through bioturbation resulting 
in a dark-coloured thick Axh-horizon. During this incorporation step, the fresh OM is intimately mixed with 
the mineral soil material. Further proof for this explanation of the soil-like spectra of the fPOM fraction can 
be found in the similar spectra of the MinRest fraction. The only obvious difference between bulk soil, fPOM, 
and MinRest is the overall lower reflectance of the latter. We assume the smaller particle size of the MinRest, in 
consequence of sonication that disrupted most macro- and many micro aggregates, results in an overall smaller 
particle size of the MinRest and therefore higher absorbance due to total internal reflection.

We found clearly different spectra and more pronounced spectral features for the oPOM and soPOM frac-
tions. Both fractions showed a concave spectrum with a clearly lower reflectance between 350 and 1000 nm, no 

Figure 3.   Mean VisNIR reflectance spectra of bulk soils and four physical organic matter fractions from 
grazed and ungrazed soil profiles. Each spectrum gives the mean of 20 samples (two profiles per plot × five 
sampling depths per profile × two blocks per sampling depth). The five vertical lines illustrate the five bands 
used for the identification of the SpecPOM using a constrained unmixing approach (Solid lines 1, 2, 4, and 5 
identify absorption features characteristic for organic substances and the dashed line 3 marks a typical feature of 
phyllosilicates).
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absorbance at the characteristic phyllosilicate feature at 2206 nm, but a typical feature of cellulose and lignin 
between 2000 and 2300 nm70. This feature is pronounced for the oPOM, but only weakly discernible for the 
soPOM fraction. We explain this difference through the higher degree of decomposition of the soPOM16, the 
resulting higher absorption at smaller particles42, and finally lower signal-to-noise ratios. These features are 
characteristic for organic matter and explain the iconic dark colour of the humus. The purity of the oPOM frac-
tion is underlined by its high OC concentrations of up to 431.8 mg*g−1, being in the range of pure plant material. 
These numbers and spectra underline the earlier findings of Ben-Dor et al.70 during a controlled decomposition 
experiment and its effects on the VisNIR reflectance of two types of organic matter.

Our results show that the applied fractionation routine separates meaningful and reproducible SOM frac-
tions from various soil samples taken from different plots and various sampling depths. In addition, VisNIR 
spectroscopy shows clearly different spectra for these fractions and can be used to distinguish these different 
SOM fractions. We ask for more studies to test this finding in other soil systems and check if the different frac-
tions show similar spectral features.

Mapping of particulate organic matter in steppe soils with imaging VisNIR spectroscopy.  The 
previous chapters show that the selected soil cores contain different amounts of SOM because of different graz-
ing intensities and that different SOM fractions can be discriminated by characteristic spectral features in the 
VisNIR. We still assume three main challenges to complicate the POM mapping attempt: (1) the abundance of 
POM is much lower in mineral horizons compared to organic surface layers; (2) POM particles are smaller in 
mineral soil horizons and thus it is more likely that one pixel not only contains organic or mineral materials; 
and (3) POM particles can be partly or completely covered by mineral materials. All three points contribute to 
the fact that most pixels will show mixed spectra with different contributions of organic and mineral materials, 
hampering a simple pixel-wise classification. In order to quantify the amount of POM in mineral soil horizons, 
we applied a constrained linear unmixing to quantify the contribution of organic and mineral materials to each 
pixel’s spectrum. We used the mean ASD spectra of the MinRest and the oPOM fractions as the endmember for 
this unmixing because these fractions were the purest mineral and organic fraction in this study. The spectro-
scopically identified organic fraction is further denominated as SpecPOM in contrast to the physically fraction-
ated PhysPOM.

The high spectral resolution of the applied hyperspectral cameras allow for precise qualitative and quantita-
tive image interpretation. State-of-the-art regression algorithms try to benefit from this information and yield 
as much explanatory power as possible. We found that especially for imaging spectroscopy with its millions of 
spectra available in one image, overfitting can easily occur pretending a higher accuracy41. To overcome this 
problem, we selected only five out of the available 416 spectral bands for the unmixing approach. We selected 
the wavelengths 2012 nm, 2108 nm, 2228 nm, and 2276 nm as identifiers of organic matter, and the wavelength 
2204 nm as an identifier for mineral materials based on the results of the ASD measurements (Fig. 3) and a 
literature review17,18,71–73.

