Organic Knowledge Network on Monogastric Animal Feed
OK-Net EcoFeed

Fact sheets

Deliverable number: D.4.4
Dissemination level: Public
Delivery date: 30.09.2020
Status: Final
Lead beneficiary: Research Institute of Organic Agriculture (FiBL)
Author(s): Helga Willer, Andreas Basler, Ambra De Simone, Bram Moeskops

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 773911. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided.
Document Versions

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Contributor</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>14.09.2020</td>
<td>Andreas Basler</td>
<td>First draft</td>
</tr>
<tr>
<td>0.2</td>
<td>22.09.2020</td>
<td>Ambra De Simone</td>
<td>Revision</td>
</tr>
<tr>
<td>0.3</td>
<td>24.09.2020</td>
<td>Bram Moeskops</td>
<td>Revision</td>
</tr>
<tr>
<td>0.4</td>
<td>25.09.2020</td>
<td>Andreas Basler</td>
<td>Final Version</td>
</tr>
<tr>
<td>1.0</td>
<td>30.09.2020</td>
<td>Bram Moeskops</td>
<td>Approved final version</td>
</tr>
</tbody>
</table>

This deliverable contains original, unpublished work except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through appropriate citation, quotation or both.

Executive summary

This deliverable is part of the Horizon 2020 project – OK-Net EcoFeed. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics, in particular pigs, broilers, laying hens and parents of broilers and laying hens. The aim of “Work package 4 (WP4)- Evaluation of existing tools and development of new tools” is to collect and prepare end-user materials and develop new tools adapted to the needs of farmers, feed processors and breeders and helping to solve the challenge of organic and regional feed for monogastrics. The specific objectives of WP4 are to collect, evaluate and describe existing tools and end-user material, translate and adapt most promising tools, create fact sheets and videos and develop ration-planning tools for pigs, broilers and laying hens. This deliverable presents the work done in task 4.3 “Creation of fact sheets and videos” by the Research Institute of Organic Agriculture (FiBL). The fact sheets provide a wide range of topics from feeding strategies for layers, broilers and pigs, to processing feed, using byproducts as feed, increasing digestibility of feed and using alternative sources of protein.
I. Introduction

The Research Institute of Organic Agriculture (FiBL) was tasked to publish 30 fact sheets (also referred to as "Practice abstracts") created by the partners and Innovation groups (IGs) of the OK-Net EcoFeed project until the end of Month 33 (September 2020). The fact sheets collect and summarise practical and technical recommendations for practitioners in easy-to-understand language based on the EIP common format for practice abstracts. The list of the 30 fact sheets and their publication details can be found in Annex I. All fact sheets will be made available on Organic Farm Knowledge (https://organic-farmknowledge.org/), which is

1 On Organic Farm Knowledge, the fact sheets are referred to as practice abstract. For the sake of clarity, the term fact sheet is used in this deliverable.
the knowledge platform that was created by OK-Net Arable and is being developed further by OK-Net Eco-Feed. At the time of submission of this deliverable, the 30 fact sheets are available on Organic Eprints (https://orgprints.org/), the database behind Organic Farm Knowledge.

Themes

The main themes that are dealt with in the 30 fact sheets are

- Pigs (11 fact sheets)
- Broilers (4 fact sheets)
- Layers (6 fact sheets)
- Feeding and ration planning (15 fact sheets)
- Processing and handling of harvested feed (13 fact sheets).

The statistics above make double counting as some factsheets covered more than one theme.

II. Process

The fact sheets were written by project partners, using a template that had been created by FiBL specifically for the fact sheets. It was based on the MS Word template used in the Horizon 2020 project OK-Net Arable, where 43 practice abstracts related to arable crops were produced (Micheloni et al. 2018).

Once a fact sheet was submitted by a partner, FiBL did a first quality check and then sent it to an expert (from the OK-Net Ecofeed partnership), who then reviewed it. Some fact sheets were reviewed by two experts. Once the review was done, the feedback was communicated to the author(s), who then implemented the reviewers’ comments and adapted the fact sheets accordingly. In some cases, the reviewers were consulted a second time.

Once the review was done, a language check was carried out and the layout was finalized.

The following fact sheets are available on Organic Eprints:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rotating pasture for pregnant sows</td>
</tr>
<tr>
<td>2.</td>
<td>Foraging of pigs in outdoor areas</td>
</tr>
<tr>
<td>3.</td>
<td>Silage feeding for laying hens</td>
</tr>
<tr>
<td>5.</td>
<td>Foraging of broilers in outdoor areas</td>
</tr>
<tr>
<td>6.</td>
<td>Maize germ cake</td>
</tr>
<tr>
<td>7.</td>
<td>Dry Forages: Process and techniques</td>
</tr>
<tr>
<td>8.</td>
<td>Feeding strategies for broiler chicken</td>
</tr>
<tr>
<td>9.</td>
<td>Green protein from locally grown crops</td>
</tr>
<tr>
<td>10.</td>
<td>Phase feeding for growing and finishing pigs</td>
</tr>
<tr>
<td>11.</td>
<td>Starfish as feedstuff</td>
</tr>
<tr>
<td>12.</td>
<td>Protein requirements for piglets</td>
</tr>
<tr>
<td>13.</td>
<td>Relevance of roughage feeding to pigs</td>
</tr>
<tr>
<td>14.</td>
<td>Blue mussels as feedstuff</td>
</tr>
</tbody>
</table>

Currently, FiBL is experimenting with the uploading of practice abstracts to Organic Farm Knowledge in HTML format, which should ease the automatic translation of the material.
Of the 30 fact sheets that were published:

- 3 were contributed by AIAB
- 7 were contributed by Aarhus University
- 3 were contributed by Bioland
- 4 were contributed by Donausoja
- 3 were contributed by Ecovalia
- 3 were contributed by FiBL
- 1 was contributed by ITAB
- 1 was contributed by Naturland
- 3 were contributed by SLU
- 2 were contributed by the Soil Association

All fact sheets (practice abstracts) will be submitted to EIP Agri in the common format in the course of autumn 2020. Furthermore, they are all disseminated via various channels (see following chapter).

III. Dissemination of the fact sheets

Once finalized, the fact sheets are uploaded (via the online archive Organic Eprints) unto the Organic Farm Knowledge platform (https://organic-farmknowledge.org).
A news item is created for each tool as well as Facebook posts and Tweets that then are linked to the tool entry to facilitate discussion.

Figure 1: Example of a news item and tool view

News items and social media posts are shared with the project partners to facilitate the dissemination among their networks and social media.

Recently, a newsletter was created for Organic Farm Knowledge, which also features the fact sheets (https://organic-farmknowledge.org/news-events/newsletter).

IV. Translations

Each fact sheet has an entry in the toolbox of Organic Farm Knowledge (e.g. https://organic-farmknowledge.org/tool/38117). This entry contains a summary of the fact sheet in English, which can be translated using the platform’s automatic translation facility.

Five fact sheets have been translated “manually” by Ecovalia, the Spanish OK-Net Ecofeed partner. Nine have been translated by the French partner ITAB. FiBL will translate its own as well as some further fact sheets into French and German. Aarhus University is working on translations into Danish.

V. Conclusions

In the 30 fact sheets that were compiled in the framework of OK-Net EcoFeed, existing knowledge in the field of feeding (organic) monogastrics was made accessible to a wider audience, using the Organic Farm Knowledge platform, project and partners’ social media accounts as the key communication channels.

With the production of these fact sheets, a major step towards reaching the OK-Net EcoFeed aims of a) helping organic pig and poultry farmers in achieving the goal of 100% use of organic and regional feed and
b) exchanging and co-creating knowledge among farmers, business actors, researchers and advisors was achieved.

However, to disseminate the knowledge wider, local dissemination is needed. This means that translations of the fact sheets (and further tools compiled in the framework of OK-Net Eco-Feed) are important. While “manual” translation is the most desirable way forward, it is not feasible in all cases. Therefore, it would be good to expand the automatic translation, applying it to the fact sheets as a whole and not only their summaries. Technical solutions are needed to achieve this.

VI. Reference

Micheloni, Cristina; Bortolussi, Stefano; Moeskops, Bram; Conder, Malgorzarta, Padel, Susanne and Willer, Helga (2018): Collection of end-user material. OK-Net Arable Deliverable Report 3.3. AIAB, IFOAM EU, https://orgprints.org/36333/

VII. Annex I

VII.1 List of 30 fact sheets

<table>
<thead>
<tr>
<th>PA number</th>
<th>Title and link</th>
<th>Theme</th>
<th>Issuing organisation</th>
<th>Author(s)</th>
<th>Published on</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA001</td>
<td>Rotating pasture for pregnant sows</td>
<td>Pigs; Feeding and ration planning</td>
<td>Institut de l’Agriculture et de l’Alimentation Biologiques ITAB</td>
<td>Roinsard, Antoine</td>
<td>09 September 2019</td>
</tr>
<tr>
<td>PA003</td>
<td>Foraging of pigs in outdoor areas</td>
<td>Pigs; Feeding and ration planning</td>
<td>Aarhus University</td>
<td>Kongsted, Anne Grete</td>
<td>22 January 2020</td>
</tr>
<tr>
<td>PA004</td>
<td>Silage feeding for laying hens</td>
<td>Layers; Feeding and ration planning</td>
<td>Aarhus University</td>
<td>Steenfeldt, Sanna</td>
<td>12 November 2019</td>
</tr>
<tr>
<td>PA005</td>
<td>Guide for assessing the protein quality in soya feed products</td>
<td>Processing and handling of harvested feed</td>
<td>Donau Soja</td>
<td>Rittler, Leopold</td>
<td>25 September 2020</td>
</tr>
</tbody>
</table>

3 This list only displays the 30 fact sheets that are part of the deliverable. The count is higher (PA038), as seven more fact sheets are estimated to be produced.
<table>
<thead>
<tr>
<th>PA number</th>
<th>Title and link</th>
<th>Theme</th>
<th>Issuing organisation</th>
<th>Author(s)</th>
<th>Published on</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA006</td>
<td>Foraging of broilers in outdoor areas</td>
<td>Broilers; Feeding and ration planning</td>
<td>Aarhus University</td>
<td>Steenfeldt, Sanna</td>
<td>16 December 2019</td>
</tr>
<tr>
<td>PA008</td>
<td>Maize germ cake</td>
<td>Processing and handling of harvested feed</td>
<td>Soil Association</td>
<td>Alford, Jerry</td>
<td>08 April 2020</td>
</tr>
<tr>
<td>PA009</td>
<td>Dry Forages: Process and techniques</td>
<td>Processing and handling of harvested feed</td>
<td>Associazione Italiana per l’Agricoltura Biologica AIAB</td>
<td>Papi, Eugenio</td>
<td>22 April 2020</td>
</tr>
<tr>
<td>PA011</td>
<td>Feeding strategies for broiler chicken</td>
<td>Broilers; Feeding and ration planning</td>
<td>Soil Association</td>
<td>Alford, Jerry</td>
<td>30 April 2020</td>
</tr>
<tr>
<td>PA013</td>
<td>Green protein from locally grown crops</td>
<td>Layers; Feeding and ration planning; Processing and handling of harvested feed</td>
<td>Aarhus University</td>
<td>Steenfeldt, Sanna; Ambye-Jensen, Morten; Lübeck, Mette</td>
<td>13 January 2020</td>
</tr>
<tr>
<td>PA015</td>
<td>Phase feeding for growing and finishing pigs</td>
<td>Pigs; Feeding and ration planning</td>
<td>Swedish University of Agricultural Sciences (SLU); Research Institute of Organic Agriculture (FiBL); Institut de l’Agriculture et de l’Alimentation Biologiques ITAB</td>
<td>Presto Akerfeldt, Magdalena</td>
<td>29 May 2020</td>
</tr>
<tr>
<td>PA016</td>
<td>Starfish as feedstuff</td>
<td>Processing and handling of harvested feed</td>
<td>Aarhus University</td>
<td>van der Heide, Marleen Elise; Værum Nørgaard, Jan</td>
<td>17 March 2020</td>
</tr>
<tr>
<td>PA018</td>
<td>Protein requirements for piglets</td>
<td>Pigs; Feeding and ration planning</td>
<td>Swedish University of Agricultural Sciences (SLU); Research Institute of Organic Agriculture (FiBL); Institut de l’Agriculture et de l’Alimentation Biologiques ITAB</td>
<td>Akerfeldt, Magdalena; Früh Barbara, Roinsard, Antoine</td>
<td>25 September 2020</td>
</tr>
<tr>
<td>PA021</td>
<td>Relevance of roughage feeding to pigs</td>
<td>Pigs; Feeding and ration planning</td>
<td>Research Institute of Organic Agriculture (FiBL)</td>
<td>Früh, Barbara</td>
<td>16 December 2019</td>
</tr>
<tr>
<td>PA number</td>
<td>Title and link</td>
<td>Theme</td>
<td>Issuing organisation</td>
<td>Author(s)</td>
<td>Published on</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------</td>
<td>----------------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>PA022</td>
<td>Blue mussels as feedstuff https://orgprints.org/37800</td>
<td>Processing and handling of harvested feed</td>
<td>Aarhus University</td>
<td>van der Heide, Marleen Elise; Værum Nørgaard, Jan</td>
<td>26 March 2020</td>
</tr>
<tr>
<td>PA023</td>
<td>Seaweed as feed supplement https://orgprints.org/37244/</td>
<td>Processing and handling of harvested feed</td>
<td>Aarhus University</td>
<td>van der Heide, Marleen Elise; Værum Nørgaard, Jan</td>
<td>13 February 2020</td>
</tr>
<tr>
<td>PA024</td>
<td>Single-phase feeding and compensatory growth in growing and finishing pigs https://orgprints.org/37512/</td>
<td>Pigs; Feeding and ration planning</td>
<td>Swedish University of Agricultural Sciences (SLU)</td>
<td>Akerfeldt, Magdalena</td>
<td>09 March 2020</td>
</tr>
<tr>
<td>PA025</td>
<td>Using raw soya beans with reduced content of trypsin inhibitors in organic pig fattening https://orgprints.org/38419/</td>
<td>Processing and handling of harvested feed</td>
<td>Donau Soja</td>
<td>Rittler, Leo</td>
<td>25 September 2020</td>
</tr>
<tr>
<td>PA026</td>
<td>Recommendations for using soy-based feedstuffs for poultry production https://orgprints.org/37896/</td>
<td>Layers; Broilers; Processing and handling of harvested feed</td>
<td>Bioland Beratung GmbH</td>
<td>Lindner, Christopher; Schmelzer, Elias</td>
<td>29 May 2020</td>
</tr>
<tr>
<td>PA027</td>
<td>Recommendations for using soya-based feedstuffs in pig husbandry https://orgprints.org/37897/</td>
<td>Pigs; Feeding and ration planning</td>
<td>Donau Soja</td>
<td>Rittler, Leo</td>
<td>30 April 2020</td>
</tr>
<tr>
<td>PA028</td>
<td>Sunflower oil cake https://orgprints.org/37801/</td>
<td>Processing and handling of harvested feed</td>
<td>Associazione Italiana per l'Agricoltura Biologica AIAB</td>
<td>Proietti, Lavinia</td>
<td>13 May 2020</td>
</tr>
<tr>
<td>PA029</td>
<td>Guide for farms to plan small scale soya bean processing equipment https://orgprints.org/38314/</td>
<td>Processing and handling of harvested feed</td>
<td>Donau Soja</td>
<td>Rittler, Leopold</td>
<td>02 September 2020</td>
</tr>
<tr>
<td>PA030</td>
<td>Okara: Including a soya by-product into the poultry diet</td>
<td>Processing and handling of harvested feed</td>
<td>Associazione Italiana per l'Agricoltura Biologica AIAB</td>
<td>Eugenio Papi</td>
<td>13 May 2020</td>
</tr>
<tr>
<td>PA number</td>
<td>Title and link</td>
<td>Theme</td>
<td>Issuing organisation</td>
<td>Author(s)</td>
<td>Published on</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------</td>
<td>----------------------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>PA031</td>
<td>Feeding grass silage to fattening pigs [link]</td>
<td>Pigs</td>
<td>Research Institute of Organic Agriculture (FiBL)</td>
<td>Holinger, Mirjam; Scheibler, Samuel; Früh, Barbara</td>
<td>16 September 2019</td>
</tr>
<tr>
<td>PA032</td>
<td>Utilisation of waste heat from biogas plants for drying fine-grained legumes [link]</td>
<td>Processing and handling of harvested feed</td>
<td>Bioland Beratung GmbH</td>
<td>Lindner, Christopher; Schmelzer, Elias; Vogt-Kaute, Werner</td>
<td>09 March 2020</td>
</tr>
<tr>
<td>PA033</td>
<td>Acorns for fattening free-range pigs [link]</td>
<td>Pigs; Feeding and ration planning</td>
<td>Ecovalia - Asociación Valor Ecológico, Universidad de Córdoba</td>
<td>Rodríguez-Estévez, Vicente; Díaz-Gaona, Cipriano; Sanz-Fernández, Santos; Reyes-Palomino, Carolina; Sánchez-Rodríguez, Manuel</td>
<td>05 March 2020</td>
</tr>
<tr>
<td>PA034</td>
<td>Brewer’s yeast for organic pigs [link]</td>
<td>Pigs</td>
<td>Ecovalia - Asociación Valor Ecológico, Universidad de Córdoba</td>
<td>Rodríguez-Estévez, Vicente</td>
<td>05 June 2020</td>
</tr>
<tr>
<td>PA035</td>
<td>Whey for fattening organic pigs [link]</td>
<td>Pigs</td>
<td>Ecovalia - Asociación Valor Ecológico, Universidad de Córdoba</td>
<td>Reyes-Palomino, Carolina; Sanz-Fernández, Santos; Díaz-Gaona, Cipriano; Sánchez-Rodríguez, Manuel; Rodríguez-Estévez, Vicente</td>
<td>05 June 2020</td>
</tr>
<tr>
<td>PA036</td>
<td>Focus on the amino acid content of energy feedstuff components [link]</td>
<td>Layers; Broilers; Feeding and ration planning</td>
<td>Öko-Beratungsgesellschaft mbH, Bioland Beratung GmbH</td>
<td>Vogt-Kaute, Werner und Schmelzer, Elias</td>
<td>29 May 2020</td>
</tr>
<tr>
<td>PA number</td>
<td>Title and link</td>
<td>Theme</td>
<td>Issuing organisation</td>
<td>Author(s)</td>
<td>Published on</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------------------------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>PA037</td>
<td>Feeding insects for organic layers – video abstract https://or-gprints.org/38429/</td>
<td>Layers; Feeding and ration planning</td>
<td>Research Institute of Organic Agriculture (FiBL)</td>
<td>Früh, Barbara</td>
<td>25 September 2020</td>
</tr>
<tr>
<td>PA038</td>
<td>Free choice feeding - an alternative feeding method for laying hens https://or-gprints.org/38443/</td>
<td>Layers; Feeding and ration planning</td>
<td>Naturland – Verband für ökologischen Landbau e. V.</td>
<td>Olivia Müßeler, Werner Vogt-Kaute</td>
<td>28 September 2020</td>
</tr>
</tbody>
</table>
VII.2 The fact sheets

P001 Rotating pasture for pregnant sows

Rotating pasture for pregnant sows

Problem

Feed is the biggest cost in pig farming, especially in free-range systems. In these systems, feed consumption is higher due to higher activity and higher thermal regulation needs. Outdoor sows are usually housed in huts on grass leys.

Solution

During periods of high grass growth, it is possible to reduce the amount of feed and protein content given to sows in order to get the most out of grazing. The concentrated feed can be limited to 80 % of the recommended amount for at least 3 months. At the same time, this “pasture feed” can be lower in protein. Note: from 3 weeks before farrowing, sows need a complete diet.

Benefits

With this practice, feed and production costs can be reduced by 16 % due to lower quantities of concentrate feed and lower costs of “pasture feed” per ton.

Practical recommendations

- Allow time for the grass ley to establish before sows start grazing.
- Enrich the ley with legumes to provide good nutritional value and palatability for sows.
- Harvest/remove less palatable plants that are not eaten by sows.

Applicability box

Theme
Pigs, feeding and ration planning

Geographical coverage
More efficient in areas of high grassland productivity

Application time
Pasturing season

Required time
10 minutes per week for 50 sows for fence management (not including setting up the fences)

Period of impact
Pasturing season

Equipment
Movable fences to contain/move sows to desired areas; pig feeders

Best in
On-farm feed processing (possibility to process low-protein feed)

Sows before accessing a new paddock. Photo: ITAB

Ration planning (concentrate feed and pasturing) for pregnant sows. Graph: ITAB

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773051. This communication only reflects the author’s view. The Research Innovation Agency is not responsible for any use that may be made of the information presented.
To prevent rooting behaviour remove sows when the grass is still high (>8 cm).

Encourage the creation of functional areas (lying area, feeding area) and encourage sows to learn to graze on the paddock.

Provide individual feeding distribution systems to avoid aggression.

Provide excess grass as silage during periods with no grass production.

Further information

Video
Have a look at the following video for further instructions (French): Paturage des truies aux trinôlitres.

Weblinks
Check the Organic Farm Knowledge platform for more practical recommendations on animal husbandry.

ITAB (2019, online): Alimentation des monogastriques en agriculture biologique.

About this practice abstract and OK-Net EcoFeed

Publishers:
Institut d'Entreprise de l'Alimentation (IFAM) 149, rue de Recy, FR-75015 Paris
Phone +33 01 40 04 35 84, info@ifam.org
Research Institute of Organic Agriculture (FiBL)
Alimentaire 113, Felsach 220, CH-5070 Tissi
Phone +41 62 885 72 72, info@ifl.ch, www.ifl.ch
IFOMA (U), Rue du Commerce 125, DK-8800 Brøndby
Phone +45 2 280 12 23, info@ifom.org, www.ifoma.org

Author: Antoine Biroix

Contact: antoine.marchoit@ifam.org

Permalink: Organic Farm Knowledge: ofso/28449

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 30% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

Project partners: IFOMA EU Group (project coordinator), BI, Aarhus University (IFOMA), BR, Organic Research Centre (ORC), UK, Institut Technique de l'Agroécologie Biologique (ITAB), FR, Research Institute of Organic Agriculture (FiBL), CH, Biokultur, DE; Associazione Italiana per l' Agricoltura Biologica (AIAA), IT; Deense Kjo (DK); Swedish University of Agricultural Sciences, SE; ECOVIA, ES; Selk Association, UK.

© 2019.
Foraging of pigs in outdoor areas

Problem
To reduce the risk of nutrient losses from free-range pigs, it is important to limit stocking density and to reduce nutrient inputs from concentrated feed.

Solution
Stimulating pigs' nutrient intake from foraging. Utilising available biomass is an obvious strategy to improve the sustainability of free-range systems.

Benefits
Improved utilisation of foraging crops reduces the use of concentrated feed, thereby decreasing feed costs, risk of nitrate leaching and greenhouse gas emissions.

Practical recommendation
- Root foraging crops, like Jerusalem artichokes or sugar beet (photo 1), can cover more than 80% and 50% of the energy requirements of pregnant sows and growing/finishing pigs, respectively.
- Protein-rich foraging crops like Lucerne or grass/clover can provide 100% of the lysine and methionine requirements of pregnant sows and 30-40% of the lysine and methionine requirements of growing/finishing pigs when including estimated contribution from foraged soil organisms like earthworms (photo 2).
- If pig producers adopt restrictive feeding (limited access to concentrated feed) to stimulate foraging behaviour, it is important to reduce competition for feed by allowing adequate time and space for feed consumption.
- As continuous access to attractive foraging crops stimulates pig foraging behaviour, it is important to consider and develop competitive moveable fences/systems.

Applicability box

Theme
Pigs, Feeding and ration planning

Context
Relevant for all regions allowing free-range pig production.

Application time
In Northern Europe, it is a challenge to grow winter crops suitable for direct foraging. A few foraging crops are frost-resistant, e.g. Jerusalem artichokes; however, frost can compromise the availability of the tubers.