Figure 4(c and f) shows the resulting fractional abundance maps for two out of four soil profiles. The brighter 
a pixel is, the higher is the relative contribution of organic matter to the respective spectrum or more area of the 
pixel is covered by organic matter. All four profiles show higher contributions of organic matter in the topsoil 
and decreasing contributions in deeper sections of the soil profiles. In Table 1, the line SpecPOM reports the 
mean relative contribution of organic matter for all ROIs. It shows that most pixels in all profiles were dominated 
by mineral material, but the two uppermost ROIs of the ungrazed profiles show a significantly higher (< 0.01) 
contribution of the organic fraction compared to the lower ROIs. The next deeper two ROIs still show higher 
contributions of the organic fraction in the ungrazed profiles, but at a lower level of significance of 0.03. The 
grazed plot shows a similar vertical distribution but less distinct differences between the sampled ROIs. This 
vertical distribution fits nicely to the findings from physical fractionation (Table 2). We found the highest coef-
ficients of correlation between the relative contribution of SpecPOM and the amount of the oPOM fraction as 
well as the sum of all POM fractions combined when all four profiles were considered. The correlations were 
lower when only the two grazed profiles were analysed. We assume that beside the generally lower SOM content 
in the grazed plot, smaller POM particles due to animal trampling reduce precision of SpecPOM identification. 
These findings already verify our third hypothesis and support the applicability of imVisIR for the quantification 
of POM fractions in soil profiles.

More information to comprehensively assess and map the current state of SOM in an undisturbed soil core 
can be seen using imVisIR. Continuing from this point, the fractional abundance maps in Fig. 4 show that the 
POM is not homogeneously distributed across the ROIs but accumulated in patterns. It is noteworthy that the 
organic matter-dominated pixels are mostly clustered in predominately longish structures reflecting typical 
shapes of OM particles like roots and undecomposed leaves. In order to measure the size of these SpecPOM 
particles, we analysed the connectivity of pixels with high fractional abundances of organic matter by calculat-
ing segmentation images. This approach produces information on the number of directly connected pixels with 
fractional abundances of organic matter > 5%. In Table 1, SpecPOM [pixels] gives the mean SpecPOM size for 
each ROI. Especially in the two uppermost ROIs the ungrazed plot reveals significantly higher particle sizes. This 
is in line with the accrual of POM as a consequence of the long-term ungrazing and a significant accumulation 
of plant litter and supports our assumption of larger particle sizes in the ungrazed plot. Figure 5 gives a scat-
terplot of the content of PhysPOM (sum of fPOM, oPOM and soPOM) and the relative abundance of SpecPOM 
for all ROIs. SpecPOM particle size is included in Fig. 5a as bubble size. By combining Fig. 5a and b, it is clear 
that the four highest values represent the uppermost two ROIs in the two ungrazed profiles. From this figure we 
deduce that there is no global linear correlation between PhysPOM and SpecPOM and that the particle size is 
of great importance for the quality of the SpecPOM assessment. Underestimation due to small POM particles 
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in lower layers is as likely as overestimation in topsoils. In future studies, special attention should be placed on 
the assessment of POM size and the spatial resolution of hyperspectral cameras. In addition, we ask for studies 
evaluating the robustness and universal applicability of the five selected spectral bands for the identification of 
POM particles across different soil types.

imVisIR provides a much higher spatial resolution than the minimum sampling area for physical fractiona-
tion. We calculated the fractional cover for each image line to illustrate the power of imVisIR (Fig. 6) to elucidate 
SOM dynamics along a soil profile. This figure shows that already the first six cm inherit a high variability of 
the area covered by SpecPOM. Classic soil analyses (have to) consider horizons to be relatively homogeneous. 
We assume that imVisIR can determine changing qualities and quantities of SOM in soils due to management 
or climate faster than time- and work-intensive physical fractionation. This approach could also be used as a 
preprocessing step to mask areas of high POM contents and enable the better estimation of mineral-associated 
organic matter. In order to proof this future application, studies should test if POM fractions in different soil 
types and under various management systems are spectrally comparable, too.

We conclude that imVisIR has a proven potential to quantitatively map SOM and its specific fractions in 
undisturbed soil cores with a high spatial resolution. This perception opens new avenues in (1) earlier assessing 
management effects on SOM compared to state-of-the-art fractionation techniques, and (2) elucidating SOM 

Figure 4.   True color images of the VNIR-1600 (a and d; red: 660 nm, green: 560 nm, blue: 480 nm), false color 
images of the SWIR-385 (b and e; red: 2276 nm, green: 2204 nm, blue: 2012 nm; corresponding to the lines 5, 3, 
and 1 in Fig. 2), and fractional cover of the organic fraction for the soil profiles grazed 2 and ungrazed 2 (c and f; 
bright pixels show a high contribution of organic matter). Both profiles are 30 cm long and 9 cm wide.
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Table 2.   Correlation matrix between the spectroscopically identified particulate organic matter (SpecPOM) 
and the contribution of physically extracted fractions of soil organic matter for each of the 40 blocks (2 
plots × 2 profiles per plot × 2 blocks per depth × 5 sampling depths). POM is the sum of the three fractions 
fPOM, oPOM and soPOM. Pearson’s coefficients of correlation are given for all 40 blocks combined, (“All”) 
and for the grazed and the ungrazed soil profiles individually. We show the coefficients for the area covered 
by SpecPOM and the mean size of the SpecPOM particles. The correlations for SpecPOM size and both 
treatments combined (“All”) are given for all 40 data points (first value) and with two outliers in the first layer 
of the ungrazed profile excluded (second value; size of 376.96 and 530.85 pixels).

Plot Bulk soil fPOM oPOM soPOM Mineral rest POM fPOM + oPOM

SpecPOM

All 0.76 0.73 0.82 0.72 0.65 0.80 0.79

Grazed 0.72 0.50 0.46 0.36 0.66 0.52 0.52

Ungrazed 0.75 0.76 0.86 0.77 0.61 0.84 0.82

SpecPOM size

All 0.43|0.69 0.39|0.74 0.54|0.55 0.41|0.50 0.46|0.63 0.46|0.70 0.31|0.57

Grazed 0.69 0.62 0.55 0.64 0.59 0.68 0.36

Ungrazed 0.38|0.78 0.37|0.83 0.53|0.60 0.38|0.43 0.44|0.70 0.44|0.75 0.38|0.75

Figure 5.   Scatter plots illustrating correlations between the amount of organic carbon in physically isolated 
particulate organic matter fractions (PhysPOM) and spectroscopically identified organic matter dominated 
pixels in hyperspectral images (SpecPOM). Bubblesize in parts a and d correspond to the size of the organic 
particles as identified in the hyperspectral images using segmentation images. Part a shows the correlation 
as affected by management, part b as affected by sampling depth, part c shows the correlation as affected by 
management without the four 0–6 cm samples from the ungrazed profiles, and part d illustrates the correlation 
for all samples as affected by management with a log-scaled y-axis for the SpecPOM.
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dynamics considering spatially resolved processes like plant-soil- and rhizosphere interactions, bioturbation and 
tillage. We see large potential for the application of this technique in precision agriculture with adapted fertiliza-
tion systems, intensive and nation-wide soil monitoring systems that rely on soil core sampling, and comprehen-
sive soil carbon accounting systems that operate in the context of carbon credits and climate change mitigation.

Received: 19 February 2021; Accepted: 20 July 2021

References
	 1.	 Smith, P. et al. The changing faces of soil organic matter research. Eur. J. Soil Sci. 69, 23–30. https://​doi.​org/​10.​1111/​ejss.​12500 

(2018).
	 2.	 Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil 

Biol. Biochem. 34, 139–162 (2002).
	 3.	 Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56. https://​doi.​org/​10.​1038/​

natur​e10386 (2011).
	 4.	 Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68. https://​doi.​org/​10.​1038/​natur​e16069 

(2015).
	 5.	 Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534. https://​doi.​org/​10.​

1038/​s41561-​020-​0612-3 (2020).
	 6.	 Dong, L. et al. Effect of grazing exclusion and rotational grazing on labile soil organic carbon in north China. Eur. J. Soil Sci. https://​

doi.​org/​10.​1111/​ejss.​12952 (2020).
	 7.	 Leifeld, J. & Kogel-Knabner, I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use?. 