Equipment
Moveable fences/rotational paddock systems are preferable to stimulate pig foraging behaviour and to reduce the risk of nutrient hotspots due to uneven spatial deposition of pig faeces and urine.

Best in
Pregnant sows and growing/finishing pigs.

Photo 1: Sugar beet is a suitable foraging crop. Photo: Anne Grete Kongsted

Photo 2: Un-ringed pigs can easily turn the grass clover stand searching for earthworms, etc. Photo: Anne Grete Kongsted
Further information

Video
- Check the following video: Foraging growing pigs (Danish narration)

Further reading
- Kongsted, AG et al., 2016: Slægtesvin på friland – Afgrodetilbud, fourageringsafærd, plantedækkende, produktionsresultater og miljøeffekter (in Danish) www.dca.au.dk

Weblinks
- Check the Organic Farm Knowledge platform for more practical recommendations.

About this practice abstract and OK-Net EcoFeed

Publishers:
Aarhus University, Department of Agroecology - Agricultural Systems and Sustainability, Blichers Allé 20, building PV22, DK 8830 Fredericia
http://agro.au.dk/en
IFIAM EU, Rue du Commerce 124, BE-1200 Brussels
Phone +32 2 280 13 23, info@ifoam-eu.org, www.ifoam-eu.org
Research Institute of Organic Agriculture (FiBL), Allenswil 113, Postfach 219, CH-5070 Frick
Phone +41 62 865 72 72, info@fibl.org, www.fibl.org
Author: Anne Grete Kongsted, Department of Agroecology, Aarhus University, Denmark, DK
Review: Lindsay Whitelaw, Organic Research Centre Elmore Farm, UK
Contact: anne.kongsted@agro.au.dk
Permalink: Organic-farmknowledge.org/hcd/37106

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on monogastric animal feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic food processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: ok-net.ecofeed.eu

Project partners: IFOAM EU Group (project coordinator), DE: Aarhus University (ECOF5), DK: Organic Research Centre (ORC), UK: Institut Technique de l’Agriculture Biologique (ITAB), FR: Research Institute of Organic Agriculture (FiBL), CH: Biolan, DK: Associazione Italiana per l’Agricultura Biologica (AIB), IT: Donau Soja DS, AT: Swedish University of Agricultural Sciences, SE; ECONAUA, ES; Soil Association, UK.
© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773911. The communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
Pâturage des porcs élevés en plein-air

Problème
Pour réduire le risque de pertes de nutriments dans l'environnement chez les porcs élevés en plein-air, il est important de limiter le changement et de réduire les apports de nutriments provenant des aliments concentrés.

Solution
Stimuler l'ingestion de nutriments par les porcs via le pâturage. L'utilisation de la biomasse disponible est une stratégie intéressante pour améliorer la durabilité des systèmes d'élevage de plein-air.

Bénéfices
Une meilleure utilisation des cultures fourragères pâturées réduit l'utilisation d'aliments concentrés, ce qui diminue les coûts d'alimentation, le risque de lixiviation des nitrates et les émissions de gaz à effet de serre.

Recommandations pratiques
- Les tubercules comme le topinambour ou la betterave sucrière (photo 1), peuvent couvrir respectivement plus de 80 % et 50 % des besoins énergétiques des truies gestantes et des porcs en croissance/finition.
- Les cultures fourragères riches en protéines telles que la luzerne ou les associations graminées/trèfle peuvent couvrir respectivement 100 % et 30 à 40 % des besoins en lysine et méthionine des truies gestantes et des porcs en croissance/finition, si l'on tient compte de la contribution estimée des organismes du sol comme les vers de terre (photo 2).
- Si les éleveurs de porcs réduisent la quantité d'aliments concentrés pour stimuler le comportement de recherche de nourriture, il est important de réduire la compétition entre animaux en laissant suffisamment de temps et d'espace pour la consommation d'aliments.
- L'accès continu à des cultures fourragères appétentes stimulant le comportement de recherche de nourriture des porcs, il est important de développer le recours à des barrières et systèmes mobiles performants.

Mise en œuvre

Thème
Porcs, alimentation et plan de rationnement

Couverture géographique
Pertinent pour toute région permettant la production de porcs en plein-air.

Période d'application
En Europe du Nord, il est difficile de réaliser des cultures fourragères d'hiver adaptées au pâturage. Certaines résistent au gel, comme les topinambours, mais le gel peut compromettre la disponibilité des tubercules.

Équipement
Les clôtures mobiles/systèmes de paddocks en rotation sont préférables pour stimuler le comportement de recherche de nourriture des porcs et réduire le risque de rejet de nutriments sur une zone réduite.

Éfficacité maximale
Truies gestantes et porcs en croissance/finition.

Photo 1: La betterave à sucre est une culture fourragère adaptée.
Photo: Anne Grete Kongstad

Photo 2: Les porcs sans anneau peuvent facilement retourner la prairie de trèfle à la recherche de vers de terre, etc.
Photo: Anne Grete Kongstad
Informations complémentaires

Vidéo
- Consultez la vidéo suivante: Foraging growing pigs (rédigé en danois)

Lectures complémentaires
- Kongsted, A et al., 2015: Slagetssvin på fælles – Afgeredde tilbud, fourageringsafhængig, plantedække, produktionsresultater og miljøeffekter (en dansk) www.dca.aau.dk

Liens Internet
- Consultez la plateforme Organic Farm Knowledge pour plus d’informations pratiques.

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Éditeurs:
- Aarhus University, Department of Agroecology - Agricultural Systems and Sustainability, Biocenter Allé 20, building P22, DK 8830 Tjele
 http://agro.au.dk/Ut
- IFOMA E.U., Rua do Comércio 134, BE 1000 Bruxelles
 Tél. +32 2 280 11 23, info@foam-eu.org, www.foam-eu.org
- Research Institute of Organic Agriculture (FiBL)
 Ackermannstrasse 133, Novartis 215, CH-5270 Frick
 Tél. +41 62 865 72 73, info.foainfo@fdi.org, www.fibl.org

Auteurs: Anne Kreit Kongsted, Department of Agroecology, Aarhus University, Denmark, DK

Relecture: Lindsay Whitley, Organic Research Centre Elm Farm, UK

Traduction en français : ITAB (contact : antoine.economat@itab.agr.ucl.ac.uk)

Contact : anouk.kenson@agro.au.dk

Lien permanent : Organic Farm Knowledge/eco_red/371200

OK-Net EcoFeed. Cette fiche pratique a été élaborée dans le cadre du projet OK-Net EcoFeed est un outil pour les agriculteurs, les éleveurs et l'industrie de transformation des aliments biologiques à atteindre l'objectif de 100% d'utilisation d'ingrédients biologiques et régionaux pour monogastriques.

Site Internet du projet www.ok-net-ecofeed.eu

Partenaires du projet: FOAM EU Group (coordinateur de projet), BE: Aarhus University (CHRIS), DK: Organic Research Centre (CRC), UK: Institut Technique de l’Agriculture Biologique (ITAB), FR: Research Institute of Organic Agriculture (FiBL), CH: Biodynamic (BI) Associations Italiens pour l’Agriculture Biologique (ABA), IT: Dema Soja DS, AT: Swedish University of Agricultural Sciences, SE; ESTONIA, ES; Seed Association, UK.

© 2020

Ce projet a été financé par le programme de recherche et d’innovation Horizon 2020 de l’Union Européenne dans le cadre de la convention de subvention no 777191. Cette communication ne fait que refléter le point de vue de l’auteur. L’Agence exécutive pour la recherche et l’innovation n’est pas responsable de l’utilisation ou des interprétations des informations fournies. Les auteurs et les rédactions des revues sont responsables pour l’exactitude ou l’exactitude des informations ou données extraites de cette communication ou des communications de ces résumés de pratique.
Problema

Para reducir el riesgo de pérdidas de nutrientes de los cerdos criados en libertad, es importante limitar la densidad de carga ganadera y disminuir el aporte de nutrientes de los piensos.

Solución

Estimular la ingesta de nutrientes de los cerdos vía forrajes. Utilizar la biomasa disponible es una estrategia obvia para mejorar la sostenibilidad de los sistemas de producción con pastoreo.

Beneficios

La mejor utilización de los cultivos forrajeros reduce el uso de piensos, disminuyendo de este modo los costes de alimentación, el riesgo de lixiviación de nitratos y las emisiones de gases de efecto invernadero.

Recomendaciones prácticas

- Los cultivos de raíces forrajeras, como la patata (Helianthus tuberosus) o la remolacha azucarera (Beta vulgaris) (foto 1), pueden cubrir más del 80% y del 50% de las necesidades energéticas respectivamente de las cerdas gestantes y cerdos en crecimiento-chebo.
- Cultivos forrajeros ricos en proteína como alfalfa o praderas con trébol pueden proporcionar el 100% de los requerimientos de lisina y metionina de cerdas gestantes y el 30-40% de los de los cerdos de crecimiento-chebo cuando se incluye la estimación de la contribución de organismos del suelo, como son las lombrices de tierra (foto 2).
- Si los productores de cerdos dan una alimentación restringida (acceso limitado al pienso) para estimular la búsqueda de alimento con pastoreo, es importante reducir la competencia por el pienso, dando el tiempo y el espacio necesario para el consumo de pienso.
- Dado que el continuo acceso a cultivos forrajeros aportales estimula el comportamiento de pastoreo selectivo de los cerdos, es importante considerar el empleo de sistemas económicos de cercas móviles.
D.4.4 – Fact sheets

Mais información

Video
- Ver el video: Foraging growing pigs (narración en danés).

Otras lecturas
- Kongsted, AG et al., 2016: Slagtesvin på frilands – Afgrødelivbud, fourageringsdeltak, plantedække, produktionsresultater og miljøeffekter (en danés) www.dca.au.dk

Weblinks
- Consultar la plataforma Organic Farm Knowledge para obtener más recomendaciones prácticas.

Sobre esta Ficha Práctica y el Proyecto OK-Net EcoFeed

Edición
Aarhus University, Department of Agroecology - Agricultural Systems and Sustainability, Blicher Allé 20, building PY22, DK 8830 Tjele
http://www.agro.au.dk
IFOAM EU, Rue du Commerce 124, BE-1000 Brussels Phone +32 2 230 12 23
info@organic.europewide.org, https://www.organic.europa.eu/Research Institute of Organic Agriculture (IFAS), Aufsessstrasse 113, Postfach 218, CH-5700 Frick Phone +41 62 865 72 72 info.iris@ifas.ch
www.ifas.org
Aarhus School of Natural Sciences, Department of Agroecology, Aarhus University, Denmark, DK
Redactor: Lindsey Wilshauer, Organic Research Centre Elm Farm, UK
Traducción: Vicente Rodríguez Estévez, Cátedra de Ganadería Ecológica, Universidad de Córdoba,
Tatiana Karpeva, Asociación Holanda Ecológico, CAAT (ECOWAU).

Contacto: www.kongsted@jatro.au.dk
Link: Organic-farmknowledge.org/tag/organic

OK-Net EcoFeed: Esta ficha técnica se elaboró en el proyecto Organic Knowledge Network en Monogastric Animal Feed. El proyecto lleva a cabo en España desde enero de 2018 a diciembre de 2020. La finalidad del OK-Net EcoFeed es ayudar a los ganaderos, críadores e industrias de procesado de alimento ecológico para alcanzar el objetivo de alimentación 100% ecológica y local para monogastricos.

Yathi del proyecto: ok-net-ecofeed.eu

Sede del proyecto: FOAM EU Group (project coordinator), BE, Aarhus University (CR075), DK, Organic Research Centre (ORC), UK, Institut Technique de l’Agriculture Biologique (ITAB), FR, Research institute of Organic Agriculture (IFAS), CH, The Netherlands, BNL; Asociación Italiana para l’Agricultura Biologica (AIAB), IT; Dansk Søjselskab (DS), DK; Swedish University of Agricultural Sciences, SE; ECOWAU, ES; Soil Association, UK.
© 2019

Este proyecto ha recibido financiación del programa de investigación e innovación Horizonte 2020 de la Unión Europea en virtud del acuerdo de subvención nº 773911. Esta comunicación sólo refleja la opinión del autor. La Agencia Ejecutiva de Investigación no se hace responsable del uso que pueda hacerse de la información proporcionada. Los autores y editor no asumen responsabilidad alguna por cualquier posible merma o alteración que pudiera sufrir la aplicación de las recomendaciones en este recurso de prácticas.
Silage feeding for laying hens

Problem
Feeding silage to organic laying hens is practised on a daily basis by many egg producers (see figure 1). Since hens can eat large amounts of silage, it is important to use high-quality silage.

Solution
Different types of silage can be used. However, e.g. grass, clover grass, alfalfa, hemp, horse beans, lupines and sunflower silage often have a higher protein content than e.g. barley/pea (see figure 2) or maize silage (whole plant or the cob only). A chemical analysis of the harvested silage is important in order to estimate the quality.

Benefits
High-quality silage can provide nutrients for the hen and encourage natural foraging behaviour, thus reducing the risk for feather pecking. Growing protein-rich silage helps increase self-sufficiency and improve the crop rotation of the organic poultry farms.

Figure 1: Laying hens on a veranda feeding silage distributed by an automatic system (robot). Photo: Søren Steenfeldt, AU

Figure 2: Barley-pea silage for laying hens. Photo: Niels Pinn Johansen, SEGES

Applicability box
Theme
Layers, feeding and ration planning

Geographical coverage
Global

Application time
Feeding silage on a daily basis all year. The amount given depends on hen age and silage type.

Required time
Harvest time during spring, summer or autumn, depending on the silage type.

Period of impact
During the entire laying period.

Equipment
Silage chopper, automatic system (robot) to feed the silage 1-3 times per day in the barn.

Best in
Choice of silage will depend on the soil type and if the land is often dry or waterlogged. The silages should be harvested as whole crops.

Practical recommendation
- Choose the silage type(s) that provides the best yield and quality, depending on soil type and weather conditions.
- The silage has to be finely chopped.
- Silage generally has to be preserved under proper conditions to optimize the fermentation process.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 735001. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
— Fact sheets

PRACTICE ABSTRACT

- Analyse the protein content of the silage and other nutrients if possible.
- Avoid silage with anti-nutritional factors.
- Investing in an automatic feeding system (robot) is recommended for larger flocks to distribute the silage evenly and encourage the hens to eat it.
- Including the chemical content of the silage in the feed formulation could be an advantage, when feeding more than 20 g silage (wet weight) per hen per day.

Further information

Link

- This video provides further instructions on feeding silage to layers (in Danish).
- On the website of [Biologisk Landbrug 2019](#), there is an overview of the most important feed materials for self-supply of organic poultry with dry feed and silage. You can download and print listings of data on each crop and information on cultivation, crop rotation, harvesting, storage, nutrient content and nutritional considerations (in Danish).
- Check the Organic Farm Knowledge platform for more practical recommendations on animal husbandry.

About this practice abstract and OK-Net EcoFeed

Publishers:
Dept. of Animal Science (ANIS), Aarhus University (AU)
Bl淡rsen 4652, Postbox 50, DK-8830 Tjele
Phone: +45 8715 0000, ext 8715 8076, ani@ani.au.dk
Research Institute of Organic Agriculture (IFU)
Adenauerallee 113, Postfach 210, CH-5700 Freiburg
Phone: +41 62 865 72 72, info@ifu.ch, wwwifu.ch
IFAM EU
Rue du Géomètre 124, B-1000 Brussels
Phone: +32 2 286 12 33, info@ifam-eu.org, www.ifam-eu.org

Authors:
- Sanna Steenfeld (ANS AU)
- Contact: sanna.steenfeld@ani.au.dk

Permalink: OrganicFarmKnowledge.org/boox/5468

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic food processing industry in achieving the goal of 50% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

Project partners: IFAM EU Group (project coordinator), BE; Aarhus University (OKF), DK; Organic Research Centre (ORC), IE; Institut Technique de l’Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (IFU), CH; Biologisk Landbrug 2019 (BL2019), DK; Italian Association of Organic Agriculture (AIA), IT; Swedish University of Agricultural Sciences (SLU), SE; ECOVADA, IE; IFAI, Association, UK.

© 2019

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739031. This communication only reflects the author’s views. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual errors or omissions resulting from the application of the recommendations in this practice abstract.
Guide for assessing the protein quality in soya feed products

Problem

Soya beans are an excellent source of protein but they also contain anti-nutritive components, which need to be deactivated by heat prior to feeding to swine or poultry. However, high temperatures can also damage key nutrients, reducing their digestibility.

Solution

Trypsin inhibitor activity (TIA), protein dispersibility index (PDI), and urease activity are useful indicators in soya products to assess the quality of soya bean processing and help to predict availability and digestibility of nutrients. Most feed laboratories can measure these parameters. In addition, specialised near infra-red spectroscopy (NIRS) can now measure the availability of amino acids.

Benefits

Regular monitoring of key soya bean processing indicators is essential for achieving a consistently high product quality. Results can be also used by animal keepers for planning feed rations.

Applicability box

Theme
Processing and handling of harvested feed

Geographical coverage
For all farms where soya can be grown

Application time
On demand

Required time
Time for sample collection, posting to laboratory and interpretation of testing reports should be accounted. It depends on local conditions and experience of the operators.

Equipment
Sample bags and standard lab equipment

Best in
Farms with animal husbandry and arable production

Practical Recommendations

Processing intensity is key to quality

Common procedures for the heat treatment of soya beans are toasting, steaming and extrusion. The purpose of these procedures is to deactivate anti-nutritive components such as trypsin inhibitors. However, applying high temperatures inevitably leads to nutrient damage so the goal is to balance processing intensity. For toasted soya beans, the intensity is a function of processing time and temperature.

Crude protein content is a standard feed parameter, but it does not provide information on the digestibility. Processing indicators are measurable components of soya feed products which make the quality of soya bean processing (heat treatment) quantifiable. Table 1 summarises processing indicators which best predict the digestibility of the feed. Nutrient availability can be high if the values for trypsin-inhibitor activity (TIA) and protein dispersibility index (PDI) are within the target range (see numbers in Table 1). On the other hand, a poor feed conversion ratio becomes more likely if, for example, the TIA value in soya cake is higher than 4 mg/g (see Figure 1).
Table 1: Overview of processing indicators in soya bean-based feed products. Values are based on dry matter (88%). Sources: various, see in further information.

<table>
<thead>
<tr>
<th>Application</th>
<th>Soybeans unprocessed</th>
<th>Soybean feed products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin-Inhibitor activity, TIA</td>
<td>Trypsin inhibitors are anti-nutritive substances which are naturally present in soya beans. TIA is reduced by heat. High TIA values in soya products can indicate poor digestibility and too low processing intensity.</td>
<td>Common: 30–50 mg/g DM</td>
</tr>
<tr>
<td>Urease activity</td>
<td>Urease is an enzyme naturally present in soya beans. It has little relevance for animal growth. Urease activity serves as a marker for TIA since it is also reduced by heat. High urease activity in soya products is often linked to a high TIA. Recent experiences indicate that very low values for urease activity are not suitable to assess accurately the digestibility of soya feed. If available, TIA or PDI should be used.</td>
<td>Common: >2 mg/g DM</td>
</tr>
<tr>
<td>Protein Dispersibility Index, PDI</td>
<td>Protein dispersibility is based on the solubility of soya bean protein in a solvent. Most common solvents are water (PDI) or potash (PDI-KOH). PDI decreases with heat. Low PDI values in soya products can indicate damage to nutrients and a too high processing intensity.</td>
<td>Common: Water: >50 % KOH: 100 %</td>
</tr>
<tr>
<td>Availability of amino acids</td>
<td>Amino acids are the components of protein. Measuring the quality of amino acids is the best indicator for detecting damages through processing. Reactive lysine is a very suitable parameter but measurements through wet chemistry are expensive. The latest NIRS applications are low-cost and provide instant results. Reactive lysine is the part of total lysine which is digestible. It is reduced by heat.</td>
<td>Common: >91 %</td>
</tr>
</tbody>
</table>

Figure 1: The effect of trypsin inhibitor activity (TIA) on the feed conversion ratio of broiler chickens. TIA values are based on the total feed mix. Each dot represents the mean value of each dietary treatment (n=25). The black dot represents a feed mix with commercial soya bean meal. Source: Hoffman et al. (2019)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730311. This communication only reflects the author's view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible direct or indirect consequence or damage resulting from the application of the recommendations in this practice abstract.
Monitoring and testing of processing indicators

The monitoring of processing indicators provides key information for ensuring the quality of soya feed products over the whole year. All common kinds of soya feed products (toasted soya beans, expeller, or solvent-meat) can be tested on urease activity, TIA and PDI. Most laboratories with a specialisation on feed analysis can measure urease activity and PDI. Analysis of TIA or amino acids are less commonly offered by laboratories in Central Europe (see also in "Further information").

Even under routine operating conditions it is fundamental to collect a correct, representative sample so that any subsequent analytical work and interpretation makes sense. The monitoring of the processing indicators of soya products can be compared with the guidelines applied in other crop quality management and assurance schemes.

The following list contains guidance points which are special for soya bean processing indicators:

- When soya bean processing equipment is operating for the first time, frequent testing is necessary until a constant product quality can be reached.
- More frequent testing is recommended if the processing equipment is not continuously in use or if the processing settings are frequently changed.
- Experienced operators of soya bean processing equipment can detect changes in processing performance by the taste of the soya product. However, tasting provides only a rough indication and cannot replace lab tests.
- An adequate sample weight is usually 0.5 kilogram.
- Occasional testing of unprocessed soya beans is advisable since the quality can differ significantly between each batch.
- It is essential that soya beans are standardised for particle size, purity, and moisture content prior to processing. Ideal conditions can also differ depending on the processing equipment used.

Further information

References and recommended literature

Further reading

- Organic Farm Knowledge provides access to further literature on soybean processing.

Weblinks

- AGES - Austrian Agency for Health and Food Safety. AGES offers an evaluation of feed tests and is capable of analysing also trypsin inhibitor activity. Further information on the AGES website: www.ages.at/en
D.4.4 – Fact sheets

PRACTICE ABSTRACT

About this practice abstract and OK-Net EcoFeed

Publishers:
Veren Donau Soja, Wasaingestrasse 6/14, AT 1020 Wien
Phone: +43 1 311 27 04 10, office@do.noau.soja.org, www.do.noau.soja.org
Research Institute of Organic Agriculture (FIBI)
Ackerstrasse 113, Postfach 210, CH 5070 Freiburg
Phone: +41 62 865 72 72, info@fibio.ch, www.fibio.ch
IFOAM EU
Rue du Gemenois 124, BE 1000 Brussels
Phone: +32 2 286 13 23, info@ifoam-eu.org, www.ifoam-eu.org
Authors: Leopold Borny (Donau Soja)
Contact: fil@do.noau.soja.org
Permalink: Organic-farmingknowledge.org/doi/10.526

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project runs from January 2010 to December 2012. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed producing industry in achieving the goal of 30% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

Project partners: IFOAM EU Group (project coordinator), BE; Aarhus University (KNUF), DK; Organic Research Centre (OCR), UK; Institute Technique de l’Agriculture Biologique (ITABI), FR; Research Institute of Organic Agriculture (FIBI), CH; hTeck, IT; Associazione Italiana per l’Agricoltura Biologica (AIB), IT; Donau Soja DS, AT; Swedish University of Agricultural Sciences, SE; FEINANAL, IT; Soil Association, UK.

© 2010
Foraging of broilers in outdoor areas

Problem
Access to outdoor areas is mandatory in organic poultry production. Stimulating organic broilers to use outdoor areas can be a challenge if there is only sparse vegetation without trees and bushes outside the houses.

Solution
Establishing attractive areas is necessary to increase the number of broilers going outside. A combination of smaller open areas with grass and herbs as well as areas with different bushes and trees, where the broilers can feel safe, will stimulate the chickens to use a larger part of the outdoor areas (see figure 1). Choice of genotypes can be important, as some genotypes are more active than others.