Geoderma 124, 143–155 (2005).
	 8.	 Poeplau, C. & Don, A. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 

192, 189–201. https://​doi.​org/​10.​1016/j.​geode​rma.​2012.​08.​003 (2013).
	 9.	 Besnard, E., Chenu, C., Balesdent, J., Puget, P. & Arrouays, D. Fate of particulate organic matter in soil aggregates during cultiva-

tion. Eur. J. Soil Sci. 47, 495–503 (1996).
	10.	 von Lützow, M. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil 

conditions—a review. Eur. J. Soil Sci. 57, 426–445. https://​doi.​org/​10.​1111/j.​1365-​2389.​2006.​00809.x (2006).
	11.	 Peng, X. H., Zhu, Q. H., Zhang, Z. B. & Hallett, P. D. Combined turnover of carbon and soil aggregates using rare earth oxides and 

isotopically labelled carbon as tracers. Soil Biol. Biochem. 109, 81–94. https://​doi.​org/​10.​1016/j.​soilb​io.​2017.​02.​002 (2017).
	12.	 Dynarski, K. A., Bossio, D. A. & Scow, K. M. Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon seques-

tration. Front. Environ. Sci. 8, 1. https://​doi.​org/​10.​3389/​fenvs.​2020.​514701 (2020).
	13.	 Basile-Doelsch, I., Balesdent, J. & Pellerin, S. Reviews and syntheses: The mechanisms underlying carbon storage in soil. Biogeosci. 

Discuss. https://​doi.​org/​10.​5194/​bg-​2020-​49 (2020).
	14.	 Poeplau, C. et al. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—a comprehensive 

method comparison. Soil Biol. Biochem. 125, 10–26. https://​doi.​org/​10.​1016/j.​soilb​io.​2018.​06.​025 (2018).
	15.	 Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 

338, 143–158. https://​doi.​org/​10.​1007/​s11104-​010-​0391-5 (2011).
	16.	 Steffens, M., Kölbl, A., Schörk, E., Gschrey, B. & Kögel-Knabner, I. Distribution of soil organic matter between fractions and 

aggregate size classes in grazed semiarid steppe soil profiles. Plant Soil 338, 63–81. https://​doi.​org/​10.​1007/​s11104-​010-​0594-9 
(2011).

	17.	 Soriano-Disla, J. M., Janik, L. J., Rossel, R. A. V., Macdonald, L. M. & McLaughlin, M. J. The performance of visible, near-, and 
mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 49, 
139–186. https://​doi.​org/​10.​1080/​05704​928.​2013.​811081 (2014).

Figure 6.   Linewise fractional cover of the SpecPOM for two grazed and two ungrazed soil profiles (summed 
fractional cover for 10 image lines).

https://doi.org/10.1111/ejss.12500
https://doi.org/10.1038/nature10386
https://doi.org/10.1038/nature10386
https://doi.org/10.1038/nature16069
https://doi.org/10.1038/s41561-020-0612-3
https://doi.org/10.1038/s41561-020-0612-3
https://doi.org/10.1111/ejss.12952
https://doi.org/10.1111/ejss.12952
https://doi.org/10.1016/j.geoderma.2012.08.003
https://doi.org/10.1111/j.1365-2389.2006.00809.x
https://doi.org/10.1016/j.soilbio.2017.02.002
https://doi.org/10.3389/fenvs.2020.514701
https://doi.org/10.5194/bg-2020-49
https://doi.org/10.1016/j.soilbio.2018.06.025
https://doi.org/10.1007/s11104-010-0391-5
https://doi.org/10.1007/s11104-010-0594-9
https://doi.org/10.1080/05704928.2013.811081


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16725  | https://doi.org/10.1038/s41598-021-95298-8

www.nature.com/scientificreports/

	18.	 Stenberg, B., Rossel, R. A. V., Mouazen, A. M. & Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 
107(107), 163–215. https://​doi.​org/​10.​1016/​s0065-​2113(10)​07005-7 (2010).

	19.	 Mouazen, A. M., Steffens, M. & Borisover, M. Reflectance and fluorescence spectroscopy in soil science-Current and future research 
and developments. Soil Tillage Res. 155, 448–449 (2016).

	20.	 Viscarra Rossel, R. A. & Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 148, 71–74. https://​doi.​org/​10.​1016/j.​
agsy.​2016.​07.​001 (2016).

	21.	 Nocita, M. et al.. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Adv. Agron. 132, 139–159 (2015)
	22.	 Gholizadeh, A., Boruvka, L., Saberioon, M. & Vasat, R. Visible, near-infrared, and mid-infrared spectroscopy applications for soil 

assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues. Appl. Spectrosc. 67, 1349–1362. 
https://​doi.​org/​10.​1366/​13-​07288 (2013).