Benefits
Having access to an attractive outdoor area will stimulate the broilers to be more active and forage, which contributes to a more natural behaviour. Active broilers expected to have fewer food pad lesions, which is important for the birds’ welfare. In addition to higher activity, grass, herbs and/or crops in the outdoor area can provide the birds with nutrients.

Practical recommendation
- Select plant species that are robust and adjusted to the climate such as caraway (Carum carvi), red clover (Trifolium pratense), chicory (Chicorium intybus), plantain (Plantago major, broadleaf), Plantago lanceolata (lanceleaf), ryegrass (Lolium perenne), seethal (Prunella vulgaris), birdsfoot trefoil (Lotus corniculatus), lucerne/alfalfa (Medicago sativa).

Applicability box

- **Theme:** Broilers, feeding and ration planning
- **Geographical coverage:** Global

Application time
Outdoor areas can be used all year round; however, in a colder climate, winter periods can be difficult and winter gardens are recommended.

Required time
Planting outdoor areas takes time and needs bushes and trees as well as grass/herbs to be protected from birds for 1 to 2 years.

Period of impact
The planting period is critical. Newly planted trees or bushes can be protected by fencing.

Equipment
Equipment for planting trees and bushes; movable fences

Best in
Slow-growing trees, e.g. fruit trees, can be sheltered by fast-growing nurse trees, e.g. willow or poplar. Planting time will depend on climate and weather conditions.

Figure 1: An protective environment encourages the birds to use the outside area. Photo: Sanna Steenfeldt, Aarhus University

Figure 2: Planting some trees in rows from the broiler houses will encourage the birds to leave the house and spread far into the outdoor areas. Photo: Sanna Steenfeldt, Aarhus University

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 730039. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors disclaim any responsibility or liability for any possible factual inaccuracies or damages resulting from the application of the recommendations in this practice abstract.
PRACTICE ABSTRACT

- Fencing off part of the plants might be necessary until they have reached a size that makes them less vulnerable to birds eating leaves and smaller branches.
- Planting some trees in rows from the broiler houses will encourage the birds to leave the house and spread far into the outdoor areas (see figure 2).
- Combine trees and bushes with smaller open areas with grass/herbs or even crops that encourage foraging activity and other natural behaviour such as dustbathing, which is good for animal welfare.
- Choice of genotype is important. Very fast growing genotypes are not suitable for establishing a population with active animals.
- During cold winter periods, broilers are less motivated to go outside; a veranda system (winter garden), where silage can be provided, is recommended.

Further reading

- Steenfeldt, Sanna Diversitet og integrati4 i økologisk slagtefjerkræproduktion- MultiChick, Aarhus Universitet. Available at http://crofs.dk/fileadmin/crofs/Nyheder_PDF/MultiChick/MultiChick_sider_Final.pdf

Weblinks

- Check the Organic Farm Knowledge platform for more practical recommendations on animal husbandry

About this practice abstract and OK-Net EcoFeed

Publishers:
- Depts of Animal Science (Aarhus University [AU]), Animal Welfare Institute (UIE)
- Research Institute of Organic Agriculture (FiBL)
- OFAFI (The Organic Farming Association)

Contact: sanna.steenfeldt@aris.au.dk

Permalink: OrganicFarmKnowledge.org/2013/09/33459

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Agroecological Animal Feed project. The project is running from January 2012 to December 2015. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 20% use of organic and regional feed for domestic animals.

Project websites: ok-net.ecofeed.eu

Project partners: OKAFI (project coordinator), AU; Aarhus University (AUN); Organic Research Centre (OFAC); IFAS; Institute for Agriculture and the Environment (FAI); Vlaams Instituut voor Organische Landbouw (VIOF); University of Agricultural Sciences, Sweden; ECOVAL, Spain; Soil Association, UK.
Maize germ cake

Problem
The protein supply to organic pigs and poultry requires careful management to ensure an adequate supply of essential amino acids and to avoid overfeeding. Alternative sources of protein need to be used to supply the balance of amino acids needed.

Solution
By-products of manufacturing processes are useful alternatives. Maize germ cake is a by-product of starch and corn oil production, as well as a brewing by-product.

Benefits
Maize germ cake contains higher levels of essential amino acids than whole maize, but less energy, which should help with rationing for slower growing breeds of pigs and poultry.

Applicability box

<table>
<thead>
<tr>
<th>Theme</th>
<th>Processing and handling of harvested feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical coverage</td>
<td>In all countries where maize is grown</td>
</tr>
<tr>
<td>Application time</td>
<td>Any time</td>
</tr>
<tr>
<td>Required time</td>
<td>No extra time required</td>
</tr>
<tr>
<td>Period of impact</td>
<td>Immediate Impact</td>
</tr>
<tr>
<td>Equipment</td>
<td>Existing feed equipment but good dry storage needed</td>
</tr>
<tr>
<td>Best in</td>
<td>All conditions</td>
</tr>
</tbody>
</table>

Practical recommendation
- Maize germ cake is part of a group of loosely named by-products yielded from the wet milling and dry milling maize industries. It is important to know what process the cake is from because that will affect its feed value.
 - Dry milled maize should contain more soluble protein, starch, and phosphorus.
 - Wet milled maize tends to contain more residual oil.
 - Organic cake will have high oil levels because oil can only be extracted by pressing, not solvents.
- Maize germ (about 11% of the grain weight) cake contains 20-24% crude protein and higher levels of essential amino acids than whole maize as shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Protein and amino acid levels in maize and maize germ meal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
</tr>
<tr>
<td>Crude protein %</td>
</tr>
<tr>
<td>Lysine %</td>
</tr>
<tr>
<td>Methionine %</td>
</tr>
<tr>
<td>AMEn MJ/kg DM*</td>
</tr>
</tbody>
</table>

Source: Hirst et al. 2015
*AMEn MJ/kg DM: Apparent metabolizable energy, nitrogen-corrected.
Other products like maize gluten feed are similar but contain more bran and have different nutritional values.
Maize quality and processing methods should be identified well in advance to avoid any nutritional imbalances. Ideally, the feed should be analysed to determine nutritional value.

The maize germ contains high levels of phytic acid which has some anti-nutritional factors, particularly relating to phosphorus availability, but up to 20% maize germ cake can be used without reduced productivity in pigs and poultry rations.

If badly stored, the feed can turn rancid.

Maize germ cake can replace maize within the ration for layers and during the fattening period for broilers.

It is essential to develop a sound feeding plan to avoid any nutritional problems.

Further information

Heusse V., Tran G., Lebas F. (2015); Maize germ meal and maize germ. Feedipedia, a programme by INRA, CI-RAD, AFZ and FAO. https://www.feedipedia.org/node/716. Last updated on October 27, 2015, 16:23. Available at: https://www.feedipedia.org/node/716

About this practice abstract and OK-Net EcoFeed

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry achieve the goal of 25% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

Project partners: IFAM (project coordinator), IFI Aarhus University (IFAM Project, Dk); Organic Research Centre (ORC), UK; Invited Technicians of Agriculture Biologique (TEAB); FI Research Institute of Organic Agriculture (FIRA), CH Bioland, DE: Associazione Italiana per l’Agricoltura Biologica (AIB), IT; Denens Zoo ES, GI; Swedish University of Agricultural Sciences, SE; COOPAUS, ES; Soil Association, UK.

© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733931. This communication only reflects the authors’ view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume any responsibility or liability for any possible factual errors or omissions resulting from the application of the recommendations in this practice abstract.
Tourteau de germes de maïs

Problème
L’apport de protéines aux porcs et volailles biologiques exige une gestion attentive pour garantir un apport adapté d’acides aminés essentiels et éviter la surentrainement. Des sources alternatives de protéines doivent être utilisées pour garantir l’équilibre en acides aminés nécessaires.

Solution
Les co-produits des processus industriels de transformation constituent des alternatives utiles. Le tourteau de germes de maïs est un co-produit de la production d’amidon et d’huile de maïs, et de la brasserie.

Bénéfices
Le tourteau de germes de maïs contient des teneurs plus élevées en acides aminés essentiels que le maïs entier, mais moins d’énergie, ce qui facilite le rationnement pour les races de porcs et de volailles à croissance plus lente.

Mise en œuvre

Thème
Transformation et traitement des matières premières récoltées.

Couverture géographique
Tous les pays où la culture du maïs est possible

Période d’application
Toute l’année

Temps requis
Aucun temps supplémentaire

Délai d’impact
Impact immédiat

Equipement
Équipement classique pour l’alimentation. Un bon stockage au sec est nécessaire.

Efficacité maximale
Toutes conditions

Recommandations pratiques

- Le tourteau de germes de maïs regroupe sous la même appellation les sous-produits divers issus des industries de mouture humide ou sèche du maïs. Il est important de savoir de quel processus provient le tourteau, car cela aura une incidence sur sa valeur alimentaire.
 - Le maïs moulu à sec contiendrait davantage de protéines solubles, d’amidon et de phosphore
 - Le maïs moulu par voie humide a tendance à contenir plus d’huile résiduelle.
 - Le tourteau biologique aura une teneur élevée en huile car celle-ci ne peut être extraite que par pression, et non par usage de solvant.

- Le tourteau de germes de maïs (environ 11 % du poids du grain) contient 20 à 24 % de protéines brutes et des teneurs plus élevées en acides aminés essentiels que le maïs entier, comme le montre le tableau 1.

| Tableau 1: Teneurs en protéines et en acides aminés du maïs et du tourteau de germes de maïs. |
|---|----------------|
| Protéines brutes (%) | 7.6 | 20 |
| Lysine (%) | 3.1 | 4.0 |
| Méthionine (%) | 2.1 | 1.7 |
| EAAmin (MJ/kg MS)* | 15.1 | 8.8 |

*EAAmin (MJ/kg MS): Énergie métabolisable apparente quand l’azote est limitant

Source: [Ref et al. 2015]
D.4.4 – Fact sheets

FICHE PRATIQUE

- D’autres produits, comme les matières premières à base de gluten de maïs, sont similaires mais contiennent plus de son et ont des valeurs nutritionnelles différentes. La qualité du maïs et les méthodes de transformation doivent être bien identifiées pour éviter tout déséquilibre nutritionnel. Idéalement, la matière première devrait être analysée pour déterminer sa valeur nutritionnelle.

- Le germé de maïs a des teneurs élevées en acide phytique qui contient des facteurs antinutritionnels, notamment vis-à-vis de la disponibilité du phosphore, mais le tourteau de germes de maïs peut être incorporé jusqu’à 20 % dans les aliments sans réduction de la productivité des porcs et des volailles.

- La matière première peut devenir rance si elle est mal stockée.

- Le tourteau de germes de maïs peut remplacer le maïs dans la ration des poules pondeuses et pendant la période d’engraissement des poulets de chair.

- Il est essentiel d’élaborer un plan d’alimentation rigoureux pour éviter tout problème nutritionnel.

Pour plus d’informations

Références et lectures complémentaires

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Editeurs:
Soil Association
Spear House, 51 Victoria Street, UK Bristol BS1 6AD
www.soilassociation.org

Research Institute of Organic Agriculture (IFOAM)
Altorstrasse 133, Postfach 255, CH-5070 Frick
Tel. +41 62 865 72 70, info.ifoam@ifoam.org, www.ifoam.org

IFOAM EU, Rue de la Commercie 162, BE-1000 Bruxelles
Tel. +32 2 380 13 23, info@ifoameu.org, www.ifoameu.org

Auteur: Jeremy Alford, Soil Association
Contact: jeralford@soilassociation.org

Références: Lindsay Whillock, OIE, UK
Traduction en français: Christine Letarte, ITAB (contact: christine.letarte@itab.sens.fr)

Lien permanent: OrganicFarmingNetwork.org/doc/597914

OK-Net EcoFeed : Cette fiche pratique a été élaborée dans le cadre du projet Organic Knowledge Network on Monocrop Animal Feed. Le projet a débuté en janvier 2018 et définitivement. L’objectif global d’OK-Net EcoFeed est d’explorer la transformation des aliments biologiques à atteindre l’objectif de 100% d’utilisation d’aliments biologiques et régénératifs pour les animaux.

Site Internet du projet: ok-net.ecofeed.eu

Partenaires du projet: IFOAM EU Group (coordonnateur du projet), IC: Aarhus University (ICI), DK; Organic Research Centre (ORC), UK; Institut Technologique de l’Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (IFOAM), CH; Bioland, DE; Association Italienne pour l’Agriculture Biologique (ARAB), IT; Danau Soja DS, AT; Swedish University of Agricultural Sciences, SE; IFOAM NL, SE, Soil Association, UK.

© 2020

Ce projet a été financé par le programme de recherche et développement Horizon 2020 de l’Union Européenne dans le cadre de la convention de subvention n° TF0111. Cette communication ne reflète pas nécessairement l’opinion de l’Union Européenne. L’Union Européenne ne peut être tenue responsable pour des erreurs de traduction, des fautes ou des dommages résultant de l’application des recommandations de ce résumé de pratique.
Dry forages: Process and techniques

Problem
Forage storage and quality are affected by the percentage of water contained in the plants. A high water content encourages the formation of mould and indigestible compounds from, a reaction between sugar and amino acids (Maillard reaction) and brown forage. Enzyme processes can also modify forage quality due to plant respiration after cutting. A decrease in forage quality is also due to weather conditions during haymaking.

Solution
To increase water loss after cutting, grass needs to be spread with an appropriate machine (tedder) to expose more surface to the sun. When moisture content is around 45-50%, the grass is turned. Rowing the grass at night reduces surface area and water reabsorption as well as increasing soil drying (Figure 1). This helps to decrease drying time and reduce losses in forage quality and quantity.

Benefits
The drying process preserves forage quality and increases protein and energy content. To improve the process, a conditioner can be attached to the mower where the grass is crushed between two rollers. Crushing the stems can speed-up the on field drying process, reduce nutrient losses and, if the drying process is completed in a hay dryer, reduce the energy consumption.

Practical recommendation
- To obtain the best forage quality, cutting at the correct time is important, when cellulose and lignin content is not too high. During spring, cutting early is the best option to preserve forage quality; for grasses, the correct time is beginning of heading; for leguminous plants, it is beginning of blooming. However delaying cutting increases dry matter (DM) content, which speeds up the drying process. Favourable weather conditions can reduce drying costs. Making hay decreases the moisture content to 15 % and increases dry

Dry forages: Process and techniques. Associate Italian Agriculture Biologica (AIA). OK-Net& EUFeed Practice Abstract.
matter (DM) to 85%. Cutting height (Figure 2) is important for a perennial crop, affecting speed and quantity of regrowth. Generally, it is not recommended to cut too close to the ground because basal buds are the slowest to reflow and have low vigour.

- Spreading the grass at cutting helps to decrease drying time and minimise forage quality and quantity losses. On-field crushing of stems using a conditioner, increases water loss by up to 30% and increases DM. The drying process can be completed on the field or in drying rooms, where forage quality is highest. At the end of the drying process, the hay can be baled and stored.

Further information

Video
The Character & Heritage Institute: Video «The process of making hay».

Weblinks
- Check the Organic Farm Knowledge platform for more practical recommendations on animal husbandry and livestock feeding.

About this practice abstract and OK-Net EcoFeed

Publishers:
Associazione Italiana Agricoltura Biologica (AIAB) Via Monte Grappa 221T - 80035 Sola Marina (RC) Phone +39 090 760992, aibi.it
Research Institute of Organic Agriculture (IFOAM) Ackermannstrasse 113, Postfach 210, CH-5010rick Phone +41 42 605 72 72, info@ifoam.org, www.ifoam.org
IFORAM NO, Rue du Commerce 124, NO-1001 Norway Phone +41 22 288 12 22, info@ifoam-eu.org, www.ifoam-eu.org

Author: Eugenio Pop (AIAB)
Reviewer: Lindsey Whitenance, ORC, UK
Contact: eugenio.pop1@gmail.com

Permalink: OrganicFarmKnowledge/270881

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network (OK-Net) project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 30% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu
Project partners: IFORAM (project coordinator), ORC, UK; Organic Research Centre (ORC), UK; Institut Technique de l'Agriculture Biologique (ETAB), FR, Research Institute of Organic Agriculture (FRL), CH, Bioz DONEAL, IE, Association Italiana per l'Agricoltura Biologica (AIAB), IT; Dania Soja DS, AT; Swedish University of Agricultural Sciences, SE; ECOATEA, ES; Sati Association, NL.
© 2020
PA011 Feeding strategies for broilers

Feeding strategies for broilers

<table>
<thead>
<tr>
<th>Problem</th>
<th>Applicability box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic broilers grow slower than conventional birds and so producers face the challenge of feeding quality feed components at lower concentrations. Feed needs to fulfill the amino acid and energy requirements of broilers for efficient growth and development, but growth is slower.</td>
<td>Theme</td>
</tr>
<tr>
<td>Choice feeding, access to range and forages can increase the utilisation of protein and energy, which will increase feed efficiency. The requirements for birds to use the range area is part of the solution.</td>
<td>Broilers, feeding and ration planning</td>
</tr>
<tr>
<td>Improved energy and protein utilisation in broilers. Furthermore, as these approaches rely on local feed sources and forage from the range, the feeding strategies add to agricultural sustainability and reduce the need to import foreign feed.</td>
<td>Geographical coverage</td>
</tr>
<tr>
<td>Practical recommendation</td>
<td>In all countries</td>
</tr>
<tr>
<td>Organic standards require organic broilers to be free range and have access to open-air spaces as soon as possible (figure 1) but at a minimum of one-third of their life. The minimum slaughter age for broilers is 81 days.</td>
<td>Application time</td>
</tr>
<tr>
<td>• Feed components should contain high-quality proteins, e.g., legumes, aquatic feed sources and by-products from food manufacturing and industrial processes.</td>
<td>Any time</td>
</tr>
<tr>
<td>• Organic standards prevent the use of synthetic amino acids, so there is a need to ensure amino acid availability (especially methionine and lysine).</td>
<td>Required time</td>
</tr>
<tr>
<td>• A phase feeding strategy should be used to account for the differences in the dietary needs of broilers during different growth stages.</td>
<td>No extra time required</td>
</tr>
<tr>
<td>• Account for feed consumed in outdoor areas (i.e., roughages) when calculating nutritional requirements and formulating feed rations.</td>
<td>Period of impact</td>
</tr>
<tr>
<td></td>
<td>Immediate Impact</td>
</tr>
<tr>
<td></td>
<td>Existing feed equipment</td>
</tr>
<tr>
<td></td>
<td>Best in</td>
</tr>
<tr>
<td></td>
<td>All conditions</td>
</tr>
</tbody>
</table>

Figure 1. Forage can provide significant feed for organic broilers (Photo: Jerry Alford, Soil Association)
PRACTICE ABSTRACT

- Formulate diets on a digestible amino acid basis rather than on a total amino acid or crude protein level.
- Choose appropriate breeds that are able to perform with the given resources, particularly slower-growing breeds.

Slower-growing breeds will need less energy-dense rations and are also more inclined to seek food in the range. Choice feeding, where birds select separate foods, rather than manufactured compound feed, has been found to increase feed conversion efficiency (FCE) when birds have access to range.

Limiting protein intake for organic broilers in the finishing stages can be an acceptable feeding strategy if the broilers have access to vegetation with a high nutritional value. Reducing protein levels for slow-growing breeds to 15% resulted in a lower FCE but a lower cost of production.

Key to this is range management and alternative forages, such as baled haylage, which will be needed during winter or drought periods. High protein sources such as lucerne and clovers can also supply some of the required protein. Account can also be taken of insects and invertebrates eaten on the range, which can supply some of the protein and amino acids required.

Further information:

Further readings:

Weblinks:

- Further information can be found on the Organic Farm Knowledge platform.

About this practice abstract and OK-Net EcoFeed

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on monoagricultural animal feed project. The project is running from January 2019 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic food processing industry is achieving the goal of 20% use of organic and regional feed for livestock.

Project website: ok-net-ecofeed.eu

Project partners: FOAM EU Group (project coordinator), BE; Aarhus University (KOWAF), DK; Organic Research Centre (ORC), ML; Institut Technique de Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (IROA), CH; Bioland, DE; Associazione Balsamaper (AB), IT; Dainese Soja ES; AT; Swedish University of Agricultural Sciences, SE; COICUSA, ES; Soil Association, UK.

© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 770013. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
Green protein from locally grown crops

Applicability box

Theme
Layers: feeding, processing and handling of harvested feed

Geographical coverage
In temperate climates, Middle and Northern Europe.

Application time
The product can be used at any time of the year if the protein paste are dried and stored under optimal conditions.

Required time
Harvest time of green protein during spring, summer and autumn; processing time in a bio-refinery and time to dry it.

Period of impact
Immediate Impact

Equipment
Machinery required for harvest of green material (clover/grass/alfalfa) and for transportation to a bio-refinery plant or to storage facilities.

Best in
Choice of crop for production of green protein depends on the country, soil type and weather conditions during preferred harvest time. Advantageous in crop rotation.

Problem
Organic poultry producers are often confronted with high feed costs and a lack of alternative high-quality protein sources for poultry.

Solution
Green protein concentrate can be produced from locally grown crops such as clover-grass (see figure 1) or alfalfa. It can be used in the diets of organic broilers and layers. In a bio-refinery, protein concentrate is obtained by pressing fresh green material (see figure 2), heating/fermenting the juice to precipitate protein and finally putting it in a centrifuge. The concentrated green protein can be dried and added to poultry feed.

Benefits
Concentrate from clover/clover grass and alfalfa has a high protein content and an optimal amino acid profile for poultry, which makes the feed formulation of organic diets more optimal. An increase in locally grown protein sources can improve the sustainability of the farm and make the farmer less dependent upon imported protein, such as soya, from overseas.

Practical recommendation

- Choose an appropriate type of green crop, such as clover-grass or alfalfa, with an expected high protein and amino acid content. Consider soil types and weather patterns to grow a crop with a good and high quality yield.
- Harvest the field at regular intervals in order to achieve good plant growth and to obtain batches with more high quality protein and less fibre.
Harvesting procedures, which minimise soil content in the green material obtained from the field are necessary to obtain good quality green protein and to avoid wear of machinery and technical equipment.

Cooperation with a bio-refinery plant is a prerequisite in order to concentrate the protein into a green paste that can be dried and used in poultry feed.

If not dried, the wet green paste can be stored in closed containers/plastic bags in cool conditions for a shorter period.

Chemical analysis of the green protein concentrate is important in order to replace other protein sources such as soya and to carry out the correct feed formulation. This can be done together with advisors or feed companies.

Further information
Further readings
Video
Video "Grass Protein - a golden chance to improve organic farming" from Seges

Links
Report on "Green Biomass – Protein Production Through Bio-refining"
OrganicFarming: Organic growth with biorefined organic protein feed, fertilizer and energy
Check the Organic Farm Knowledge platform for more practical recommendations.

About this practice abstract and OK-Net EcoFeed
Publishers:
Dept. of Animal Science (AWE) and Dept. of Engineering (AE)
Aarhus University (AU), Eketsvænget 50, Pardalbo 59, DK-8630 Fredericia
Phone: +45 8715 1004; +45 8715 8074, awu.au.dk, awu.au.dk

Section for Sustainable Biotechnology, Dept. of Chemistry and Bioresources
Aalborg University (AAU), A. C. Meyers Vænge 15, DK-2400 Copenhagen
Phone: +45 247 7018, biocau.au.dk

Research Institute of Organic Agriculture (FiBL)
Adolfostrasse 11, Postfach 219, CH-5001 Freiburg
Phone: +41 62 885 72 72, info@firel.ch, www.fibl.org

IFOAM EU, Rue de la Commune 124, BE-1050 Brussels
Phone: +32 2 236 12 23, info@ifoam.eu, www.ifoam-eu.org

Authors: Sanna Steen, Merete Ambjørn-Jensen, Mette Lübeck
Contact: sanna.steen(at)au.dk, maj@eng.au.dk, mael@bio.au.dk

Permalink: Organic-farmingknowledge.org/10.37034

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2018. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed producing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu
© 2018
PA015 Phase feeding for growing and finishing pigs

Phase feeding for growing and finishing pigs

Problem
Large variation between pigs in a litter or production batch makes it difficult to target their nutrient requirements for optimal growth. Diets are therefore formulated with higher lysine and protein contents than recommended, resulting in wastage of nutrients and unnecessarily high N-emissions.