	23.	 Hermansen, C. et al. Complete soil texture is accurately predicted by visible near-infrared spectroscopy. Soil Sci. Soc. Am. J. 81, 
758–769. https://​doi.​org/​10.​2136/​sssaj​2017.​02.​0066 (2017).

	24.	 Zimmermann, M., Leifeld, J. & Fuhrer, J. Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biol. Biochem. 
39, 224–231. https://​doi.​org/​10.​1016/j.​soilb​io.​2006.​07.​010 (2007).

	25.	 Madhavan, D. B. et al. Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands 
using infrared spectroscopy. J. Environ. Manage. 193, 290–299. https://​doi.​org/​10.​1016/​jjenv​man.​2017.​02.​013 (2017).

	26.	 St. Luce, M. et al. Rapid determination of soil organic matter quality indicators using visible near infrared reflectance spectroscopy. 
Geoderma 232–234, 449–458. https://​doi.​org/​10.​1016/j.​geode​rma.​2014.​05.​023 (2014).

	27.	 Terhoeven-Urselmans, T., Michel, K., Helfrich, M., Flessa, H. & Ludwig, B. Near-infrared spectroscopy can predict the composition 
of organic matter in soil and litter. J. Plant Nutr. Soil Sci. 169, 168–174. https://​doi.​org/​10.​1002/​jpln.​20052​1712 (2006).

	28.	 Margenot, A., O’Neill, T., Sommer, R. & Akella, V. Predicting soil permanganate oxidizable carbon (PDXC) by coupling DRIFT 
spectroscopy and artificial neural networks (ANN). Comput. Electron. Agric. https://​doi.​org/​10.​1016/j.​compag.​2019.​105098 (2020).

	29.	 Fang, Q. et al. Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: a review. J. Spectrosc. https://​
doi.​org/​10.​1155/​2018/​31689​74 (2018).

	30.	 Shi, P., Castaldi, F., van Wesemael, B. & van Oost, K. Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate 
size distribution in the Belgian Loam Belt. Geoderma https://​doi.​org/​10.​1016/j.​geode​rma.​2019.​113958 (2020).

	31.	 Canasveras, J. C., Barron, V., del Campillo, M. C., Torrent, J. & Gomez, J. A. Estimation of aggregate stability indices in Mediter-
ranean soils by diffuse reflectance spectroscopy. Geoderma 158, 78–84. https://​doi.​org/​10.​1016/j.​geode​rma.​2009.​09.​004 (2010).

	32.	 Hermansen, C. et al. Visible-near-infrared spectroscopy can predict the clay/organic carbon and mineral fines/organic carbon 
ratios. Soil Sci. Soc. Am. J. 80, 1486–1495. https://​doi.​org/​10.​2136/​sssaj​2016.​05.​0159 (2016).

	33.	 Jaconi, A., Don, A. & Freibauer, A. Prediction of soil organic carbon at the country scale: stratification strategies for near-infrared 
data. Eur. J. Soil Sci. 68, 919–929. https://​doi.​org/​10.​1111/​ejss.​12485 (2017).

	34.	 Jaconi, A., Vos, C. & Don, A. Near infrared spectroscopy as an easy and precise method to estimate soil texture. Geoderma 337, 
906–913. https://​doi.​org/​10.​1016/j.​geode​rma.​2018.​10.​038 (2019).

	35.	 Riedel, F., Denk, M., Muller, I., Barth, N. & Glasser, C. Prediction of soil parameters using the spectral range between 350 and 
15,000 nm: A case study based on the Permanent Soil Monitoring Program in Saxony Germany. Geoderma 315, 188–198. https://​
doi.​org/​10.​1016/j.​geode​rma.​2017.​11.​027 (2018).

	36.	 Clairotte, M. et al. National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geo-
derma 276, 41–52. https://​doi.​org/​10.​1016/j.​geode​rma.​2016.​04.​021 (2016).

	37.	 Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernandez-Ugalde, O. LUCAS soil, the largest expandable soil dataset for Europe: 
a review. Eur. J. Soil Sci. 69, 140–153. https://​doi.​org/​10.​1111/​ejss.​12499 (2018).

	38.	 Stevens, A., Nocita, M., Toth, G., Montanarella, L. & van Wesemael, B. Prediction of soil organic carbon at the european scale by 
visible and near infrared reflectance spectroscopy. PLoS ONE 8, 1. https://​doi.​org/​10.​1371/​journ​al.​pone.​00664​09 (2013).

	39.	 Nocita, M. et al. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square 
regression approach. Soil Biol. Biochem. 68, 337–347. https://​doi.​org/​10.​1016/j.​soilb​io.​2013.​10.​022 (2014).

	40.	 Viscarra Rossel, R. A. & Hicks, W. S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions. 
Europ. J. Soil Sci. 66, 438–450. https://​doi.​org/​10.​1111/​ejss.​12237 (2015).

	41.	 Steffens, M. & Buddenbaum, H. Laboratory imaging spectroscopy of a stagnic Luvisol profile - High resolution soil characterisa-
tion, classification and mapping of elemental concentrations. Geoderma 195–196, 122–132 (2013).

	42.	 Steffens, M., Kohlpaintner, M. & Buddenbaum, H. Fine spatial resolution mapping of soil organic matter quality in a Histosol 
profile. Eur. J. Soil Sci. 65, 827–839. https://​doi.​org/​10.​1111/​ejss.​12182 (2014).

	43.	 Hobley, E., Steffens, M., Bauke, S. L. & Kogel-Knabner, I. Hotspots of soil organic carbon storage revealed by laboratory hyper-
spectral imaging. Sci. Rep. 8, 1. https://​doi.​org/​10.​1038/​s41598-​018-​31776-w (2018).

	44.	 Lucas, M., Pihlap, E., Steffens, M., Vetterlein, D. & Kogel-Knabner, I. Combination of imaging infrared spectroscopy and x-ray 
computed microtomography for the investigation of bio- and physicochemical processes in structured soils. Front. Environ. Sci. 
8, 1. https://​doi.​org/​10.​3389/​fenvs.​2020.​00042 (2020).

	45.	 Mueller, C. W., Steffens, M. & Buddenbaum, H. Permafrost soil complexity evaluated by laboratory imaging Vis-NIR spectroscopy. 
Eur. J. Soil Sci. https://​doi.​org/​10.​1111/​ejss.​12927 (2019).

	46.	 Schreiner, S., Buddenbaum, H., Emmerling, C. & Steffens, M. VNIR/SWIR laboratory imaging spectroscopy for wall-to-wall 
mapping of elemental concentrations in soil cores. Photogrammetrie Fernerkundung Geoinformation https://​doi.​org/​10.​1127/​pfg/​
2015/​0279 (2015).

	47.	 Askari, M. S., O’Rourke, S. M. & Holden, N. M. A comparison of point and imaging visible-near infrared spectroscopy for deter-
mining soil organic carbon. J. Near Infrared Spectrosc. 26, 133–146. https://​doi.​org/​10.​1177/​09670​33518​766668 (2018).

	48.	 O’Rourke, S. M. & Holden, N. M. Determination of soil organic matter and carbon fractions in forest top soils using spectral data 
acquired from visible-near infrared hyperspectral images. Soil Sci. Soc. Am. J. 76, 586–596. https://​doi.​org/​10.​2136/​sssaj​2011.​0053 
(2012).

	49.	 Buddenbaum, H. & Steffens, M. Laboratory imaging spectroscopy of soil profiles. J. Spectral Imag. 2, 1. https://​doi.​org/​10.​1255/​
jsi.​2011.​a2 (2011).

	50.	 Buddenbaum, H. & Steffens, M. Mapping the distribution of chemical properties in soil profiles using laboratory imaging spec-
troscopy SVM and PLS regression. EARSeL eProc. 11, 25–32 (2012).

	51.	 Poeplau, C. et al. Stocks of organic carbon in German agricultural soils-Key results of the first comprehensive inventory. J. Plant 
Nutr. Soil Sci. 183, 665–681. https://​doi.​org/​10.​1002/​jpln.​20200​0113 (2020).

	52.	 Viscarra Rossel, R. A., Lobsey, C. R., Sharman, C., Flick, P. & McLachlan, G. Novel proximal sensing for monitoring soil organic 
C stocks and condition. Environ. Sci. Technol. 51, 5630–5641. https://​doi.​org/​10.​1021/​acs.​est.​7b008​89 (2017).