Solution
A phase feeding plan, with two or more phases, will better reflect the actual need of protein and amino acids for pigs at different live weights (growth phases) as dietary content of crude protein and essential amino acids is decreasing with increasing age of the pigs.

Benefits
Phase feeding will more closely match the pig’s nutrient requirements and minimise the over- and under-feeding of nutrients. The feed will be better utilised by the pigs, in favour of both production economy and reduced N-emissions.

Practical recommendation
- To get the maximum benefit from phase feeding, diets and feeding should be established based on actual animal performance and profitability/performance goals for each stage of production. It is easier to develop with a small number of pigs per batch (to manage heterogeneity).
- Diets should be formulated on a digestible amino acid basis rather than on a total amino acid or crude protein basis, crude protein should preferably be kept at a low level and ingredients should be analysed for their nutrient contents.

A single-feed diet meets the nutrient requirements of the pigs "on average" and due to the variation within the group, while 3- or multi-phase feeding will more closely match the pig’s nutrient requirements and minimise the over- and under-feeding of nutrients. More phases will better reflect the actual need for protein and amino acids for pigs at different live weights (growth phases). Illustration: Magdalena Presto Åkerfeldt.
PRACTICE ABSTRACT

- A phase feeding system is complex and factors such as the availability of high-quality protein feed ingredients, the managing and ordering of feed as well as the need for additional feed bins on the farm must be considered.
- Consult with an advisor or nutritionist to adjust the feeding plan accordingly to meet the production goals.

Further information

Weblinks
- Check the Organic Farm Knowledge platform for more practical recommendations on pigs as well as feeding and ration planning.

About this practice abstract and OK-Net EcoFeed

Publishers:
Department of Animal Nutrition and Management
Swedish University of Agricultural Sciences
Box 7024, SE-750 07 Uppsala
www.slu.se

Research Institute of Organic Agriculture (FiBL)
Adolphiweg 119, Postfach 210, CH-6001
Phone +41 62 955 72 72; info@fibl.org; www.fibl.org

IFOAM EU
Rue de la Commerce 124, B-1050 Brussels
Phone +32 2 280 12 23; info@ifoam-eu.org; www.ifoam-eu.org

Authors: Magdalena Weska-Škodová, P.JU

Contact: magdalena.weskaskolodovakova@slu.se

Permalink: OrganicFarmKnowledge.org/doc/35451

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry achieving the goal of 100% use of organic and regional feed for monogastric animals.

Project website: ok-net-ecofeed.eu

Project partners: EU/IFOAM EU Group (project coordinator), BI, Anhui University (ICOFPS), DK, Organic Research Centre (ORC), UK; Institut Technique de l'Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (FiBL), CH; Biokont, SE; Associazione Italiana per l'Agricoltura Biologica (AIAB), IT; Deutsches Saft EGG, AT; Swedish University of Agricultural Sciences, SE; ECOVADA, ES; Seal Association, UK.

© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730313. This communication only reflects the authors’ view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
Starfish as feedstuff

Problem
An increase in demand for organic feedstuffs is expected to limit protein availability. Therefore, new and more sustainable protein-rich ingredients are needed.

Solution
Starfish are caught to reduce predation on farmed mussels. Starfish meal contains 38-70% protein and can be used to partially replace other protein-rich ingredients in monogastric animal feed.

Benefits
Feeding starfish meal gives comparable growth to feeding fishmeal in piglets. For layers, egg production and quality are maintained at normal levels when feeding up to 8% starfish meal.

Practical recommendation
• Starfish should be harvested, at the earliest, three months before spawning to have highest protein and lowest ash content.
• High calcium levels limit the inclusion level of starfish meal in piglets’ diets to around 5%.
• Starfish meal is not organically certified but can still be used because it is not of agricultural origin.
• Starfish meal is already commercially available in Denmark.
• Diets can be optimized regarding amino acids and with lower crude protein.

Figure 1: Starfish before processing. Photo: Jan Vierum Nørregaard
Figure 2: Boat specialized in fishing starfish. Photo: Pia Sørensen

Applicability box
Theme
Processing and handling of harvested feed
Context
Coastal countries
Application time
February-May
Required time
Time of feeding
Period of impact
Immediate
Equipment
No extra equipment needed for feeding
Best in
Piglets, layers
Further information

Further reading

Weblinks

- Check the Organic Farm Knowledge platform www.organic-farmknowledge.org for more practical recommendations

About this practice abstract and OK-Net EcoFeed

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal feed project. The project is running from January 2016 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 20% organic feed use for monogastrics.

Project website: www.ok-net-ecofeed.eu

Project partners:
- IOAM EU Group (project coordinator), SE; Aarhus University (GP070), DK; Organic Research Centre (IRC), UK; Institut Technique Agriculture Biologique (ITA), FR; Research Institute of Organic Agriculture (FiBL), Ch; Biopôle, DE; Association Italiana per l'Agricoltura Biologica (AIB), IT; Deutscher Soja-IV, AT; Swedish University of Agricultural Sciences, SE; PROVINCIA, ES; Soil Association, UK.

© 2020

This project has received funding from the European Union’s Horizons 2020 research and innovation programme under grant agreement No 730393. This communication only reflects the author’s view. The Research Execution Agency is not responsible for any use that may be made of the information provided. The authors and authors do not assume responsibility or liability for any possible facts or omissions or damage resulting from the application of the recommendations in this practice abstract.
PA018 Protein requirements for piglets and weaners

Protein requirement for piglets and weaners

Problem

According to the National Research Council (USA) recommended levels of protein and amino acids for pigs are based on data obtained in experiments performed under different conditions, e.g., genetic lines, dietary raw materials, health status and management practices (NRC, 2012). In organic farming, protein and amino acid balance is difficult to achieve, especially in the context of a 100% organic diet. Reports based on practical experiences highlight that the amino acid requirements of modern pig breeds reared under organic conditions might be lower than the recommended levels, particularly with more balanced growth rates. Thus, e.g., the recommended intake of digestible lysine by organically reared pigs could be lowered.

For piglets, the most physiologically critical phase is the time after weaning when their protein requirement is high, but at the same time, they are sensitive to gastrointestinal disorders. Organic farmers have to rely on organic, and locally grown feedstuffs in combination with organic protein concentrates to provide a good balance of amino acids in the diet.

Applicability box

<table>
<thead>
<tr>
<th>Theme</th>
<th>Pigs, feeding and ration planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical coverage</td>
<td>Global</td>
</tr>
<tr>
<td>Application time</td>
<td>Any time</td>
</tr>
<tr>
<td>Required time</td>
<td>Diet formulation</td>
</tr>
<tr>
<td></td>
<td>Feed mixing on farm</td>
</tr>
<tr>
<td>Period of impact</td>
<td>During the entire piglet and weaning period</td>
</tr>
<tr>
<td>Equipment</td>
<td>Equipment for home-mixing</td>
</tr>
<tr>
<td>Best in</td>
<td>Farrowing farms, by either using home mixing or in cooperation with a local feed mill.</td>
</tr>
</tbody>
</table>

Solution

Adjusting amino acid requirements to below the current recommended levels can help organic producers to meet the nutritional needs for piglets and weaners, in the context of a 100% organic diet. The diets should be formulated according to the specific production potential and farmer objectives (breed, weaning age, actual health status, aimed growth rate and feed conversion). Examples of different dietary amino acid requirements according to various recommendations are shown in Table 1.

It is important to always apply careful monitoring of the production and health status of the herd. Photo: Marie Ljøkeholm, SLU
Benefits

The acceptance of a reduced level of amino acids in the diet can enable higher use of locally produced protein feed resources and simplify feed manufacturing, feed handling and diet formulation at the farm level. Formulating diets with optimal protein content and amino acid composition, in relation to piglet needs, will improve health and growth performance and decrease the risk for excessive protein in the diets and excretion of nitrogen to the environment. Using a higher percentage of local feed resources increases self-sufficiency and sustainability of the farm.

Table 1. Examples of dietary amino acid requirements* according to National Research Council of the US (NRC 2012), the Swedish University of Agricultural Sciences (SLU 2011) and recommendations from the French ITAB (2014) based on practical experiences in organic farming.2

<table>
<thead>
<tr>
<th>Pig weight</th>
<th>NRC</th>
<th>SLU</th>
<th>ITAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7 kg</td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>7-11 kg</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>11-25 kg</td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>10-30 kg</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>During lactation to 7-10 days post-weaning</td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Up to 25 kg</td>
<td>0.9-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Requirements are expressed as standardized ileal digestible (SID) basis g/kg ME.
2. Recommended values (% in diet) are recalculated to g/kg ME. The values for pigs of 5-21 and 11-25 kg are based on diets with 10.2 and 10.3 MJ ME, respectively.
3. Requirements are expressed as a range, established by calculations based on DAS (2013), Wepken & Tychsen (2009) and simulations in iTanPhos.
The calculations of NRC from dX/1.081 kg ME (Dawkins, 1996) was used. The overall recommendations are described by the equation: y = 1.456 - 0.0326x, where y is the recommended amount of ash in g/kg ME and x is the live weight of the pigs.

Abbreviations
- ME = net energy
- FCx = feed units for feedlots and growing pigs
- SID lysine = standardized ileal digestible lysine

Practical recommendation

- Current recommended levels are based on the maximum production that can be achieved under varying conventional conditions regarding sex, health, environment and breed.
- Use the recommended levels more as guidelines and not as absolute requirements for achieving a certain performance under organic conditions, as the pigs’ response can further vary with sex, health, environment and genotype.
- Focus on a gut-friendly diet (adjusted to the piglet’s gastrointestinal conditions and nutritional requirements) in order to strengthen the pig’s micro flora and intestinal health.
- A less energy-dense diet with reduced amino acid content, fed ad libitum, can increase the daily feed intake by the pigs, and thereby assure a sufficient total daily intake of amino acids.
- Always apply careful monitoring of the production and health status of the herd.
- Own replacement of gifts could be one way to get animals with a lower requirement of amino acids.
- Contact an agricultural adviser for diet formulation or when implementing new feed formulation tools and investing in new technical equipment.
- Analyse the contents of protein and amino acids for the main feed ingredients produced on the farm and those bought on the market in order to make correct diet formulations.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730393. This communication only reflects the authors’ view. The Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any perceived factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
Further information

- Check the Organic Farm Knowledge platform for more practical recommendation on animal husbandry.

About this practice abstract and OK-Net EcoFeed

OK-Net EcoFeed. This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net is to help farmers, breeders and the organic feed processing industry in achieving the goal of 30% use of organic and regional feed for monogastric animals.

Project website: ok-net-ecofeed.eu
Project partners: IFOAM EU Group (project coordinator), IE: Aarhus University (AAB), DK; Organic Research Centre (ORC), UK; Institut Technique de Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (FiBL), CH; BioLand, DE; Associazione Italiana per Pianificazione Biologica (AAB), IT; Doree Soja DS, A; Swedish University of Agricultural Sciences, SE; Ecoviva, ES; Send Anna K., UK.
© 2020
Relevance of roughage feeding to pigs

Problem
A species-appropriate pig diet consists of different feed components with different structures. However, such a diet is technically, and in terms of ration planning, more complex to produce than a feed that is always of the same structure.

Solution
Integrate roughage feeding into ration plans and use the farm’s potential for feed production.

Benefits
Roughage feeding promotes animal health and welfare and can, at the same time, reduce feed costs on the farm. A good structure and a high-crude fibre content of a ration serves as enrichment, improves the feeling of satiety and improves stomach health (Picture 1).

Practical recommendation
- With combined feeding, the energy requirement of pregnant sows can be reduced by up to 50% in the first stage of gestation and up to 20% in the last stage of gestation by providing energy-rich roughage products like grass or corn silage (Picture 2).
- For pregnant sows, the daily feed intake capacity for clover grass and maize silage is 2.4 kg fresh matter.
- In addition to clover grass silage (with a high protein value), a cereal and minerals mixture without protein-rich feed components should be used.

Applicability box
Theme
Pigs, Feeding and ration planning

Geographical coverage
In all countries

Application time
Any time

Required time
The time needed to harvest the roughage and feed animals

Period of impact
Immediate impact

Equipment
Machines for harvesting and ensiling, for delivering feed to animals as well as a feeder.

Best in
Gestating sows and finishing pigs

Picture 1: Feeding roughage, in this case, fresh grass, to sows and piglets. Photo: BCNU

Picture 2: A round bale feeder for the ad libitum feeding of rain-protected straw, hay or silage to pregnant sows. Photo: Anja Schubert

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773931. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
In addition to maize silage, a very protein-rich concentrate is needed. The daily intake of 3.5 kg maize silage per sow can compensate for a concentrated feed quantity of up to 1 kg per day compared with pure concentrated feed.

In addition to grass silage, 85% of complete feed requirement for pregnant sows could be provided.

Feeding silage to suckling piglets and weaned piglets prevents diarrhoea.

Further information

Video

The video “Feeding pigs: effect of silage” is available on Organic Farm Knowledge.

Further reading

- Patzelt, Sybille et al. (2011) Bedarfsgerechte Fütterung von Biosoelen und ihren Ferkeln, FiBL, 2011, Merkblatt 1589

Weblinks

Further documents can be found on the Organic Farm Knowledge website.
Distribution de fourrages aux porcs

Problème
Une alimentation adaptée au porc est constituée de matières premières et fourrages ayant des structures différentes. Toutefois, techniquement et en termes de plan de rationnement, un tel régime est plus complexe à réaliser qu’un aliment homogène.

Solution
Intégrer des fourrages distribués dans l’alimentation et utiliser le potentiel de la ferme pour produire des matières premières.

Bénéfices
La distribution de fourrages favorise la santé et le bien-être des animaux et peut, dans le même temps, réduire les coûts alimentaires sur la ferme.
Une bonne structure et une teneur élevée en fibres brutes dans une ration l’enrichissent, améliorant la sensation de satiété et la santé de l’estomac (photo 1).

Recommandations pratiques
- Avec une alimentation combinée, les apports énergétiques des truies gestantes via l’aliment complet peuvent être réduits jusqu’à 50 % au premier stade de la gestation et jusqu’à 20 % les 3 dernières semaines en distribuant des fourrages riches en énergie comme l’herbe ou l’ensilage de maïs (photo 2).
- Pour les truies gestantes, la capacité d’ingestion quotidienne pour l’ensilage de graminées, de trèfle et de maïs est de 2 à 4 kg bruts.
- En complément d’un ensilage de trèfle, à haute valeur protéique, il est possible d’utiliser un mélange de céréales et minéraux sans composante riches en protéines.

Mise en œuvre
Thème
Porcs
Couverture géographique
Tous pays
Période d’application
Toute l’année
Temps requis
Le temps nécessaire à la récolte du fourrage et à l’alimentation des animaux
Délai d’impact
Impact immédiat
Equipement
Engins pour récolter, ensiler et distribuer l’aliment aux animaux, et une mangeoire.
Efficacité maximale
Truies gestantes et porcelets en finition

Figure 1: Distribution de fourrage aux truies et porcelets, ici de l’herbe fraîche. Photo: BOKU
Figure 2: Bélier protégé contre la pluie pour l’alimentation ad libitum des truies gestantes avec paille, foin ou ensilage. Photo: Antje Schubert
En complément de l'ensilage de maïs, un concentré très riche en protéines est nécessaire. L'apport quotidien de 3,5 kg de maïs ensilagé par truie peut compenser jusqu'à 1 kg d'aliment classique (dans le cadre d'une conduite sans fourrages).

La distribution d'ensilage d'herbe permet de réduire à 85% la quantité d'aliment à distribuer à des truies gestantes.

La distribution d'ensilage aux pourcelets (avant et après sevrage) permet de limiter les risques de diarrhée.

Informations complémentaires

Vidéo

La vidéo "Feeding pigs: effect of silage" est disponible sur Organic Farm Knowledge.

Lectures complémentaires

Patzelt, Sybille et al. (2011) Bedarfsgerechte Fütterung von Biobullen und ihren Ferkeln, FIBI, 2011, Merkblatt 1569

Liens Internet

Des documents complémentaires sont disponibles sur Organic Farm Knowledge website.

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Éditeurs

Research Institute of Organic Agriculture (FIBI)

Contact

barbara.frueh@fibl.org

Répartiteurs

Antoine Bracard, ITAB; Lindsey Whittamore, ORC

Mise en page

Antoine Bracard, ITAB

Traduction en français

Stéphanie Luhos, ITAB (contact: stephanie.luhos@itab.asso.fr)

Lien permanent

Organic farm knowledge.org/boe/36930

OK-Net EcoFeed: Cette fiche pratique a été élaborée dans le cadre du projet OK-Net EcoFeed. Le projet a débuté en janvier 2018 à décembre 2020. L'objectif global de OK-Net EcoFeed est d'aider les agriculteurs, les élévateurs et l'industrie de transformation des aliments biologiques à atteindre l'objectif de 100% d'utilisation d'aliments biologiques et régionaux pour monographe.

Site Internet du projet: ok-net-ecofeed.eu

© 2019
Blue mussels as feedstuff

Problem
Organic production should use 100% organic protein in 2025, but the availability of organic protein is limited.

Solution
Mussel meal can replace other less sustainable protein-rich ingredients, in particular fishmeal, in the diets of organic pigs and layers. Furthermore, mussels can lessen water eutrophication by uptake of nitrogen and phosphorus.

Benefits
Feed intake, weight gain and egg-laying are sustained at normal levels when feeding mussel meal to grower-finisher pigs or layers. Egg quality remains good with a more orange yolk colour compared to feeding fishmeal (Figure 1).

Practical recommendation
- Mussels are harvested from nutrient-rich water before maturation.
- Mussels are deshelled by boiling, dried and processed into meal with approximately 60% crude protein.
- Mussel meal is included in the diet at a maximum 8% in layer hen diets to avoid off flavour in eggs (figure 2).
- No maximum inclusion rate has been established in piglets.
- Diets can be optimised for essential amino acid requirements and will often include less crude protein.

Applicability box

Theme
Processing and handling of harvested feed

Context
Coastal regions

Application time
All year after harvest of blue mussel

Required time
Time of feeding

Period of impact
Immediate impact

Equipment
No special machinery needed for feeding

Best in
- Piglets, layers

Figure 1: Differences in egg yolk colour. Photo: Marleen van der Heide
Figure 2: Feeding diets with mussel meal to layer hens. Photo: Marline Hammershøj
Further information

Further reading

Weblinks

- Check the OrganicFarm Knowledge platform for more practical recommendations.

About this practice abstract and OK-Net EcoFeed

Publishers

Aarhus University, AU Feed
Blicher Allé 20, 8830 Tinglev, Denmark.
Phone: +45 8715 0000, agro.au.dk
Research Institute of Organic Agriculture (IFOAM)
Ackernte 33, Postfach 219, CH-5070 Frick
Phone: +41 62 665 72 72, info@foami.org, www.ifoami.org
IFOAM EU, Rue du Commerce 130, 1050 Brussels
Phone: +32 2 210 12 23, info@ifoami.eu, www.ifoami-eu.org
Authors: Marieke Elze van der Heide, Jan Værum Nørgaard
Aarhus University, Denmark.
Review: Linda Whitacre, Organic Research Centre, UK
Contact: marieke.elze@agrsci.aau.dk
Permalink: OrganicFarmKnowledge.org/boo/57800

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Marine-based Animal Feed project. The project is running from January 2013 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed-processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: ok-net.ecofeed.eu
Project partners: IFOAM EU Group (project coordinator), AE, Aarhus University (KROFS), DK; Organic Research Centre (ORC), UK; Instituto Tecnologico de Agricultura Biologica (ITAB), FR; Research Institute of Organic Agriculture (RIOA), CH; Richard, BE; Associazione Italiana per l’Agricoltura Biologica (MIAA), IT; Diena legis FB, CH; Swedish University of Agricultural Sciences, SE, ECOVARA, ES; Seal Association, UK.
© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773113. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible direct or indirect consequences or damage resulting from the application of the recommendations in this practice abstract.
La moule, matière première pour l'alimentation des porcs et pondeuses

Problème
La production biologique devra utiliser 100% de protéines d'origine biologique d'ici 2022, mais la disponibilité de ces protéines biologiques est limitée.

Solution
La farine de moules peut remplacer certaines matières premières riches en protéines moins durables dans l'alimentation des porcs et pondeuses biologiques, comme la farine de poisson (issue de pêche durable). En outre, les moules peuvent réduire l'eutrophisation des eaux par l'absorption d'azote et de phosphore.

Bénéfices
La consommation d'aliments, le gain de poids et la ponte sont maintenus à des niveaux normaux lorsqu'on donne de la farine de moules à des porcs en croissance/finition ou à des poules pondeuses. La qualité des œufs reste bonne, avec un jaune de couleur plus orangée que dans le cas d'une utilisation de farine de poisson (figure 1).

Mise en œuvre

<table>
<thead>
<tr>
<th>Thème</th>
<th>Porcs, poules pondeuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couverture géographique</td>
<td>Régions côtières</td>
</tr>
<tr>
<td>Période d'application</td>
<td>Toute l'année après recolte de moules</td>
</tr>
<tr>
<td>Temps requis</td>
<td>Temps consacré à l'alimentation</td>
</tr>
<tr>
<td>Délai d'impact</td>
<td>Impact immédiat</td>
</tr>
<tr>
<td>Equipement</td>
<td>Aucun matériel spécifique n'est nécessaire pour l'alimentation</td>
</tr>
<tr>
<td>Efficacité maximale</td>
<td>Porcelets, poules pondeuses</td>
</tr>
</tbody>
</table>

Recommandations pratiques
- Les moules sont récoltées dans une eau riche en nutriments avant leur maturation.
- Elles sont décoquillées par ébullition, séchées et transformées en farine contenant environ 60% de protéines brutes.
- La farine de moules est incorporée dans l'alimentation des poules pondeuses à hauteur de 8% maximum afin d'éviter les défauts de goût des œufs.
- Aucun taux d'incorporation maximal n'a été établi pour les porcelets.
- Les aliments peuvent être optimisés sur l'équilibre en acides aminés essentiels et contiennent souvent moins de protéines brutes.

Figure 1: Différences de couleurs entre jaunes d'oeufs. Photo: Marlene van der Heide
Figure 2: Alimentation de poules pondeuses avec de la farine de moules. Photo: Marianne Hennersdorff

Pour plus d'informations

Lectures complémentaires

Liens internet

- Des documents complémentaires sont disponibles sur Organic Farm Knowledge website.

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Editeurs:
Aarhus University, AU FoodLab
Blichers Allé 20, 8830 Aalborg, Danemark,
Tel. +45 8715 0000, aufoodlab.au.dk
Research Institute of Organic Agriculture (IFOAM EUROPE)
Adenauerallee 111, Neufahrn 81479, (19-977747)
Tél. +41 62 865 72 72, info@ifoeurope.org, www.ifoeurope.org
IFOAM EU, Rue du Commerce 124, BE-1000 Brussels
Tel. +32 2 890 22 22, info@ifoeurope.org, wwwifoam-europe.org

Auteurs: Marielle Else van der Heide, Jan Verner Nørgaard Aarhus University, Denmark
Rédacteur: Lindsay Whiting, Organic Research Centre, UK
Contact: melsevanderheide@envis.au.dk

Pour la traduction en français: Stanislas Lefebvre, ITAB (contact: stanislascitrib@itabasso.fr)

Lien permanent: Organicfarmknowledge.org/toel/37200

OK-Net EcoFeed: Cette fiche pratique a été élaborée dans le cadre du projet OK-Net EcoFeed. Le projet est financé par le programme de recherche et développement Horizon 2020 de l’Union Européenne dans le cadre du programme de recherche et développement Horizon 2020, sous le numéro de projet n° 778713. Cette communication ne reflète pas nécessairement l’opinion des parties prenantes de l’Union Européenne et l’Union Européenne ne peut être tenue pour responsable des éventuelles mises à jour ou erreurs dans la mise à disposition de la fiche pratique. Les informations fournies à ce titre sont données à titre indicatif et n’engagent pas l’Union Européenne. Les utilisateurs sont invités à vérifier l’exactitude des informations avant de s’en servir.
PA023 Seaweed as feed supplement

Problem
The growth and health of piglets is reduced directly after weaning because of high incidence of diarrhoea.