	53.	 IUSS Working Group WRB. World reference base for soil resources 2006. Vol. 103 (FAO, 2006).
	54.	 Steffens, M., Kölbl, A., Totsche, K. U. & Kögel-Knabner, I. Grazing effects on soil chemical and physical properties in a semiarid 

steppe of Inner Mongolia (P.R. China). Geoderma 143, 63–72 (2008).
	55.	 Hoffmann, C. et al. Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: Synthesis of a 

6-year grazing experiment. J. Arid Environ. 135, 50–63. https://​doi.​org/​10.​1016/j.​jarid​env.​2016.​08.​003 (2016).
	56.	 FAO. Guidelines for soil description. 4th edition edn, (FAO, 2006).

https://doi.org/10.1016/s0065-2113(10)07005-7
https://doi.org/10.1016/j.agsy.2016.07.001
https://doi.org/10.1016/j.agsy.2016.07.001
https://doi.org/10.1366/13-07288
https://doi.org/10.2136/sssaj2017.02.0066
https://doi.org/10.1016/j.soilbio.2006.07.010
https://doi.org/10.1016/jjenvman.2017.02.013
https://doi.org/10.1016/j.geoderma.2014.05.023
https://doi.org/10.1002/jpln.200521712
https://doi.org/10.1016/j.compag.2019.105098
https://doi.org/10.1155/2018/3168974
https://doi.org/10.1155/2018/3168974
https://doi.org/10.1016/j.geoderma.2019.113958
https://doi.org/10.1016/j.geoderma.2009.09.004
https://doi.org/10.2136/sssaj2016.05.0159
https://doi.org/10.1111/ejss.12485
https://doi.org/10.1016/j.geoderma.2018.10.038
https://doi.org/10.1016/j.geoderma.2017.11.027
https://doi.org/10.1016/j.geoderma.2017.11.027
https://doi.org/10.1016/j.geoderma.2016.04.021
https://doi.org/10.1111/ejss.12499
https://doi.org/10.1371/journal.pone.0066409
https://doi.org/10.1016/j.soilbio.2013.10.022
https://doi.org/10.1111/ejss.12237
https://doi.org/10.1111/ejss.12182
https://doi.org/10.1038/s41598-018-31776-w
https://doi.org/10.3389/fenvs.2020.00042
https://doi.org/10.1111/ejss.12927
https://doi.org/10.1127/pfg/2015/0279
https://doi.org/10.1127/pfg/2015/0279
https://doi.org/10.1177/0967033518766668
https://doi.org/10.2136/sssaj2011.0053
https://doi.org/10.1255/jsi.2011.a2
https://doi.org/10.1255/jsi.2011.a2
https://doi.org/10.1002/jpln.202000113
https://doi.org/10.1021/acs.est.7b00889
https://doi.org/10.1016/j.jaridenv.2016.08.003


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16725  | https://doi.org/10.1038/s41598-021-95298-8

www.nature.com/scientificreports/

	57.	 Lenhard, K., Baumgartner, A. & Schwarzmaier, T. Independent laboratory characterization of NEO HySpex imaging spectrometers 
VNIR-1600 and SWIR-320m-e. IEEE Trans. Geosci. Remote Sens. 53, 1828–1841. https://​doi.​org/​10.​1109/​TGRS.​2014.​23497​37 
(2015).

	58.	 Peddle, D. R., White, H. P., Soffer, R. J., Miller, J. R. & LeDrew, E. F. Reflectance processing of remote sensing spectroradiometer 
data. Comput. Geosci. 27, 203–213 (2001).

	59.	 Rogass, C. et al. Translational imaging spectroscopy for proximal sensing. Sensors 17, 1857 (2017).
	60.	 Steffens, M., Kölbl, A. & Kögel-Knabner, I. Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as 

driven by organic matter input. Eur. J. Soil Sci. 60, 198–212. https://​doi.​org/​10.​1111/j.​1365-​2389.​2008.​01104.x (2009).
	61.	 Golchin, A., Oades, J. M., Skjemstad, J. O. & Clarke, P. Soil-structure and carbon cycling. Aust. J. Soil Res. 32, 1043–1068 (1994).
	62.	 Christensen, B. T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil 

Sci. 52, 345–353 (2001).
	63.	 Schmidt, M. W. I., Rumpel, C. & Kögel-Knabner, I. Evaluation of an ultrasonic dispersion procedure to isolate primary organomin-

eral complexes from soils. Eur. J. Soil Sci. 50, 87–94 (1999).
	64.	 Steffens, M. et al. Spatial variability of topsoils and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR China). J. Plant 