Solution
Feeding low doses of seaweed to piglets may positively affect gut health and reduce diarrhoea. It will also supply several minerals.

Benefits
Polysaccharides in seaweeds can have antimicrobial, prebiotic or immunomodulatory effects, alleviating negative effects linked to weaning.

Practical recommendation
- Effectivity might differ depending on the seaweed type, harvest season and processing method. Brown and red seaweed species may be better than green (Figure 3).
- Several commercial seaweed products can be used, and it is important to ask for documentation of effect before relying on e.g. effect on diarrhoea.
- High levels of macro and micro minerals have to be taken into account when composing diets with seaweed.
- Many seaweed extracts are available, which may not be suitable for organic production.

Applicability box

<table>
<thead>
<tr>
<th>Theme</th>
<th>Processing and handling of harvested feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>Coastal regions</td>
</tr>
<tr>
<td>Application time</td>
<td>All year</td>
</tr>
<tr>
<td>Required time</td>
<td>Time of feeding</td>
</tr>
<tr>
<td>Period of impact</td>
<td>Immediate</td>
</tr>
<tr>
<td>Equipment</td>
<td>No extra equipment needed for feeding</td>
</tr>
<tr>
<td>Best in</td>
<td>Brown seaweeds</td>
</tr>
</tbody>
</table>

Figure 1: Brown seaweed, sugar kelp. Photo: Annette Bruhn

Figure 2: Organic piglets may benefit from seaweed. Photo: Jan Værum Nørgaard

Aarhus University. Seaweed as Feed supplement. OK-NET. Seaweed Practice Abstract.
Further information

Further reading

Weblinks

- Check the Organic Farm Knowledge platform for more practical recommendations.

About this practice abstract and OK-Net EcoFeed

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Marinebased Animal Feed project. The project is running from January 2019 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed producing industry in achieving the goal of 20% use of organic and regional feed for livestock.

Project website: ok-net-ecofeed.eu

Project partners: IOFAM EU Group (project coordinator), BE; Aarhus University (KUAPIS); DE: Organic Research Centre (ORC), UK; Institute Technico di Agricoltura Biologica (ETAB), FR; Research Institute of Organic Agriculture (FIOB), CH; Biolandia, DE; Association Italiana per l'Agricoltura Biologica (AAG), IT; Demeter Südtirol, AT; Swedish University of Agricultural Sciences, SE; IOFAM EU, FR; Soll Association, UK.

© 2020
Les algues marines comme complément alimentaire

Problème
La croissance et la santé des porcelets se dégradent juste après le sevrage en raison de l'impact élevé des diarrhées.

Solution
Donner de faibles doses d'algues aux porcelets peut avoir un effet positif sur la santé intestinale et réduire les diarrhées. Cela apporte également divers minéraux.

Bénéfices
Les polysaccharides présents dans les algues marines peuvent avoir des effets antimicrobiens, prébiotiques ou immunomodulateurs, qui atténuent les effets négatifs liés au sevrage.

Recommandations pratiques
- L'efficacité peut varier selon le type d'algue, la saison de récolte et la méthode de traitement. Les espèces d'algues brunes et rouges semblent plus efficaces que les vertes (Figure 1).
- Plusieurs produits commerciaux à base d'algues marines peuvent être utilisés. Il est important de consulter une documentation sur leurs effets avant de s'en servir, par exemple, pour lutter contre la diarrhée.
- Les niveaux élevés de macro et micro minéraux doivent être pris en compte lorsqu'on formule des aliments contenant des algues.
- Il existe de nombreux extraits d'algues pouvant ne pas être adaptés à la production biologique.

Figure 1: Algues brunes, vue de côté. Photo: Annette Brahn

Figure 2: Les porcelets biologiques peuvent tirer profit des algues marines. Photo: Jan Vierim Norgaard

Abkin University, Les algues marines comme complément alimentaire. Fiche pratique OK-Net Eco Feed.
Informations complémentaires

Lectures complémentaires

Lien Internet

Consultez la plateforme OrganicFarmKnowledge pour plus d'informations pratiques.

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Éditeurs :
Aarhus University, AU Food
Blichers Allé 20, 8830 Tine, Denmark,
Tél. +45 9715 0000, https://agropolis.au.dk
Research Institute of Organic Agriculture (FiBL)
Adangraben 113, CH-4050 Basel, Switzerland
Tél. +41 62 965 72 72, info@fibl.org, www.fibl.org
IOFAD EU, Rue du Commerce 120, BE-1000 Bruxelles
Tél. +32 2 390 11 23, Info@iofad-eu.org, www.iofad-eu.org

Auteurs : Marline Elise van der Holle et Jan Vanuin Nangmond
Aarhus University, Denmark

Références : Lindsay Whitelaw, Organic Research Centre, UK
Contact : marline.elise@fibs.org
Traduction en français : Wenellis Lebas, ITAG (contact : wenellis.lebas@itag.aau.dk)
PA024 Single-phase feeding and compensatory growth in growing and finishing pigs

Problem
Meeting growing pigs’ nutrient requirements with on-farm-produced cereals and protein feed ingredients can be hard. To overcome the risk of undersupplying pigs with amino acids, diets are formulated with higher contents of protein than recommended. With 100% organic feedstuffs, it is difficult to match the amino acid requirement without a very high level of protein. This can decrease the health and welfare of weaners and increase nitrogen losses.

Solution
A single-phase feeding strategy and utilizing pigs’ capacity for compensatory growth (Figure 2) can lessen the need for diets with high protein and amino acid content in the early stage of the growing phase. It can promote the use of locally produced protein feed resources in diets to organic pigs.

Benefits
Single-phase feeding of pigs followed by growth compensation might reduce nitrogen emissions, as it excludes the need for a high protein and amino acid content in the diet in the early stages of growth. It enables efficient use of locally produced protein feed resources and can reduce soya intake by pig and simplify feed manufacturing, feed handling and diet formulation at the farm level. This practice can reduce the cost of the feed for the weaners.

Figure 1: Growing finishing pigs: Photos: Magdalena Presto Åkerfeldt, SLU

Swedish University of Agricultural Sciences, Single-phase feeding and compensatory growth in growing and finishing pigs.
OK-Net Fact Sheet: Practice Abstract.
Practical recommendation

- Limit the supply of essential amino acids during early growth and utilise the pigs’ capacity to fully compensate for the restriction by increased protein retention and faster growth during later growth phases.
- Crude protein and lysine contents can be substantially reduced, below common standards (i.e. crude protein to 16.5% and digestible lysine between 0.70-0.80 g standardised ileal digestible (SID) lysine/MJ NE), in well-balanced diets.
- A reduction in crude protein content, from 15.5 to 14.5 g SID/g SID lysine can lower the nitrogen output by approximately 10%.
- Formulate diets on a digestible amino acid basis rather than on a total amino acid or crude protein basis.
- High-quality protein feed ingredients such as faba beans, peas, oil seed-, dairy- and cereal-based by-products, aquatic resources, etc., or a combination of them, can be used.
- At the pig level, this practice can reduce soya bean cake utilisation (14%) and increase pea utilisation (22%).
- Careful follow-up of the pigs’ feed consumption, growth and health status is recommended.

Figure 2: Pigs can compensate for a limited supply of amino acids during early growth, followed by excess dietary amino acids and faster growth during later growth phases. Illustration: Leif Göransson, modified by Magdalena Presto Åkerfeldt

Further reading

Weblinks

- Check the Organic Farm Knowledge platform for more practical recommendations on pigs as well as feeding and ration planning.
About this practice abstract and OK-Net EcoFeed

Publishers
Department of Animal Nutrition and Management
Swedish University of Agricultural Sciences
Box 7024, SE 750 07 Uppsala, www.slu.se
Research Institute of Organic Agriculture (IFOAM)
Ackerstrasse 113, Neftenbach 239, CH-5070 Frick
Phone +41 62 865 72 72, info@ifoam.org, www.ifoam.org
IFOAM EU
Rue du Commerce 124, BE-1000 Brussels
Phone +32 2 280 12 23, info@ifoam-eu.org, www.ifoam-eu.org

Author: Magdalena Kristina Åkerlind (SLU)
Review: Barbara Fröh, FIAB, Antoine Roncoeur, ITAB
Contact: magdalena.akerlind@slu.se

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Meat and Livestock project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic food processing industry in achieving the goal of 40% use of organic and regional food for meat and livestock.

Project website: www.ok-net.eu
Project partners: IFOAM EU Group (project coordinator), BE: Arhus University (ARU); FIAB: Organic Research Centre (FRC); DE: Institut Technique de l’Agriculture Biologique (ITA); FR: Research Institute of Organic Agriculture (IROA); DE: Bioland; IT: Associazione Italiana per l’Agricultura Biologica (AIB); FI: Deena Suo Oy; DK: Swedish University of Agricultural Sciences; DE: DCOVAGA; DE: Sell Association, UK
© 2018

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 779813. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual misprints or damage resulting from the application of the recommendations in this practice abstract.
Using raw soya beans with reduced content of trypsin inhibitors in organic pig fattening

Problem
Soya beans naturally contain inhibitors that reduce the digestibility of protein. These components are deactivated by heat (e.g., toasting) to enable feeding to monogastrics. Meaningful reductions can be achieved through the selective breeding of soya bean varieties with a low content of these inhibitors. Currently there is little knowledge in Europe available about the potential of these varieties in organic pig fattening.

Solution
Evidence from recent trials in Austria indicate that raw soya beans with reduced content of trypsin inhibitors can be used in pig feeding. This Practice Abstract outlines key points which are essential to maintain a favourable growth performance.

Benefits
Successful use of raw soya beans with reduced content of trypsin inhibitors enables farms to become more independent in their feed supply. Costs for thermal treatment can be saved.

Applicability box
- **Theme**: Processing and handling of harvested feed
- **Geographical coverage**: For all farms where soya can be grown
- **Application time**: On demand
- **Required time**: Time for sample collection, posting to laboratory and interpretation of testing reports should be accounted. Preparation of feed ration.
- **Equipment**: Sample bags and standard lab equipment
- **Best in**: Farms with animal husbandry and arable production

Practical Recommendations
Soya bean cultivars differ in their trypsin-inhibitor content which is measured as trypsin-inhibitor activity (TIA). The soya bean variety “Xonia” is special due its reduced TIA content:
- Raw soya beans of standard varieties contain about 30-50 mg TIA/g soya bean
- TIA content in soya bean varieties with low content is about 10 mg, although current trials indicate that the TIA content can differ significantly between batches. (example: Xonia)

Using raw soya beans with reduced content of trypsin inhibitors in organic pig fattening. Donau Soja. OK-Net EcoFeed Practice Abstract.
PRACTICE ABSTRACT

The following recommendations were derived from feeding tests in Austria during 2017 - 2020.

- Since the TIA value differs between batches, the TIA of all available batches of raw/untreated soya beans must be known to adjust the ration.
- Recent trials indicate that a mixing rate of more than 10% raw “Xonia” soybeans in rations of organic pigs can result in significant reduction in feed intake, weight gain and feed conversion ratio. If higher quantities of raw Xonia are used, economic disadvantages must be expected, especially due to higher feeding costs and a lower number of fattened pigs per year.
- When using whole soya beans, special care must be taken to ensure that there is no energy surplus so that an adequate protein-energy balance is achieved.
- For achieving a satisfying lean meat quality the content of polyenoic acids in the ration should be carefully managed.

Outlook

Further breeding progress is needed to increase the use of raw soya beans without thermal treatment. As any heat treatment also leads to damage of the amino acids and thus reduces their availability to the animal, further work should be done on the potential of trypsin inhibitor reduced soya bean varieties.

Further information

Further reading

In Central Europe, research teams in Austria and Germany are conducting feeding trials with pigs and poultry on the effects of soya bean feed with high and low TIA values:

- University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology (TTE). Contact person: Prof. Wolfgang Wetscherger.
- Agricultural Chamber of Lower Austria. Contact person: Helmut Raser.
- Bavarian State Research Center for Agriculture (LfL), Institute for Agricultural Engineering and Animal Husbandry. Contact person: Stefan Thurner.
- University of Rostock, Department for Nutritional Physiology and Animal Nutrition. Contact persons: Dr Reinhard Putigam and Dr Julia Slama.

Weblinks

- AGES - Austrian Agency for Health and Food Safety. AGES offers an evaluation of feed tests and is capable of analysing also trypsin inhibitor activity. Further information on the AGES website: www.ages.at/en

About this practice abstract and OK-Net Ecofeed

Authors: Werner Donau Soja, Westergrenstrasse 6/14, AT-1130 Wien
Research Institute of Organic Agriculture (FOA), Altorstrasse 113, Postfach 216, CH-5704 Frick
IFOAM EU, Rue du Commerce 124, BE-1200 Brussels
Authors: Reiner Heilmann (Agricultural Chamber of Austria), Reinhard Putigam and Julia Slama (both University Rostock).
Contact: reiner.heilmann@boku.ac.at

OK-Net EcoFeed: This practical advice was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2016 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730231. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible direct or indirect damage resulting from the application of the recommendations in this practice abstract.
Recommendations for using soy-based feedstuffs for poultry production

Problem

Soya is one of the most important sources of protein in poultry feeding. However, the high crude protein content alone is not sufficient to meet the special needs of poultry on essential amino acids. They need to be supplemented with other components to get optimal amounts and ratios.

In poultry, the feeding of raw soya beans is not possible due to digestive inhibiting components (trypsin inhibitors), and must be prepared by thermal treatment.

Soya beans have a very high oil content. Full-fat beans can therefore be used in the ration with a maximum of 10 - 12%. In this case, the methionine-rich components such as corn gluten must also have a low raw fat content. A high raw fat content in the ration can lead to health problems.

Solution

Toasting, or roasting, the raw bean improves the digestibility and usability of the protein and extends the shelf life of the toasted beans to approximately 6-12 months. Toasting, or roasting, means the deactivation of the antinutritional factors (ANF) of the soya bean by heating.

![Figure 1: Mobile toaster – Möhler Technik.](https://mohlertechnik.de)

Source: Möhler Technik, https://mohlertechnik.de

![Figure 2: Mobile Toaster - Eco Toast](http://www.soijetoaster.com/)

PRACTICE ABSTRACT

There are different toasting, or roasting, methods with different effects on the quality of the soya. For the mobile solutions (figures 1 and 2), the thermal method is predominantly used.

In order to increase the quantity used from about 10% to about 20% in the ration, the soya bean must be de-oiled by pressing, which reduces the crude fat content from about 20% to about 10%.

Since synthetic amino acids may not be used in organic farming, the ration must be supplemented with components with a high methionine content. In 100% organic rations (check Table 1) rice protein or methionine-rich oil cakes such as sesame cake and sunflower cake are used for this purpose. Especially in oil cakes, the ingredients are subject to strong fluctuations. It is recommended to use several components. This reduces the influence of individual components on the total ration. Alternatively, a protein supplement can be used, which can also be individually mixed by the feed mills if sufficient quantities are required.

Benefits
- Soya can be very well integrated into crop rotation and can cover up to 80% of the N requirement by inoculating the seed with N-fixing nodules bacteria (Bradyrhizobium japonicum).
- High added value through refinement in own plant. Soya contains a lot of energy and protein. It is very tasty for the animals and easy to digest. The high content of linoleic acid has a positive effect on the egg size of laying hens.
- Dependence on soya imports can be reduced
- The pressed oil can be sold for further use.

Practical recommendation
- Soya toasting and de-oiling is now well established and the process steps are defined (temperature and duration), but availability of mobile soya toasting plants must be ensured.

Table 1: Typical ration for 100% organic feeding of laying hens (Christopher Lindner)

<table>
<thead>
<tr>
<th>Components</th>
<th>Share</th>
<th>ME</th>
<th>Protein</th>
<th>Fat</th>
<th>Fibre</th>
<th>Lys</th>
<th>Met</th>
<th>Trp</th>
<th>Ca</th>
<th>P</th>
<th>N</th>
<th>2kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>kJ</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>kg</td>
</tr>
<tr>
<td>Corn</td>
<td>20.00</td>
<td>2.88</td>
<td>1.78</td>
<td>0.80</td>
<td>0.50</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.00</td>
<td>400</td>
</tr>
<tr>
<td>Wheat</td>
<td>20.00</td>
<td>2.90</td>
<td>2.12</td>
<td>0.52</td>
<td>0.52</td>
<td>0.06</td>
<td>0.03</td>
<td>0.05</td>
<td>0.01</td>
<td>0.07</td>
<td>0.00</td>
<td>400</td>
</tr>
<tr>
<td>Mixed grass</td>
<td>6.30</td>
<td>0.35</td>
<td>0.90</td>
<td>0.19</td>
<td>1.28</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>328</td>
</tr>
<tr>
<td>Wheat gluten</td>
<td>1.80</td>
<td>0.14</td>
<td>0.57</td>
<td>0.12</td>
<td>0.13</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>36</td>
</tr>
<tr>
<td>Peas</td>
<td>8.30</td>
<td>1.05</td>
<td>1.68</td>
<td>0.11</td>
<td>0.66</td>
<td>0.13</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.06</td>
<td>166</td>
</tr>
<tr>
<td>Soya oil</td>
<td>3.90</td>
<td>0.59</td>
<td>0.00</td>
<td>3.52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>32</td>
</tr>
<tr>
<td>Feed lime</td>
<td>7.50</td>
<td>0.00</td>
<td>250</td>
</tr>
<tr>
<td>Premix</td>
<td>2.20</td>
<td>0.00</td>
<td>44</td>
</tr>
<tr>
<td>Sunflower cake pelleted</td>
<td>14.00</td>
<td>1.19</td>
<td>1.81</td>
<td>3.53</td>
<td>3.63</td>
<td>0.14</td>
<td>0.08</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>280</td>
</tr>
<tr>
<td>Rape-seed cake</td>
<td>5.00</td>
<td>0.56</td>
<td>1.36</td>
<td>0.55</td>
<td>0.62</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>100</td>
</tr>
<tr>
<td>Soya cake</td>
<td>12.50</td>
<td>1.23</td>
<td>4.60</td>
<td>1.02</td>
<td>0.62</td>
<td>0.28</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.07</td>
<td>0.00</td>
<td>226</td>
</tr>
<tr>
<td>Sesame cake</td>
<td>5.90</td>
<td>0.15</td>
<td>0.63</td>
<td>0.72</td>
<td>0.11</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>38</td>
</tr>
<tr>
<td>Content in compound feed</td>
<td>100.00</td>
<td>10.43</td>
<td>17.94</td>
<td>6.86</td>
<td>8.55</td>
<td>0.78</td>
<td>0.31</td>
<td>0.26</td>
<td>3.60</td>
<td>0.59</td>
<td>0.38</td>
<td>2000</td>
</tr>
</tbody>
</table>

Target values
- kJ 10.51 10.59 0.00 0.00 0.80 0.80 0.32 0.37 0.70 0.54 0.18

Abbreviations: ME = Metabolizable Energy; MJ = Megajoule; Lys = Lysine; Met = Methionine; Trp = Tryptophan; Ca = Calcium; P = Phosphorus; Na = Sodium (Sodium)
Protein, Fat, Fibre = Indicated in crude

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653831. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The author is solely responsible for any views expressed and the accuracy of all information contained in this communication. This project is a practice abstract.
PRACTICE ABSTRACT

Further information

Video
- Check the video "Sojabohnen-Toaster + Ölpresse für die Landwirtschaft" (German)

Weblinks
- Different soy processing intensities - sequences for the mast (German)
- Check the Organic Farm Knowledge platform for more practical recommendations.
- Web pages of manufacturers: Effizient Soja Toaster and Mobiler Soja Toaster

About this practice abstract and OK-Net EcoFeed

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

Project partners: IFAM O.G. (project coordinator), IE: Aarhus University (AOU), NZ: Organic Research Centre (ORC), UK: Institute of Animal Science for Organic Agriculture and Biocatalysis (ITAB), TR: Research Institute of Organic Agriculture (FiBL), CH: Bioland, ES: Asociacion Italiana per l'Agricoltura Biologica (AABI), IE: Doceas Soja BS, AI; Swedish University of Agricultural Sciences, SE; ECOFARM, ES; Soil Association, UK.
© 2020

Publications:
Bioland Biocenter GmbH
Kaiserstraße 18, 55116 Mainz, Germany
Phone +49 6131 2997; 20, www.bioland.de
Research Institute of Organic Agriculture (FiBL)
Ackerstrasse 113, Niestadt 219, CH-5074 Frick
Phone +41 62 865 72 72, info@foerst.foerst, www.biologic.org
IFAM O.G., Rio da Commerz 120, 08100 Stansport
Phone +32 2 28812 22, info@foerst.eu, www.ifam-euco.org
Authors: Christopher Lindner, Elias Schmidt
Review: Lindsay Winstanley, Organic Research Centre, UK
Contact: elias.schmidt@bioland.de
Permalink: Organic Farm Knowledge Platform/37896
PA027 Recommendations for using soya-based feedstuffs in pig husbandry

Recommendations for using soya-based feedstuffs in pig husbandry

Problem
Soya beans are rich in protein with a valuable composition of amino acids but also contain anti-nutritive substances (trypsin inhibitors) and approximately 20% fat, which can limit the applicability in organic pig husbandry.

Solution
If soya beans are pressed and heat treated, the products can be used in organic feed rations for pigs. Critical points in ration planning must be considered to achieve a high meat quality.

Benefits
Short soya supply chains are in line with the principles of organic agriculture and help to enable farmers to meet requirements of organic farming regulations or private labelling systems.

Practical recommendation
- Soya beans need to be heat treated to enable digestion by pigs or poultry. Professional processing technology is required to apply a heat treatment of the right quality and intensity. This is essential to preserve protein quality.
- De-fatting of soya beans helps to increase shelf life and the amount that can be fed to sows, piglets and pigs. A mechanical press reduces the fat content down to approximately 7-10%, see table 1. The product is called soya cake (see figure 1). Before feeding it to pigs, it needs to be heat treated.

Figure 1: Soya cake. Photo: Donau Seja
D.4.4 – Fact sheets

PRACTICE ABSTRACT

- Soya cake or full-fat soya beans are best in growth phases with high energy needs: nursing sows, rearing piglets and in the first fattening phase (share in total feed <15 % DM), see table 2.
- The fat of soya beans contains relatively high levels of polyunsaturated fatty acids. For achieving lean meat of high quality, the use of soya cake is limited during the final fattening phase (approximately 5% of DM). Full-fat soya beans should be avoided during this phase.
- If soya cake is the main protein feed during the fattening period, the share of corn should be lower than 20%. Otherwise, lean meat of high quality is not achievable.

Table 1: Average composition of soybean feedstuff. Source: ITAB

<table>
<thead>
<tr>
<th>Value based on fresh matter</th>
<th>Soybean toasted</th>
<th>Soya cake toasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>90.7%</td>
<td>94.4%</td>
</tr>
<tr>
<td>Crude protein</td>
<td>37.6%</td>
<td>46.2%</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>4.2%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Fat</td>
<td>17.5%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Energy</td>
<td>4590 kcal/kg</td>
<td>4780 kcal/kg</td>
</tr>
<tr>
<td>Net energy pig</td>
<td>2650 kcal/kg</td>
<td>2470 kcal/kg</td>
</tr>
<tr>
<td>Metabolizable energy broiler</td>
<td>3170 kcal/kg</td>
<td>2870 kcal/kg</td>
</tr>
<tr>
<td>Lysine</td>
<td>23.4 g/kg</td>
<td>26 g/kg</td>
</tr>
<tr>
<td>Threonine</td>
<td>15.1 g/kg</td>
<td>17.9 g/kg</td>
</tr>
<tr>
<td>Methionine</td>
<td>5.4 g/kg</td>
<td>6.6 g/kg</td>
</tr>
<tr>
<td>Cysteine</td>
<td>5.6 g/kg</td>
<td>7.2 g/kg</td>
</tr>
<tr>
<td>Methionine + cysteine</td>
<td>11 g/kg</td>
<td>13.8 g/kg</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>4.8 g/kg</td>
<td>6.3 g/kg</td>
</tr>
</tbody>
</table>

Table 2: Recommendations for using soya feed in organic pig husbandry. Source: BioAustria 2011, see web links

<table>
<thead>
<tr>
<th>% of DM in feed</th>
<th>Piglets</th>
<th>Sows</th>
<th>Fattening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pregnant</td>
<td>Nursing</td>
<td>Start</td>
</tr>
<tr>
<td>Soybeans heat-treated</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Soya cake heat-treated, defatted</td>
<td>15-20</td>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 770013. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume any responsibilities or liability for any possible fact and/or costs or damage resulting from the application of the recommendations in this practice abstract.
PRACTICE ABSTRACT

Further information

Further reading
- For more practice abstracts on organic pig husbandry, go to the Organic Farm Knowledge platform > Search Toolbox > Select "By type: Practice Abstracts" and "By theme: Pigs"
- For more practice abstracts from Donau Soja, go to the Organic Farm Knowledge platform > Search Toolbox > Select "By institution: Donau Soja"
- Further information on organic farming can be found on the Organic Farm Knowledge platform.

Weblinks
- LFH Oberösterreich, BioAustria, LFZ Raumerg-Gumpenstein, UK ÖÖ, 2011. Bio-Schweinefütterung. Linz, Austria, (German)
- Website of the Bavarian State Research Center for Agriculture (LfL) (German)

About this practice abstract and OK-Net EcoFeed

Publishers:
Verena Donau Soja
Weiskirchenstrasse 61a, 4020 Vienna, Austria
Phone +43 1 532 17 44 10, office@donausoja.org, www.donausoja.org
Research Institute of Organic Agriculture (FiBL)
Alzibrastrasse 11, Postfach 219, CH 5070 Muri
Phone +41 62 865 72 72, info@fibl.org, www.fiбл.org
IFOAM EU, Rue du Commerce 124, 1000 Brussels
Phone +32 2 286 12 18, info@ifomaeu.org, www.ifomaeu.org
Authors: Lindsay Whitbread, Organic Research Centre, UK
Contact: lwhitbre@org-research.org
Permalink: Organic Farm Knowledge Platform/37897

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Meat/Reproductive Animal Feed project. The project is running from January 2013 to December 2015.

Project website: ok-net-ecofeed.eu

Project partners: IFOAM EU Group (project coordinator), IE; Aarhus University (KOVOS), DK; Organic Research Centre (ORC), UK; Invited Techniques de l'Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (FiBL), CH; Biokartela, DE; Association Italiana per l'Agricoltura Biologica (AAB), IT; Donau Soja, ES; AT; Swedish University of Agricultural Sciences, SE; ECOPA, ES; Soil Association, UK.
© 2016
Recommandations pour l'utilisation du soja en élevage porcin

Problème
Les graines de soja sont riches en protéines, ont un profil intéressant en acides aminés, mais contiennent également des facteurs antinutritionnels (inhibiteurs de trypsine) et environ 20 % de matières grasses, ce qui peut limiter leur utilisation en élevage biologique de porcs.

Solution
Si les graines de soja sont pressées et traitées thermiquement, elles peuvent être utilisées dans les aliments biologiques pour les porcs. Une certaine vigilance s'impose dans la gestion de l'alimentation pour obtenir une viande de la qualité désirée.

Bénéfices
L'approvisionnement local en soja est conforme aux principes de l'agriculture biologique et contribue à satisfaire les exigences de la réglementation sur l'agriculture biologique ou des labelisations privées.

Recommandations pratiques
- Les graines de soja doivent être traitées thermiquement pour permettre une bonne valorisation par les porcs ou les volailles. Une technologie professionnelle de transformation est nécessaire pour appliquer un traitement thermique de qualité et d'intensité appropriées, essentiel pour préserver la qualité des protéines.
- Le déshuillage des graines de soja (obtention d'un tourteau, cf. Figure 1) permet d'augmenter la durée de conservation et la quantité distribuée aux truies, porcelets et porcs. Une presse mécanique réduit la teneur en matières grasses à environ 7-10 % (cf. Tableau 1). Le tourteau obtenu doit-être traité thermiquement avant distribution aux porcs.

Figure 1: Tourteau de soja. Photo: Donau Soja

Contexte
Adapté à tous les élevages ayant accès à du soja produit dans la région.

Période d'application
Toute l'année

Temps requis
Temps nécessaire à l'alimentation des porcs

Délai d'impact
Impact immédiat

Equipement
Equipement spécifique nécessaire pour le traitement des graines de soja. Equipement complémentaire nécessaire dans les élevages pour le stockage des matières premières et la fabrication des aliments.

Efficacité maximale
Élevages de porcs à proximité de zones de production de soja.
Les tourteaux de soja ou les grains de soja entières sont les plus efficaces pour les phases de croissance à besoins énergétiques élevés : truies allaitantes, porcelets en post-sevrage et première phase d'engraissement (part dans l'alimentation totale <15% de MS) : Cf. tableau 2.

La matière grasse des grains de soja contient des taux relativement élevés d'acides gras polyènes. Pour obtenir une viande maigre de haute qualité, l'utilisation du tourteau de soja est limitée pendant la phase de finition (environ 5%), et l'utilisation de grains de soja entières est proscrite.

Si le tourteau de soja est la principale matière première protéique pendant la période d'engraissement, la part du maïs doit être inférieure à 20%. Dans le cas contraire, il n'est pas possible d'obtenir une viande maigre de haute qualité.

Tableau 1: Composition moyenne de matières premières issues de soja.
Source : ITAB

<table>
<thead>
<tr>
<th>Valeurs basées sur la matière fraîche</th>
<th>Soja toasté</th>
<th>Tourteau de soja toasté</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matière sèche</td>
<td>90.7%</td>
<td>94.4%</td>
</tr>
<tr>
<td>Protéines brutes</td>
<td>37.6%</td>
<td>46.2%</td>
</tr>
<tr>
<td>Fibres brutes</td>
<td>4.2%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Matière grasse</td>
<td>17.5%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Energie</td>
<td>4990 kcal/kg</td>
<td>4780 kcal/kg</td>
</tr>
<tr>
<td>Energie nette porcs</td>
<td>2650 kcal/kg</td>
<td>2470 kcal/kg</td>
</tr>
<tr>
<td>Energie métabolisable poulets de chair</td>
<td>3170 kcal/kg</td>
<td>2870 kcal/kg</td>
</tr>
<tr>
<td>Lysine</td>
<td>23.4 g/kg</td>
<td>26 g/kg</td>
</tr>
<tr>
<td>Théronine</td>
<td>15.1 g/kg</td>
<td>17.9 g/kg</td>
</tr>
<tr>
<td>Méthionine</td>
<td>5.4 g/kg</td>
<td>6.6 g/kg</td>
</tr>
<tr>
<td>Cystéine</td>
<td>5.6 g/kg</td>
<td>7.2 g/kg</td>
</tr>
<tr>
<td>Méthionine + cystéine</td>
<td>13.1 g/kg</td>
<td>13.8 g/kg</td>
</tr>
<tr>
<td>Tryptophane</td>
<td>4.8 g/kg</td>
<td>6.3 g/kg</td>
</tr>
</tbody>
</table>

Tableau 2: Recommandations pour l'utilisation de soja dans l'alimentation des porcs biologiques.
Source : BioAustria 2011, voir les Ivol Internet

<table>
<thead>
<tr>
<th>% de MS dans l'aliment</th>
<th>Porcelets</th>
<th>Truies</th>
<th>Porcs en engraisissement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gestantes</td>
<td>Allaitantes</td>
</tr>
<tr>
<td>Graines de soja</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Truité thermiquement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourteau de soja</td>
<td>15-20</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Truité thermiquement, déshydraté</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ce projet a été financé par le programme de recherche et innovation Horizon 2020 de l’Union Européenne dans le cadre de la convention de subvention n° TIP11. Cette communication ne vise pas à refléter le point de vue de l’actionnaire. L'Agence出资euse pour la recherche ne pas responsable de l'utilisation opérationnelle faite des informations fournies. Les auteurs et les rédacteurs déclinent toute responsabilité pour des erreurs, omissions ou dommages résultant de l'application des recommandations ou de ce résumé de pratique.
Pour plus d'informations

Lectures complémentaires

- Retrouvez d'autres fiches pratiques sur l'élevage des porcs biologiques sur [plateforme Organic Farm Knowledge](http://www.organicfarmknowledge.org) > Chercher > Sélectionner "Par type: Practice Abstracts" et "Par thème: Porcs"
- Retrouvez d'autres fiches pratiques de Donau Soja sur [plateforme Organic Farm Knowledge](http://www.organicfarmknowledge.org) > Chercher > Sélectionner "By organisation: Donau Soja"
- Des informations complémentaires sur l'agriculture biologique sont disponibles sur [plateforme Organic Farm Knowledge](http://www.organicfarmknowledge.org)

Liens Internet

- Site Internet de l'Institute for Bavarian State Research Center for Agriculture (LfA) (Allemand)

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Éditeurs:

Verein Donau Soja
Wizigkogelstrasse 6/6, 4202 Vienna, Austria
Tél.: +43 1 513 17 84 10, office@donau-soja.org, www.donau-soja.org

Research Institute of Organic Agriculture (FiBL)
Altorfstrasse 113, Postfach 210, CH-5470 Frick
Tél.: +41 62 806 72 72, info@fibl.org, www.fibl.org

IFAM/EU: Rue de Commerce 120, B-1000 Bruxelles
Tél.: +32 2 230 12 23, info@ifam-eu.org, www.ifam-eu.org

Auteurs:

Lepold Richter, Donau Soja, Vienna

Révision:

Lindsey Whittam, Organic Research Centre, UK

Contact:

office@donau-soja.org

Edition en français:

Stéphanie Lévy, ITAB
(contact: stéphanie.levy@tabasso.fr)

Lien permanent:

Organic Farm Knowledge [00037867]

OK-Net EcoFeed: Cette fiche pratique a été élaborée dans le cadre du projet OK-Net Knowledge Network en Management Animal Feed, qui s'est déroulé de janvier 2018 à décembre 2020. L'objectif global de OK-Net EcoFeed est d'orienter les agriculteurs, les éleveurs et l'industrie de transformation des aliments biologiques à atteindre l'objectif de 100% d'utilisation d'aliments biologiques et régionaux pour les animaux.

[Site Internet du projet OK-Net EcoFeed](http://www.ok-net-ecofeed.eu)

Partenaires du projet OK-Net EU Group (coordinateur du projet):

BE: Antwerp University (AGROFIS); UK: Organic Research Centre (ORC); FR: Institut Technique de l'Agriculture Biologique (ITAB); IT: Research Institute of Organic Agriculture (FIAB); DE: Research Institute of Organic Agriculture (FiBL); DK: Bioden; IT: Associazione Italiana per l'Agricoltura Biologica (AIB); IT: Donau Soja; SE: Swedish University of Agricultural Sciences; NL: CORDIA; UK: Soil Association, UK.

© 2020

Ce projet a été financé par le programme de recherche et d'innovation Horizon 2020 de l'Union Européenne dans le cadre de la convention de subvention no 778311. Cette communication ne fait que refléter le point de vue de l'auteur. L'Agence exécutive pour la recherche et d'innovation ne peut pas être considérée comme responsable de l'exactitude ou de l'exhaustivité de cette information. Les erreurs et les omissions ne sont en aucun cas responsables pour l'exactitude des informations relatives au contenu résultant de l'application des recommandations de ce résumé de pratique.
PA028 Sunflower oil cake

Sunflower oil cake

Problem
Sunflower oil cake is a high protein and fat feed source for livestock. It is a by-product obtained from the extraction of oil from sunflower seeds. It can be obtained by mechanical pressing resulting in a “cake” (see Figure 1) containing 15-20% oil or by solvent, which increases the quantity of oil. In organic farming, oil may only be extracted by mechanical pressing.

The quality of the oil depends on plant characteristics and on the processing.

Solution
The quality of the product can be increased by first de-hulling the seeds. This improves the pressing capacity as well as the oil and meal quality. Mechanical extraction is used by producers of speciality oils and smallholder farmers in both developed and developing countries.

Benefits
An advantage over soybean is that is generally not genetically modified so it is easier to include in organic feeding. Sunflowers can be included in the crop rotation (Pantipa Na Chiangmai et al., 2014).

Practical recommendation
Oil presses are used for the mechanical extraction of oil from oilseed crops. The procedure to obtain oil cake is as follows:

- The seeds are delivered to the press where they are crushed and squeezed.
- Under pressure, the oil leaks through the press holes and gathers into the oil repository underneath the press.

Chemical characteristics of sunflower oil cake - Data Sheet

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Range</th>
<th>Unit of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>10-12%</td>
<td>%</td>
</tr>
<tr>
<td>Protein</td>
<td>26-29%</td>
<td>%</td>
</tr>
<tr>
<td>Fat</td>
<td>11-13%</td>
<td>%</td>
</tr>
<tr>
<td>Ash</td>
<td>4-5%</td>
<td>%</td>
</tr>
<tr>
<td>Fibre</td>
<td>23-26%</td>
<td>%</td>
</tr>
</tbody>
</table>

Figure 1: Organic sunflower oil cake. Picture: Savi Italo at savitalozi.com
Figure 2: Technical sheet of organic sunflower oil cake. Source: Savi Italo at savitalozi.com
PRACTICE ABSTRACT

- The oil is filtered to remove any solids, which are then cleaned of unwanted substances.
- Together with the oil, an oil-rich press cake is produced.
- After the oil cake has been removed from the press, it is cooled down. It can be stored for up to 3 months.
- This procedure is a current processing technique that produces a good quality oil cake (see Table 1).

In terms of feeding, sunflower oil cake plays an important role in monogastric diets due to its high methionine content, similar to soy cake. It has a high fiber content; the well-structured raw fibre has a positive dietary effect on pigs. Its use in the finishing phase has to be limited because of the relatively high proportion of polyunsaturated acids (PUFA), which can lead to an undesirable soft fat consistency in the carcass if the dosage is too high.

Further information

Video
- The video "Ok press SP-1000 2015" at shows the process of oil extraction and cake production.

Further readings

Weblinks
- Website of the oil press supplier Bronto with a selection of presses.

About this practice abstract and OK-Net EcoFeed

Publishers
Associazione Italiana per l'Agrobiologia (AIAB)
Via Molière 70, 00193 Rome, Italy
Phone +39 06 2384619, info@aiab.it, www.aiab.it

Research Institute of Organic Agriculture (FIO)
Adenauerstrasse 115, Wollishofen 220, CH-8008 Zurich
Phone +41 44 965 75 75, info@fio.org, www.fio.org

IFOAM EU, Rue de la Commune 120, BRUSSELS
Phone +32 2 236 12 23, info@ifoam.eu, www.ifoam-eu.org

Author: Laura Piroli, AIAB
Contact: laura.piroli@gmail.com

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 30% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

© 2020
Guide for farms to plan small scale soya bean processing equipment

Problem
Soya beans are rich in proteins but also contain anti-nutritive substances, which require processing prior to feeding to pigs or poultry. Designing an adequate processing system for a farm is challenging because a range of factors need to be considered together: profitability, time efforts, needs of livestock, and consumers.

Solution
Various technological design solutions exist for on-farm processing systems and are adaptable according to a farm's needs.

Benefits
Using processing equipment for home-grown soya beans can increase and retain the value created on the farm.

Practical recommendation
The core of the processing facility is equipment which serves the purpose to convert raw soya beans into a digestible form via heat treatment.

The required processing can be achieved through different technological procedures (see overview in Table 1).

First step: Economic assessment
- Is the consumption of soya products on my farm sufficient to achieve a return on investment within a reasonable period?
 A reference example for on-farm soya bean processing infrastructure in Austria and Germany are farms operating with an annual consumption of minimum 70-100 tons of soya beans. For organic farms, profitability can start around 50 tons per year already.
- Conduct a cost-benefit calculation for the whole processing equipment system. Cost factors to be included: depreciation of the equipment, energy costs per unit of output, maintenance costs per unit of output unit and time efforts for maintenance, processing and supervision. When processing equipment is operating only in small batches and with many breaks, the machinery is operating on a below average efficiency. Full energy efficiency as listed by the manufacturer might not be achieved. It is...
D.4.4 – Fact sheets

PRACTICE ABSTRACT

like driving a car. Stop and go traffic is less efficient than a continuous drive.

Economic benefit factors: market value of the derived product. The market price for soya feed products can vary significantly over the year. The premium for soya products in non-GM quality ranges in Central Europe from 60-110 EUR during the last years.

- If a depreciation calculation is not satisfying due to a too small number of operating hours per year, the subsequent follow-up actions can be considered:
 - Implementing the processing facility as a joint project with neighbouring farms
 - Offering processing as a service for others. This can be done either through stationary or mobile solutions.
 - Reconsidering the decision for investing in soya bean processing equipment

- If soya bean processing equipment is used for others as a service, the general legal framework and possible additional requirements of certification schemes must be considered.

Photo 2: Extrusion technology uses a combination of pressure and friction to generate processing temperature. Photo: www.farmnet.cz/en

Photo 3: Soya bean cake is the product after heat treatment and oil pressing. Before feeding, it is usually mixed with other feed ingredients. Photo: Donau Soja
Table 1: Selection of manufacturers of processing technology for soya beans. This list covers equipment which is already used by farmers in Central Europe. Links to websites are in ‘Further Information’.

<table>
<thead>
<tr>
<th>Company name, brand</th>
<th>Based</th>
<th>Brief notes on applied procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>EST, Ecoaost</td>
<td>AT</td>
<td>Throughput performance: approximately 100 - 1000 kg/h; Heat treatment for about 40 min* in a container by a hot air fan with recirculated processing air to increase energy efficiency; see photo 1</td>
</tr>
<tr>
<td>FARMET, FE-series</td>
<td>CZ</td>
<td>Throughput performance: approximately 100 – 4000 kg/h; Heat treatment for about 30 sec* through a press screw generates a temperature of 130 degrees under high pressures (extrusion), see photo 2</td>
</tr>
<tr>
<td>OIL PRESS, KKT-series</td>
<td>DE</td>
<td>Throughput performance: approximately 100 - 300 kg/h. Heat treatment for about 20 - 25 min* in a tube by flowing on heat exchange plates.</td>
</tr>
<tr>
<td>MECMAR, T-series</td>
<td>IT</td>
<td>Throughput performance: approximately 400 - 6000 kg/h; Heat treatment in a container by a hot air fan for about 100 seconds</td>
</tr>
<tr>
<td>CIMBRIA, Doncaster</td>
<td>DK</td>
<td>Throughput performance: approximately 9 tons/h; Heat treatment in a container for < 10 min by infra-red radiation</td>
</tr>
<tr>
<td>FLORAPOWER</td>
<td>DE</td>
<td>Throughput performance: approximately 1000 kg/h; Soya beans are moved on conveying screws. Very uniform heat treatment for about 30 - 40 min* through heating screws.</td>
</tr>
<tr>
<td>STRECKEL-SCHRADER</td>
<td>DE</td>
<td>Throughput performance: approximately 3000 – 5000 kg/h; Very uniform heat treatment for about 20 - 30 min* by steam</td>
</tr>
</tbody>
</table>

*Processing time can differ slightly. Time settings are for example adjusted to moisture content.

Complementary notes to Table 1

- Proper cleaning of soya beans before heat treating is a must.
- Additional pre-conditioning of beans such as moistening, peeling or splitting might be recommended by manufacturers to obtain a better processing performance.
- Availability of technical support by region and language is important for setup, maintenance and handling.
- Comparing processing temperatures among manufacturers can be challenging. Most relevant is the temperature in the core of the bean, but this value can be only estimated. Equally important is that the heat treatment is applied evenly.
- The possibility to manually adjust processing parameters is particularly important if batches of very different qualities are expected.
- Balance of investment and degree of process automatization and effort for supervision.
- Oil presses and additional coolers are optional tools and are commonly used.

Photo 4: Oil presses are common in soya bean processing. In this case, four presses are combined. Photo: Donau Soja
PRACTICE ABSTRACT

Second step: When is an oil press advisable?
Using an oil press can reduce the oil content from about 20% in the raw soya bean to approximately 10%. The derived product is called soya bean cake (see photo 3 and 4). Using an oil press allows producers to respond to a diversity of customer needs: soya bean cake stores better and is easier to include in rations than full-fat soya beans.

A further advantage of pressing soya beans is that the resulting oil can be marketed. Possible applications are as feed or as a raw material in the food industry. It is common to sell soya bean oil in bottles for use in the kitchen, see photo 5. Cold pressed soya bean oil is suitable for frying or baking. It contains a high proportion of healthy polyunsaturated omega 3 fatty acids.

Further information
Reference and recommended literature
Organic Farm Knowledge provides access to further literature: Soya processing technology, FBL Germany, 2014.

Web links to manufacturers of soya bean processing technology
- EST GMBH, www.sojastrator.com
- OILPRESS, www.oilpress.de
- CIMBRIA, www.cimbria.com
- FLORAPOWER, www.florapower.de
- STECKEL-SCHRADER, www.steckel-schrader.com
- RAINER AND JÜRGEN MÖHLER, mobile toasting technology, www.sojastrater.de
- SCHNUPP'S GRAIN ROASTING, www.roast-a-matic.com
- ROASTEC FORCED CONVECTION ROASTING, www.roastech.com
- DÜTSCHETZEL MANUFACTURING CO., www.duitschetzel.com

About this practice abstract and OK-Net EcoFeed

For more information, visit the OK-Net EcoFeed website at: https://ok-net-ecofeed.eu/

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730819. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume any responsibility or liability for any possible direct or indirect damage resulting from the application of the recommendations in this practice abstract.

76
PA030 Okara: Including a soya by-product into the poultry diet

Problem
The inclusion of soya meal into the poultry diet is relevant, as a source of high quality protein. However, as soya is planted for both human and animal consumption, the cost is high.

Solution
The production of tofu and soymilk generates okara as a waste product which can be added fresh or dried, to poultry rations, reducing both soya meal inclusion and costs. Due to its high fibre content, the amount of okara in the diet should be limited to avoid a decrease in feed intake.

Benefits
The inclusion of okara in the poultry diet has several advantages. The main advantage is related to sustainability, due to the fact that a by-product is used and not wasted. The second advantage is a reduced dependency on soya meal as a source of protein and amino acids. Finally the decrease in soya meal results in a lower cost of feed.