Nutr. Soil Sci. 172, 78–90. https://​doi.​org/​10.​1002/​jpln.​20070​0309 (2009).
	65.	 Six, J., Gregorich, E. & Koegel-Knabner, I. Landmark Papers: No. 1. Tisdall, J. M. & Oades, J. M. 1982. Organic matter and water-

stable aggregates in soils. Journal of Soil Science, 33, 141–163 Commentary on the impact of the impact of Tisdall & Oades (1982): 
by J. Six, E. G. Gregorich & I. Kogel-Knabner. European Journal of Soil Science 63, 3–7 (2012).

	66.	 Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic 
matter dynamics. Soil Tillage Res. 79, 7–31 (2004).

	67.	 Wiesmeier, M. et al. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. Eur. J. Soil Sci. 63, 
22–31. https://​doi.​org/​10.​1111/j.​1365-​2389.​2011.​01418.x (2012).

	68.	 McSherry, M. E. & Ritchie, M. E. Effects of grazing on grassland soil carbon: a global review. Glob. Change Biol. 19, 1347–1357. 
https://​doi.​org/​10.​1111/​gcb.​12144 (2013).

	69.	 Viscarra Rossel, R. A. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 
46–54. https://​doi.​org/​10.​1016/j.​geode​rma.​2009.​12.​025 (2010).

	70.	 Ben-Dor, E., Inbar, Y. & Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared 
region (400–2500 nm) during a controlled decomposition process. Remote Sens. Environ. 61, 1–15 (1997).

	71.	 Delegido, J., Verrelst, J., Rivera, J. P., Ruiz-Verdu, A. & Moreno, J. Brown and green LAI mapping through spectral indices. Int. J. 
Appl. Earth Obs. Geoinf. 35, 350–358. https://​doi.​org/​10.​1016/j.​jag.​2014.​10.​001 (2015).

	72.	 Viscarra Rossel, R. A., McGlynn, R. N. & McBratney, A. B. Determing the composition of mineral-organic mixes using UV-vis-
NIR diffuse reflectance spectroscopy. Geoderma 137, 70–82. https://​doi.​org/​10.​1016/j.​geode​rma.​2006.​07.​004 (2006).

	73.	 Ben-Dor, E. et al. Imaging spectrometry for soil applications. Adv. Agronomy 97, 321. https://​doi.​org/​10.​1016/​s0065-​2113(07)​
00008-9 (2008).

Acknowledgements
We are grateful to Angelika Kölbl for another great, important and swift review that significantly improved the 
manuscript. We thank the Spectroscopy lab of the Land surface Department at the German Aerospace Center 
(DLR) for the ASD measurements.

Author contributions
M.S. designed the project, took the soil cores, supported hyperspectral imaging, did all data analyses and wrote 
the manuscript. L.Z. conducted the lab analyses including physical fractionation and contributed to proofing the 
manuscript. D.R. did the ASD measurements, performed the image processing and contributed to proofing the 
manuscript. H.B. did the hyperspectral imaging and contributed to image processing and writing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1109/TGRS.2014.2349737
https://doi.org/10.1111/j.1365-2389.2008.01104.x
https://doi.org/10.1002/jpln.200700309
https://doi.org/10.1111/j.1365-2389.2011.01418.x
https://doi.org/10.1111/gcb.12144
https://doi.org/10.1016/j.geoderma.2009.12.025
https://doi.org/10.1016/j.jag.2014.10.001
https://doi.org/10.1016/j.geoderma.2006.07.004
https://doi.org/10.1016/s0065-2113(07)00008-9
https://doi.org/10.1016/s0065-2113(07)00008-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantitative mapping and spectroscopic characterization of particulate organic matter fractions in soil profiles with imaging VisNIR spectroscopy
	Materials and methods
	Study area and soil sampling. 
	Imaging setup and pre-processing. 
	Qualitative and quantitative characterization of soil samples. 

	Results and discussion
	Partitioning of soil organic matter in physical fractions in steppe soils as affected by grazing. 
	Spectroscopic characterization of particulate organic matter fractions. 
	Mapping of particulate organic matter in steppe soils with imaging VisNIR spectroscopy. 

	References
	Acknowledgements