Practical recommendation
- Due to its chemical and amino acid composition (Table 1 and 2), Okara can be used in different ways in the poultry diet. A possible use is to include okara in the starting and growing phases (from the 1st to 21st day). Another possibility is to feed okara from week 1 to slaughter time. Okara inclusion replacing soymeal quantity from 25 to 75% in the diet, will not affect feed intake or mortality, and it will reduce ration cost and achieve comparable daily body weight gains, to 100% soya diets. However, due to the high fibre content, overfeeding Okara, could decrease feed intake and performance (Motrewe et al., 2012).
- The composition of Okara ranges between 20% and 47.3% protein and 9.3% and 22.3% fats. It contains high amounts of isoflavones and the polyunsaturated fatty acids, linolenic acid, and linoleic acid (D’Toole 1999; Bowles and Demiate 2006). The energy content is also important to ensure weight gain from day 1 to 21 (Table 3).
- According to Rostagno et al. (2011), the okara digestibility of crude protein (CP), amino acids (AA) and lipids is higher than that of soya. In particular, okara CP has a higher digestibility of around 99.6% instead of 91%.
- Protein content, protein efficiency coefficient, and essential AAs of okara are usually higher than those of other soybean-based products, due to the heat process that soybean undergoes during processing of the soybean aqueous extract. This makes certain AAs better available, which in turn increases the digestibility of proteins and fats (D’Toole 1999).
- It should be noted that according to Diaz-Vargas (2010), okara CP content was 21% lower than that of soy (45%). However, the biggest difference between okara and soybean meal was in regard to tryptophan, with 55.5% less found in okara. The contents of lysine, methionine, and threonine varied by 7.5%, 13.3%, and 16.5%, respectively (Table 3).
- The economic viability of including okara in the diets was determined according to the equation described by Bellaver et al. (1985), which calculates the average cost of feed per kilogram of body weight.

Okara: Including a soya by-product into the poultry diet.
Table 1: Okara chemical composition of ingredients (%, on DM). (Motaww et al 2012)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>DM (%)</th>
<th>CP (%)</th>
<th>EE (%)</th>
<th>Ash (%)</th>
<th>NFE (%)</th>
<th>Ca (%)</th>
<th>MEKcal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean meal</td>
<td>92.1</td>
<td>43.8</td>
<td>3.7</td>
<td>7.3</td>
<td>31.2</td>
<td>0.27</td>
<td>2245</td>
</tr>
<tr>
<td>Okara</td>
<td>93.1</td>
<td>36.8</td>
<td>10.1</td>
<td>12.1</td>
<td>38.9</td>
<td>0.27</td>
<td>2255</td>
</tr>
<tr>
<td>Yeast excon</td>
<td>865.7</td>
<td>81.6</td>
<td>2.5</td>
<td>0.21</td>
<td>0.23</td>
<td>0.03</td>
<td>3450</td>
</tr>
</tbody>
</table>

Table 2: Amino acids composition of soybean meal and okara. Motaww et al 2012

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Soybean meal (%)</th>
<th>Okara (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Thrreonine</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Serine</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Glycine</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Valine</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Histidine</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Methionine</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 3: Chemical and energy composition of soybean residue (okara). M. Diaz-Vargas et al 2015

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (%)</td>
<td>93.9</td>
</tr>
<tr>
<td>Crude protein (%)</td>
<td>35.6</td>
</tr>
<tr>
<td>Ether extract (%)</td>
<td>23.9</td>
</tr>
<tr>
<td>NDF (%)</td>
<td>32.6</td>
</tr>
<tr>
<td>ADP (%)</td>
<td>10.1</td>
</tr>
<tr>
<td>Energy (GE kcal kg⁻¹)</td>
<td>4.924</td>
</tr>
<tr>
<td>AME (kcal kg⁻¹)</td>
<td>2.072</td>
</tr>
<tr>
<td>ALA (kcal kg⁻¹)</td>
<td>2.946</td>
</tr>
<tr>
<td>Coefficient of metabolizability AME (%)</td>
<td>60.81</td>
</tr>
</tbody>
</table>

Further information

References

Weblinks

- Check the Organic Farm Knowledge platform for more practical recommendations on animal husbandry.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 733933. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume any responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 733913. This communication only reflects the author's view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible actual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
PA031 Feeding grass silage to fattening pigs

Feeding grass silage to fattening pigs

Problem
Current production systems compromise pig health and welfare through a lack of structural feed components, which is associated with the development of gastric ulcers.

Solution
Feeding a diet which includes roughage, like grass silage, increases pig gut health.

Benefits
A reduction in gastric ulcers leads to increased animal welfare. Additionally, roughage, such as grass silage, may satisfy the pigs' need for rooting and lead to a reduction in tail biting. Furthermore, the pigs are occupied with feeding for longer periods of time, which leads to a reduction in boredom. As grass silage has a good nutritional value, it is an ideal supplement to concentrate feed.

Note: feeding roughage does not negatively impact meat quality.

Practical recommendation
- Provide fattening pigs with roughage on a daily basis (minimum 100-300 grams per pig every day)
- Grass silage is an ideal roughage; it is very attractive for the pigs due to its taste and consistency. Besides grass silage, grass, hay, and other types of silage have comparable effects on health and welfare.
- To avoid feed waste and to provide good access, place feed in racks at an optimal height.
- Place racks away from areas where pigs rest in order to avoid disturbances.

Feeding roughage, in this case fresh grass, to fattening pigs (Marion Nitsch, FiBL)

Gastric ulcer in fattening pigs (Mirjam Holinger, FiBL)
Further information

Video
- The video “Feeding pigs: effect of silage” is available at the Organic Farm Knowledge platform.

Further reading

Weblinks
- Further documents can be found on the Organic Farm Knowledge website.

About this practice abstract and OK-Net EcoFeed

Publishers
Research Institute of Organic Agriculture (FIBL)
Adress: Zernez 113, Postfach 210, CH-5701 Frick
Phone: +41 62 465 72 72, info.buse@fibl.org, www.fibl.org
IFOAM EU, Rue du Commerce 124, BR-1040 Brussels
Phone: +32 2 286 32 23, info@ifoam-eu.org, www.ifoam-eu.org

Author: Mirjam Holinger, Samuel Schröder, Barbara Früh
Contact: mirjam.holinger@fibl.org

Permalink: Organic-FarmKnowledge.org/35301

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic food processing industry in achieving the goal of 30% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu
Project partners: IFOAM EU Group (project coordinator), BE) Aarhus University (ICROFS, DK; Organic Research Centre (OMC), UK; Institut Technico de l’Agriculture Biologique (ITA), FR; Research Institute of Organic Agriculture (FIBL), CH; Bialystok, DK; Association Belge pour l’Agriculture Biologique (AAB), BE; Danau Sava DS, AT; Swedish University of Agricultural Sciences, SE; ELEVAGA, DS; Soil Association, UK.
© 2019

This project has received funding from the European Commission’s Horizon 2020 research and innovation programme under grant agreement no 773013. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibilities or liabilities for any possible direct or indirect consequences or damage resulting from the application of the recommendations in this practice abstract.
Alimentación de cerdos de engorde con ensilado de hierba

Problema
Los sistemas de producción actuales comprometen la salud y el bienestar de los cerdos debido a la falta de alimentos fibrosos, lo que se asocia con el desarrollo de úlceras gástricas.

Solución
Alimentación con una dieta que incluye fibra, en forma de ensilado de hierba, aumentando la salud intestinal de los cerdos.

Beneficios
Una reducción de las úlceras gástricas conduce a un mayor bienestar animal. Además, los forrajes, como el ensilado de hierba, pueden satisfacer la necesidad de hozar de los cerdos y reducir la mordedura de colas. Por otra parte, los cerdos permanecen más tiempo comiendo, lo que reduce el aburrimiento. Además, el ensilado de hierba tiene un buen valor nutricional, es un complemento ideal para la alimentación con pienso.

Nota: la alimentación con forrajes no afecta negativamente la calidad de la carne.

Recomiendaciones prácticas
- Proporcionar forraje a los cerdos de engorde diariamente (mínimo 100-300 gramos por cerdo al día).
- El ensilado de hierba es un forraje ideal: resulta muy atractivo para los cerdos por su sabor y consistencia. Además, el ensilado de hierba, la hierba, el heno y otros tipos de ensilaje tienen efectos comparables sobre la salud y el bienestar.
- Para evitar el desperdicio de alimento y facilitar el acceso al ensilaje hay que colocarlo en comederos de rejillas para forrajes a una altura óptima.
- Colocar los comederos de rejillas lejos de las áreas donde descansan los cerdos para evitarles molestias.

Este proyecto ha recibido financiación del programa de investigación e innovación Horizonte 2020 de la Unión Europea en virtud del acuerdo de subvención nº 777901. Esta comunicación solo refleja la opinión del autor. La Agencia Ejecutiva de Investigación no se hace responsable del uso que pueda hacerse de la información proporcionada. Los autores y editor es no asumen responsabilidad alguna por cualquier posible inconvenience o daño resultante de la aplicación de las recomendaciones en este resumen de práctica.
Más información

Video
- El video “Feeding pigs: effect of silage” está disponible en la plataforma Organic Farm Knowledge.

Otras lecturas

Weblinks
- Se pueden encontrar más documentos en el sitio web Organic Farm Knowledge.

Sobre esta Ficha Práctica y el Proyecto OK-Net EcoFeed

Edición: Research Institute of Organic Agriculture (FiBL), Ackernstrasse 113, Postfach 219, CH-5070 Frick, Phone +41 62 865 72 72, info@frib.org, www.fibl.org
FiBL EU, Rúa da Comercio 124, BE-1900 Zaventem, Phone +32 2 230 12 22, info@organicscience.be, https://www.organicscience.be/
Autora: Mirjam Holinger, Samuel Scheiber, Barbara Früh
Traducción: Carolina Reyes-Palomino, Coordinador de Ganadería Ecológica ECUVA, Universidad de Córdoba.
Contacto: mirjam.holinger@fibl.org
Link: Organic-farmknowledge.org/tool/36654

Ok-Net EcoFeed: Esta ficha técnica se elaboró en el proyecto Organic Knowledge Network on Monogastric Animal Feed. Esta proyecto lleva a cabo desde enero de 2018 a diciembre de 2020. La finalidad del Ok-Net EcoFeed es ayudar a los ganaderos, criadores y industria de procesado de alimento ecológicos para alcanzar el objetivo de un uso de alimentación 100% ecológico de local para monogastricos.

Web del proyecto: ok-net-ecofeed.eu

© 2019

Este proyecto ha recibido financiación del programa de investigación e Innovación Horizonte 2020 de la Unión Europea en virtud del acuerdo de subvención nº 773911. Esta comunicación solo refleja la opinión del autor. La Agencia Ejecutiva de Investigación no se hace responsable del uso que pueda hacerse de la información proporcionada. Los autores y editor no asumen responsabilidad alguna por cualquier posible inexactitud o daño resultante de la aplicación de las recomendaciones en este resumen de práctica.
Alimentation des porcs en engraissement avec de l'ensilage d'herbe

Problème

Les systèmes de production actuels compromettent la santé et le bien-être des porcs en raison de l'absence de composants structurels dans l'alimentation, associée au développement d'ulcères gastriques.

Solution

Une alimentation qui comprend du fourrage grossier, comme l'ensilage d'herbe, améliore la santé intestinale des porcs.

Bénéfices

Une réduction des ulcères gastriques entraîne une amélioration du bien-être des animaux. De plus, les fourrages grossiers, tels que l'ensilage d'herbe, peuvent satisfaire le besoin de fourrage des porcs et réduire les mœurs de queue. Par ailleurs, les porcs sont occupés à s'alimenter durant de plus longues périodes, ce qui réduit leur ennui. L'ensilage d'herbe a une bonne valeur nutritive : c'est donc un complément idéal pour les aliments concentrés.

Mise en œuvre

Thème

Porcs

Couverture géographique

Tous pays

Période d'application

À tout moment

Temps requis

Temps consacré à l'alimentation des porcs

Début d'impact

Immédiat

Equipement

Pas d'équipement spécifique nécessaire

Efficacité maximale

Porcs en engraissement

Note : l'apport de fourrages grossiers n'a pas d'impact négatif sur la qualité de la viande.

Recommandations pratiques

- Fournir quotidiennement du fourrage grossier aux porcs en engraissement (minimum 100 à 300 g de MS par porc chaque jour).
- L'ensilage d'herbe est un fourrage idéal : il est très appétent pour les porcs en raison de son goût et de sa consistance. L'ensilage d'herbe, l'herbe, le foin et d'autres types d'ensilages ont des effets comparables sur la santé et le bien-être.
- Pour éviter le gaspillage des aliments et assurer un bon accès, disposer les aliments dans des auge à une hauteur optimale.
- Placer les auge loin des zones de repos afin d'éviter les perturbations.
Pour plus d’informations

Vidéo
- La vidéo "Feeding pigs: effect of silage" est disponible sur la plateforme Organic Farm Knowledge.

Lectures complémentaires

Lien Internet
- Des documents complémentaires sont disponibles sur Organic Farm Knowledge website.

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Éditeurs
Research Institute of Organic Agriculture (FiBL)
Adenauerring 115, Frauenfeld 250, CH-5400 Frauenfeld
Tél. +41 02 805 72 72, info.suisse@fibl.org, www.fibl.org

Chiffres clés du projet OK-Net EcoFeed : Cette fiche pratique a été élaborée dans le cadre du projet OK-Net EcoFeed, qui a pour objectif d’apporter des informations sur l’utilisation d’aliments biologiques et régionaux pour les porcs.

RC: Research Centre for Organic Agriculture (FiBL), CH-5400 Frauenfeld, CH-5400 Frauenfeld

Téléphone: +41 02 805 72 72, tél. +41 02 805 72 72, fax +41 02 805 72 72

E-mail: info.suisse@fibl.org

Site web: www.fibl.org

© 2019

Ce projet a été financé par le programme de recherche et d’innovation Horizon 2020 de l’Union Européenne dans le cadre de la convention de subvention n° 739311. Cette communication ne reflète pas nécessairement la position de l’Union Européenne. L’Agence exécutive pour la recherche et l’innovation n’est pas responsable de l’utilisation que l’utilisateur pourrait faire de la présente information. Les auteurs et les relations des équipes sont responsables pour tout dégât causé par l’utilisation inappropriée de cette information.
PA032 Utilisation of waste heat from biogas plants for drying fine-grained legumes

Practice abstract

Utilisation of waste heat from biogas plants for drying fine-grained legumes

Problem

The combustion of biogas to generate electricity generates a lot of waste heat, which is often not sufficiently used. Fine-grained legumes, such as lucerne or clover, are important in the crop rotation on organic farms. At the same time, they are a good source of proteins, amino acids and roughage in feed. Outdoor-dried hay from fine-grained legumes is a risky business due to the weather. Field drying can lead to very high leaf losses, which greatly reduces the protein and amino acid content. This is why fine-grained legumes are mown early (see Fig. 1), brought in moist (see Fig. 2) and then dried on the farm in an energy-intensive way.

Solution

The approach here is to use the waste heat from biogas combustion for the drying of fine-grained legumes. There are different methods for drying the crop. They all use the warm exhaust air, which is sucked in by a fan and fed to the various processes via air ducts. Loose plants can be dried with a continuous dryer or in special drying containers with perforated floors (see Fig. 3). For better and more compact storage, the crop should then be compressed into bales (see Fig. 4). Another option is to press the crop directly in the field, and the bales are then ventilated directly (see Fig. 6). However, the residual moisture in the field must be reduced to a maximum of 20%. The costs for the drying are 8 to 10 € per bale.

Applicability box

Theme
Processing and handling of harvested feed

Context
Use of biogas waste heat to achieve a high concentration of ingredients in fine-grained legumes.

Application time
During the vegetation period for hay, in autumn for maize and cereals.

Required time
10 to 20 hours for the crop to pass through the system; the net drying time is 3-6 hours.

Mowing and recovery time
depends on the degree of used technology.

Period of impact
Permanent

Equipment
Harvesting machines for grassland, continuous dryer, bale drying blower, baling press

Best in
mostly used for ruminant feeding, but can now also be used for monogastric feeding due to higher nutrient concentrations.

Figure 1: Mowing of fine-grained legumes. Photo: Qualitätsstreckung Nordbayern [https://bitdo.de/luzernecoba]

Figure 2: Fine-grained legumes are brought in moist. Photo: Qualitätsstreckung Nordbayern [https://bitdo.de/luzernecoba]
Benefits

- Low loss of leaf mass leads to high concentration of protein and amino acids.
- A fast harvest reduces the dependence on the weather.
- Waste heat utilisation of the biogas plant and a possibility for the operator to earn additional income through contract drying.
- Extension of the range of applications for fine-grained legumes in monogastric feed from roughage supplier to protein supplier

Practical recommendation

Continuous dryer

- The legumes must be mown early. Then they are chipped with knives in the loader wagon (length 3.5 cm).
- As a rule, it is left to dry in the field for one day before being loaded onto wagons. Depending on the weather, two days are also possible to reduce moisture content from 50% to 33%.
- A large loader wagon (see Fig. 2) is always delivered full, which corresponds to one hectare depending on the yield.
- The drying temperature for clover is 79°C on average. The hay runs through the system in 10 to 20 hours, depending on the humidity. The actual residence time in the dryer is 3 to 8 hours.
- The dried clover is baled under high pressure into large square bales weighing around 300 kg (see Fig. 4).
- Instead of using a bale press, the dried hay can be pelleted.

Bale drying

- The fine-grained legumes are mown at the beginning of flowering.
- As long as the crop is still green, it is turned twice on the field.
- In the evening, the hay is rowed. At noon of the following day, the crop is rowed for baling.
- In the afternoon, it is baled. Residual moisture should be between 16-20% and no higher than 22%.
- The bales are dried at 40°C for 20 to 24 hours. They must be turned once.

Recommendations for both procedures:

- The dried bales can now be stored and fed directly.
- For feeding monogastric animals, the dried legumes should be ground in a mobile grinding and mixing plant (see Fig. 5) and mixed homogeneously into the ration.

Figure 3: Special drying containers with perforated floors. Photo: Werner Vogt-Kaute

Figure 4: The crop is compressed into bales. Photo: Werner Vogt-Kaute

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739533. This communication only reflects the author's view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
PRACTICE ABSTRACT

Further information

Video
- Take a look at the video about the Alvan Blanch conveyor drier.

Weblinks
- Check the Organic Farm Knowledge platform for more practical recommendations.
- Alvan Blanch: Multi-Purpose drying ovens (in German)

About this practice abstract and OK-Net EcoFeed

Publishers:
Bioland Beratung GmbH
Kaiserstraße 16, 55136 Mainz, Germany
Phone: +49 6132 23976-20, www.bioland.de
IFOAM EU, Rue du Commerce 124, B-1040 Brussels
Phone: +32 2 290 12 23, info@ifoam-eu.org, www.ifoam-eu.org
Research Institute of Organic Agriculture (FiBL)
Ascherstrasse 113, Postfach 1310, CH-5400 illustrator
Phone: +41 62 865 72 72, info@fibl.org, www.fibl.org
Authors: Christopher Lindner, Elias Schmiedere, Werner Vogt-Kaute
Review: Lindsay Wintrance, Helga Witter

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: www.ok-net-ecofeed.eu
Project partners: IFOAM EU Group (project coordinator), BE: Aarhus University (CROPnet), DE: Organic Research Centre (ORC), UK: Institute of Electronics, Information and Communication Technology (IET), FI: Research Institute of Organic Agriculture (FiBL), NL: Bioland, SE: Asociación Italiana per l’Agricoltura Biologica (AIA), AT: Donau Soja, UK: Swedish University of Agricultural Sciences, SE; ECOVIA, ES: Seal Association, UK.

© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 772461. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided.

The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.

88
Utilisation de la chaleur résiduelle des méthaniseurs pour sécher les légumineuses fourragères

Problème
La combustion du biogaz pour produire de l'électricité génère beaucoup de chaleur résiduelle, qui n'est souvent pas suffisamment utilisée. Les légumineuses fourragères, comme la luzerne ou le tèfle, sont importantes dans la rotation des systèmes de cultures biologiques. Elles sont également une bonne source de protéines, d'acides aminés et de fibres dans l'alimentation animale.

Le foin de légumineuses séché en plein champ est une activité risquée, dépendant des conditions climatiques. Il peut entraîner des pertes de feuilles très importantes, ce qui réduit considérablement la teneur en protéines et en acides aminés. C'est pourquoi les légumineuses fourragères sont fauchées précocement (voir fig. 1), transportées humides (voir fig. 2) puis séchées à la ferme de manière énergivore.

Solution
L'approche consiste ici à utiliser la chaleur résiduelle de la combustion du biogaz pour le séchage des légumineuses fourragères. Il existe différentes méthodes de séchage. Elles utilisent toutes l'air chaud évacué, qui est aspiré par un ventilateur et acheminé vers les différents processus par des conduits d'air.

Les plantes en vrac peuvent être séchées avec un séchoir en continu ou dans des containers de séchage spéciaux à planchers perforés (voir fig. 3). Pour un stockage plus efficace et plus compact, la récolte doit ensuite être compressée en balles (voir fig. 4).

Une autre option consiste à presser la récolte directement au champ. Les balles sont ensuite ventilées directement (voir fig. 6). Toutefois, l'humidité résiduelle au champ doit être réduite à un maximum de 20 %. Le coût du séchage est de 8 à 10 € par balle.

Figure 1: Fauchage de légumineuses fourragères. Photo: Qualitätsforschung Nordbayern (https://qfn.de/luzernecoble)

Figure 2: Les légumineuses fourragères sont acheminées humides. Photo: Qualitätsforschung Nordbayern (https://qfn.de/luzernecoble)
Bénéfices
- Une faible perte de la biomasse foliaire entraîne une plus forte concentration de protéines et d’acides aminés.
- Une récolte rapide réduit la dépendance aux conditions météorologiques.
- Technique permettant la valorisation de la chaleur résiduelle d’un méthaniseur et la possibilité pour l’opérateur de gagner un revenu supplémentaire via des contrats de séchage.
- Extension du panier d’utilisation des légumineuses fourragères dans l’alimentation des monogastriques.

Récommandations pratiques

Séchoir en continu
- Les légumineuses doivent être fauchées précocement. Ensuite elles sont hachées avec des couteaux dans une remorque autochargeuse (longueur 3,5 cm).
- En règle générale, on laisse sécher le fourrage au champ pendant une journée avant chargement. Selon la météo, deux jours peuvent être possibles pour réduire le taux d’humidité de 50 % à 33 %.
- Une grande remorque autochargeuse (voir fig. 2) doit être livrée pleine, ce qui correspond à plus ou moins un hectare selon le rendement.
- La température de séchage pour le trèfle est en moyenne de 79 °C. Le foin passe dans le système en 10 à 20 heures, selon son humidité. Le temps de séjour effectif dans le séchoir est de 3 à 6 heures.
- Le foin séché est mis en grosse balles carrées sous haute pression (environ 300 kg par balle), voir fig. 4.
- Au lieu d’utiliser une presse à balles, le foin séché peut être transformé en granulés.

Séchage de balles
- Les légumineuses fourragères sont fauchées au début de la floraison.
- Tant que la culture est encore verte, elle est fanée deux fois au champ.
- Le soir, le foin est arrosé une première fois, puis encore une fois le lendemain midi.
- L’après-midi, le fourrage est bottelé. L’humidité résiduelle doit être comprise entre 16 et 20 % et ne doit pas dépasser 22 %.
- Les balles sont séchées à 40°C pendant 20 à 24 heures. Elles doivent être retournées une fois.

Récommandations pour les deux techniques :
- Les balles séchées peuvent désormais être stockées et utilisées directement.
- Pour l’alimentation des monogastriques, les légumineuses séchées doivent être broyées dans une installation mobile de broyage et de mélange (voir fig. 5) et mélangées de manière homogène dans la ration.

Figure 3: Containers de séchage spéciaux à plancher perforé. Photo: Werner Vogt-Kauta
Figure 4: Le fourrage est compressé en balles. Photo: Werner Vogt-Kauta

Ce projet a été financé par le programme de recherche et d’innovations Horizon 2020 de l’Union européenne dans le cadre de la convention de subvention no 77991. Cette communication ne reflète pas nécessairement la position de l’Union Européenne. L’Union Européenne n’est pas responsable de l’utilisation qui pourrait être faite des informations fournies. Les auteurs et les rédacteurs déclinent toute responsabilité pour d’éventuelles inexactitudes, fautes ou dommages résultant de l’application des recommandations de ce résumé de pratique.
FICHE PRATIQUE

Pour plus d’informations

Video
- Consultez la vidéo concernant le séchoir Alvan Blanch Conveyor Dryer.

Liens Internet
- Des documents complémentaires sont disponibles sur la plateforme Organic Farm Knowledge
- Alvan Blanch: Séchoirs multi-usages (en allemand)

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Editeurs:
Bioland Berating GmbH
Kaiserstraße 18, 55116 Mainz, Germany
Tel: +49 6131 23676-29, www.bioland.de

IFAM-EU, Rue du Commerce 126, BE-1000 Brussels
Tel: +32 2 280 13 23, info@ifam-eu.org, www.ifam-eu.org

Recherches: Institute of Organic Agriculture (FBL)
Adenauerallee 113, Postfach 219, D-50937 Köln
Tel: +41 62 865 72 75, info@ifam-eu.org, www.fbl.org

Auteurs: Christopher Lindner, Elias Schmelter, Werner Vogl-Kaute

Relectures: Lindsay Woodside, Helga Wilser
Contact: elias.schmelter@bioland.de

Traduction en français: Stanislas Labou, ITAB
(contact: www.ifam-eu.org/ITA/assoc.fr)

Lien permanent: Organic-Farm-Knowledge.org/issue175511

OK-Net EcoFeed: Cette fiche pratique a été élaborée dans le cadre du projet OK-Net EcoFeed de l’Union européenne dans le cadre de la convention de subvention n° 777511. Cette communication ne fait que refléter les informations émanant de l’auteur. L’INIA n’est pas responsable de l’utilisation qui peut être faite des informations fournies. Les auteurs et les rédacteurs déclarent toute responsabilité pour l’état de leurs informations. Toute utilisation ou diffusion résultant de l’application des recommandations de ce résumé de pratique.

Ce projet a été financé par le programme de recherche et d’innovations horizon 2020 de l’Union européenne dans le cadre de la convention de subvention n° 777511. Cette communication ne fait que refléter les informations émanant de l’auteur. L’INIA n’est pas responsable de l’utilisation qui peut être faite des informations fournies. Les auteurs et les rédacteurs déclarent toute responsabilité pour l’état de leurs informations. Toute utilisation ou diffusion résultant de l’application des recommandations de ce résumé de pratique.

Ce projet a été financé par le programme de recherche et d’innovations horizon 2020 de l’Union européenne dans le cadre de la convention de subvention n° 777511. Cette communication ne fait que refléter les informations émanant de l’auteur. L’INIA n’est pas responsable de l’utilisation qui peut être faite des informations fournies. Les auteurs et les rédacteurs déclarent toute responsabilité pour l’état de leurs informations. Toute utilisation ou diffusion résultant de l’application des recommandations de ce résumé de pratique.
PA033 Acorns for fattening free-range pigs

Acorns for fattening free-range pigs

Problem
Montanera is a traditional feeding system where pigs forage for acorns. Iberian pigs foraging for acorns during their finishing phase has economically contributed to conserving the "dehesa", a high nature value (HNV) farmland based on agroforestry, currently consisting of more than four million hectares in the southwest of the Iberian Peninsula (photo 2).

Solution
This natural resource is used to fatten pigs without any kind of compound or supplementary feed. During the last 2-3 months of fattening, pigs can gain more than 40 kg of body weight from grass and foraged acorns.

Benefits
In the montanera system, the mean average daily gain for fattening pigs is 20.75 kg/day. Their body fat has a high concentration of oleic acid (around 55%) and very low concentrations of linoleic and palmitic acids; which is very important for the quality of pork and the cured products.

Applicability box

Theme
Pigs, feeding and ration planning

Context
South West of Iberian Peninsula; partly adaptable to other Mediterranean areas and forests with Quercus species (the best species is Q. ilex rotundifolia).

Application time
Autumn and winter.

Required time
None if there are adult trees; approximately 15 years to have the first mast of acorns if it is necessary to establish trees and the surface is certified as organic.

Period of impact
1.5 months to influence meat quality and fatty acid profile

Equipment
None for free grazing; only a stick to knock down acorns if there is a swineherd with the pigs.

Best in
Fattening pigs (especially in fatty breeds)

Practical recommendation
- The fattening performance is very much influenced by the age of pigs and their compensatory growth; hence, pigs should be as old as possible (21 months) and adapted to grazing.
- Grass is necessary as a source of protein to compensate for the low protein levels in acorns.
- The food conversion rate is 10.5 kg of whole acorns of Q. ilex rotundifolia to gain 1 kg, besides the contribution of grass; to establish the stocking rate, consider that an adult evergreen oak produces 11 kg of acorns/year.
- Iberian pigs peel acorns to avoid the high content of tannins in the shell. However, during peeling, approximately 20% of the kernel can be wasted.

Photo 1: Pig foraging acorns (Vicente Rodríguez-Estévez, University of Córdoba)
Photo 2: Group of Iberian pig fattening grazing in a dehesa estate (Vicente Rodríguez-Estévez, University of Córdoba)
Further information

Video
- The video "Cerdos Comienzo Bellotas en la Dehesa" shows a swine herd knocking down acorns.
- The video "Cerdos ibéricos comienzan bellotas en una dehesa de Extremadura" shows a herd of Iberian pigs foraging acorns.

Further reading

Weblinks
- Further documents can be found on the Organic Farm Knowledge website.

About this practice abstract and OK-Net EcoFeed

Authors: Vicente Rodríguez-Estévez, Carolina Díaz-Guara, Santos Sanz-Hernández, Carolina Reyes-Palomo, Manuel Sánchez-Rodríguez, Alli Chaves de Gondomar Ecológica Convivá, [Universidad de Córdoba]

Review: Barbara Fisch, FIBA Switzerland, and Lindsay Whittaker, Organic Research Centre, UK

Contact: viest@uboc.es

Publication: OrganicFarmKnowledge.org/tools/P4247

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Agroecologic Animal Feed project. The project is running from January 2019 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 50% use of organic and regional feed for monogastrics.

Project websites: ok-net-ecofeed.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739901. This communication only reflects the author's views. The Executive Agency is not responsible for any use that may be made of the information presented. The authors and editors do not assume any responsibility or liability for any possible factual inaccuracies or damages resulting from the application of the recommendations in this practice abstract.
Des glands pour engraisser des porcs élevés en plein-air

Problème
La Montanera est un système d'alimentation traditionnel où les glands ibériques se nourrissent de glands pendant la phase de finition. Ce système a contribué économiquement à la conservation de la "dehesa", une terre agricole à haute valeur naturelle basée sur l'agroforesterie, qui s'étend actuellement sur plus de 4 millions d'ha dans le sud-ouest de la péninsule ibérique (photo 2).

Solution
Cette ressource naturelle est utilisée pour engraisser les porcs sans aucun autre aliment. Au cours des 2 à 3 derniers mois d'engraissement, les porcs peuvent gagner plus de 40 kg grâce à l'herbe et aux glands ingérés.

Bénéfices
Dans le système Montanera, le gain moyen quotidien des porcs en engraissement est de 750 g. Leur gras présente une forte concentration d'acide oléique (environ 55 %) et de très faibles concentrations d'acides linoléique et palmitique, ce qui est très important pour la qualité de la viande de porc et les produits de salaison.

Mise en œuvre

<table>
<thead>
<tr>
<th>Thème</th>
<th>Porcs, alimentation et plan de rationnement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couverture géographique</td>
<td>Sud-ouest de la péninsule ibérique ; partiellement adaptable à d'autres zones méditerranéennes et forêts de chênes (meilleure espèce : Q. ilex rotundifolia).</td>
</tr>
<tr>
<td>Péériode d'application</td>
<td>Automne et hiver</td>
</tr>
<tr>
<td>Temps requis</td>
<td>Aucun si l'y a des arbres adultes ; environ 15 ans pour avoir les premiers glands s'il faut planter des arbres.</td>
</tr>
<tr>
<td>Délai d'impact</td>
<td>1,5 mois pour influencer la qualité de la viande et le profil d'acides gras.</td>
</tr>
<tr>
<td>Équipement</td>
<td>Aucun pour le pâturage libre ; un bâton pour faire tomber les glands s'il y a un gardien avec les porcs.</td>
</tr>
<tr>
<td>Efficacité maximale</td>
<td>Porcs en engraissement (surtout les races locales)</td>
</tr>
</tbody>
</table>

Recommandations pratiques
- Les performances d'engraissement sont très influencées par l'âge des porcs et leur croissance compensatrice : les porcs doivent être aussi âgés que possible (≥1 an) et adaptés au pâturage.
- L'herbe est nécessaire en tant que source de protéines pour compenser les faibles taux de protéines des glands.
- L'indice de consommation indicatifs est de 10,5 kg de glands de Q. ilex rotundifolia pour un gain d'1 kg (sans compter le pâturage). Pour établir le taux de charge, considérez qu'un chêne vert adulte produit 11 kg de glands/an.
- Les glands ibériques épulchent les glands, dont l'enveloppe extérieure contient une forte teneur en tanins. Lors de cet épulchage, environ 20 % de la graine peut être gaspillée.

Photo 1: Porc consommant des glands (Vicente Rodríguez-estée, University of Córdoba)
Photo 2: Groupe de porcs ibériques en engraissement pâturant dans la domaine de la Dehesa (Vicente Rodríguez-estée, University of Córdoba)
Pour plus d'informations

Vidéos
- La vidéo "Cerdos Comiendo Bellotas en la Dehesa" montre un gardien de porcs faisant tomber des glands.
- La vidéo "Cerdos ibéricos comiendo bellotas en una dehesa de Extremadura" montre un groupe de porcs ibériques à la recherche de glands.

Lectures complémentaires

Liens Internet
- Des documents complémentaires sont disponibles sur le site Internet Organic Farm Knowledge

A propos de cette fiche pratique et du projet OK-Net EcoFeed

Éditeurs:
Asociación Vegana Ecológica – Ecowalia, Avenida Diego Martinez Barrio 10, primera planta, local 22, 41012 Sevilla, Spain, info@ecowalia.org, www.ecowalia.org
Universidad de Córdoba, Campus Universitario de Rabanales, Departamento de Producción Animal, Facultad de Veterinaria, ES-14071 Córdoba, Spain, www.uc3m.es
Research Institute of Organic Agriculture (FiBL) Adastral Road, 118, Neffilton, 950 970 Felix Tél. +41 62 805 72 72, info@fibl.org, www.fibl.org
IFAMN, Rue du Commerce 122, BE-1000 Bruxelles Tél. +32 2 280 12 23, info@farm-eu.org, www.farm-eu.org

Auteurs: Vicente Rodríguez-Estévez, Cipriana Díaz-Saona, Santos Sanz-Fernández, Carolina Reyes-Palencia, Manuel Sánchez-Rodriguez, All Cátedra de Ganadería Ecológica Ecowalia, (Universidad de Córdoba)
Reflexiones: Berenice Fish, FiBL, Switzerland, and Lindsey Whitelaw, Organic Research Centre, UK

Contact: vrestevex@acces.org
Traduction en français : Stefanie Latte, ITAB (contact : stefanie.latte@itab.asso.fr)
Lien permanent : OrganicFarmKnowledge.org/see/(97476)

OK-Net EcoFeed : Cette fiche pratique a été élaborée dans le cadre du projet Organic Knowledge Network on Monogastric Animal Feed. le projet se déroule de janvier 2018 à décembre 2020. L'objectif global d'OK-Net EcoFeed est de aider les agriculteurs, les éleveurs et l'industrie de transformation des aliments biologiques à atteindre l'objectif de 100% d'utilisation d'aliments biologiques en régions pour monogastriques.

Site Internet de projet : ok-net-ecofeed.eu
Partenaires du projet : FiBL (EU Group), coordinateur du projet, IC Arhus University (DK), ORC (UK), IRAB (FR), IFR (ES), INRA (FR), AUS (ES), Syngenta (DE), SAN (IT), CEVA (FR), SEB (FI), Swedbio (SE), University of Agricultural Sciences, SE, ECOVAIN, SE, Soil Association, UK.

© 2020

Ce projet a été financé par le programme de recherche et innovation Horizon 2020 de l’Union européenne dans le cadre de la convention de collaboration n° 17791. Cette communication n’a été publiée que dans le but de faire bénéficier des connaissances et des résultats de la recherche. L’Agence européenne pour la recherche n’est pas responsable de l’utilisation ou de la mise en œuvre des informations fournies dans cette publication. L’Union européenne ne peut être tenue responsable en cas de non-observation du niveau minimum de protection des données et du recours à des fournisseurs de services ou d’technologies licites ou conformes au droit en matière de protection des données.
Bellotas para el engorde de cerdos en extensivo

Problema
La montanera es un sistema de engorde tradicional en el que los cerdos se alimentan pastoreando bellotas; con ello, la fase de acabado de los cerdos ibéricos ha contribuido económicamente a la conservación de la "dehesa", un sistema de Alto Valor Natural (SAV) que depende de la ganadería, que actualmente consta de más de cuatro millones de hectáreas en el suroeste de la Península Ibérica (Foto 2), lo que lo convierte en uno de los SAV con más extensión de Europa.

Solución
Este recurso natural se utiliza para engordar cerdos sin ningún tipo de pienso o alimento suplementario. Durante los últimos 2-3 meses de engorde, los cerdos pueden ganar más de 40 kg de peso solo pastoreando bellotas y hierba.

Beneficios
En la montanera, el promedio ganancia media diaria en el engorde es ≥0,75 kg/día. Además, la grasa depositada tiene una alta concentración de ácido oleico (alrededor del 55%) y muy bajas concentraciones de ácido linoleico y palmitico; lo cual es muy importante para la calidad de la carne de cerdo y los productos curados.

Recomendaciones prácticas
- El rendimiento durante el engorde está muy influenciado por la edad de los cerdos y su crecimiento compensatorio; por lo tanto, los cerdos deben tener la mayor edad posible (≥1 año) y estar adaptados al pastoreo.
- La hierba es necesaria como fuente de proteína, para compensar los bajos niveles de esta en las bellotas.
- El índice de conversión es de 10,5 kg de bellotas enteras de O. i. rotundifolia para engordar 1 kg, además del aporte de hierba. Para establecer la carga ganadera, hay que considerar que una encina produce ≈11 kg de bellotas/año.
- Los cerdos ibéricos pelan las bellotas para evitar el alto contenido de taninos de la cáscara. Sin embargo, durante el pelado, puede desperdiciarse aproximadamente el 20% de la pulpa.

Tema
Cerdo, alimentación y racionamiento

Área de influencia
Suroeste de la Península Ibérica, parcialmente adaptable a otras áreas mediterráneas y bosques con especies de Quercus (la mejor especie es O. i. rotundifolia).

Tiempo de aplicación
Otoño e invierno.

Tiempo requerido
Ninguno si hay árboles adultos; sí es necesario sembrar árboles estos requieren aproximadamente 15 años para tener las primeras bellotas.

Período de impacto
1,5 meses para influir en la calidad de la carne y en el perfil de ácidos grasos y 2 meses para cumplir con las exigencias de la Norma de Calidad de Carne Ibérica (RD 4/2014).

Equipo
Ninguno para el pastor; solo una vara para tirar las bellotas al suelo si hay un perro que guíe a los cerdos.

Especially para
Cerdos de engorde (especialmente en razas grasas)
FICHA PRÁCTICA

Más información

Video
- El video “Cerdos Comiendo Bellotas en la Dehesa” muestra una pira de cerdos tirando bellotas.
- El video “Cerdos ibéricos comiendo bellotas en una dehesa de Extremadura” muestra una pira de cerdos comiendo bellotas.

Otras lecturas

Weblinks
- Más información puede encontrarse en la web Organic Farm Knowledge.

Sobre esta Ficha Práctica y el Proyecto OK-Net EcoFeed

Edición
- Asociación Valor ecológico – Ecovalia, Avenida Diego Martínez Barrio 10, primavera planta, modulo 1, 41013 Sevilla, Spain, info@ecovalia.org, www.ecovalia.org
- Universidad de Córdoba, Campus Universitario de Ronda, Departamento de Producción Animal, Facultad de Veterinaria, E-14071 Córdoba, Spain, www.ucm.es
- Research Institute of Organic Agriculture (FiBL)
- Ackerstrasse 133, Postfach 220, CH-5001 Wädenswil
- Phone 41 62 865 72 72, info@fibi.org, www.fibi.org
- IFOPM EU, Rue de Commerce 124, B-1000 Brussels
- Phone 44 2 280 11 31, info@fibi-europe.org, www.ifopm.eu.org

Recibida: Barbara Fisch, TREL, Switzerland, y Lindsay Whittlestone, Organic Research Centre, UK.
Contacto: victoresteve@uco.es
Link: Organic Farm Knowledge en FoodStoic 533269.
OK-Net EcoFeed: Esta ficha técnica se elaboró en el proyecto Organic Knowledge Network en Monocropic Arable Field. Este proyecto lleva en marcha desde enero de 2018 a diciembre de 2020. La finalidad del OK-Net es contribuir a la producción de alimentos para el consumo humano mediante el uso de alimentos 100% ecológicos y locales para monomunicipios.
Web del proyecto: ok-net-ecofeed.eu
Sociedad del proyecto: IFOPM EU Group (project coordinator), BE, Aarhus University (EUK59), DK, Organic Research Centre (CRC), UK, Institut Technique de l’Agriculture Biologique (ITA), FR, Research Institute of Organic Agriculture (FiBL), CH, Ireland (ID), Azienda Agricola Italiana per l’Agricoltura Biologica (AAB), IT, Dorna Sega DA, AT; Swedish University of Agricultural Sciences, SE; ECOSVALA, ES; Soil Association, UK.
© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773311. This communication only reflects the author’s views. The Research Executive Agency is not responsible for any use that may be made of the information presented.

The authors and editors bear no responsibility for any loss or damage resulting from the application of the recommendations in this practice abstract.
97
PA034 Brewer’s yeast for organic pigs

Brewer’s yeast for organic pigs

Problem
Protein supply is a constant challenge for organic farming. Organic raw materials with high protein content are quite scarce in some regions. The search for alternative sources of protein leads to the evaluation of the organic industry by-products.

Solution
Brewer’s yeast is a by-product of beer in brewing industries. It is considered a liquid by-product (figure 1) with approximately 15% dry matter (DM). It is obtained from the anaerobic fermentation of beer, formed among other ingredients, by Saccharomyces cerevisiae. Brewer’s yeast has a high content of protein and vitamins of the B complex, which compensates the high transport costs due to its high water content.

Benefits
- Yeast has a high content of protein (> 47% DM) of high biological (3.6% of lysine) and digestible value (> 85%), thus reducing the cost of feed.
- Yeast is rich in B vitamins, especially biotin and folic acid (besides vitamin B1, B2, B6, B12, PP, B5) and in vitamin D, with a content of 2000 – 5000 IU/g DM.
- The content of phosphorus in the yeast is up to 0.8–1.3%.

Applicability box

Theme
Pigs

Context
Farms close to an organic brewery.

Application time
All year, although it is more available in spring and summer.

Required time
None, but no more than two days of storage.

Period of impact
None.

Equipment
Special equipment is needed, including an automatic system for liquid feeding and two storage tanks (figure 2) so that they can be cleaned between batches.

Best in
Sows, growers and fattening pigs.

1. International Urte

Brewer’s yeast for organic pigs. Ecowas & Universidad de Córdoba. OK Net EcoFeed Practice Abstract.
D.4.4 – Fact sheets

PRACTICE ABSTRACT

- Yeast promotes animal performance and health.
- Yeast improves the quality of the carcass.

Practical recommendation

- Two holding tanks are needed for hygiene reasons.
- Yeast deteriorates very easily, do not use the product stored over 2 days.
- It is necessary to deactivate (kill) the yeast before transporting and using it on the farm. Hence, autolyzed yeast should be used.
- Yeast is a quite seasonal product, and it cannot be stored; however, it can be added to silage mixtures as an alternative to avoid its deterioration.

Further information

- The video “Liquid Feed for pigs” is available from Lallemand Animal Nutrition. The video shows how liquid feed systems work.

Further reading

Weblinks

- Further documents can be found on the [Organic Farm Knowledge website](https://www.organicfarmknowledge.org).

About this practice abstract and OK-Net EcoFeed

Published by: Asociación Valo Ecológico – ECOVAL, Avenida Diego Martínez Barro #3, 38013 Sanlúcar de Barrameda, www.ecoval.org

Research Institute of Organic Agriculture (FiBL)

Adendorfstrasse 113, P.O. Box 219, CH-5400 Birmensdorf,

Contact: Doris.Stauffacher@fibl.org

Authors: Vikente Rodríguez-Holzwarth, Carolina Reyes-Peláez,

Further information: [Organic Farm Knowledge](https://www.organicfarmknowledge.org)

Contact: info@ok-net-ecofeed.eu

Project partners: FiBL (project coordinator), W; Aarhus University (KOVIVI), DK; Organic Research Centre (ORC), UK; Institute of Organic Agriculture (FiBL), CH; Bioland, DE; Italian Association for Agricultural Sciences (AIBA), IT; Strömberg, Sweden; University of Agricultural Sciences, SE; COVAV, ES; Israel Association, UK.

© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739931. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
Levadura de cerveza para cerdos ecológicos

Tema
Cerdos

Área de influencia
Explores cercanas a una industria cervecería ecológica.

Tiempo de aplicación
Todo el año, mayor disponibilidad en primavera y verano.

Tiempo requerido
Ninguno; pero no almacenar más de dos días.

Período de empleo
Ninguno.

Equipo requerido
Se necesita un equipo especial, como un sistema automático para alimentación líquida y dos tanques de almacenamiento (foto 2), para que estos puedan limpiarse entre lotes.

Especially para
Cerdos y cerdos de engorde.

Beneficios
- La levadura tiene un alto contenido en proteína (>47% de MS) de alto valor biológico (3,6% de lisina) y digestibilidad (> 85%); por lo que su aprovechamiento reduce el coste de la alimentación.
- La levadura es rica en vitaminas B, especialmente biotina y ácido fólico (además de vitamina B1, B2, B6, B12, P, B5) y en vitamina D, con un contenido de 2000 - 5000 UI / g de MS.
- El contenido de fósforo en la levadura es de 0,8 a 1,3%.
- La levadura promueve el rendimiento y la salud de los animales.
- La levadura mejora la calidad de la canal.

Foto 1: Levadura de cerveza
[N. Rodríguez-Escámez, Universidad de Córdoba]

Foto 2: Tanques para almacenar levadura de cerveza
[N. Rodríguez-Escámez, Universidad de Córdoba]

*Unidades internacionales

EcoValia Universidad de Córdoba. Bases para el engorde de cerdos en avícolas. OK Net EcoValia Ficha Práctica.
Recomendaciones prácticas
- Se necesitan dos tanques de almacenamiento por razones de higiene.
- La levadura se deteriora muy fácilmente, por lo que no debe usarse el producto almacenado durante más de 2 días.
- Es necesario inactivar (lavar "matar") la levadura antes de transportarla y usarla en la granja. Por lo tanto, se debe usar levadura lavada.
- La levadura es un producto bastante estacional y no puede almacenarse; sin embargo, se puede agregar a mezclas de ensilaje como alternativa para evitar su deterioro y aprovechar excedentes.

Más información
Video
- El video "Liquid Feed for pigs" muestra cómo funciona un sistema de alimentación líquido.

Otras lecturas

Weblinks
- Más información puede encontrarse en la web Organic Farm Knowledge.

Sobre esta Ficha Práctica y el Proyecto OK-Net EcoFeed
Edición
Audiencia Valor Ecologique – ECOVALIA, Avenida Diego Martinez Barrio 10, primer piso, planta 12, 41013 Sevilla, Spain, info@ecovalia.org; www.ecovalia.org
Research Institute of Organic Agriculture (FiBL)
Aadorferstrasse 113, Nuesslihus 110, CH 5070 Frick
Phone +41 62 860 72 72, info@fibl.org, www.fibl.org
IFOAM-OE, Rue de Commerce 124, 8000 Bruxelles
Phone +32 2 280 12 73, info@ifoam-eu.org, www.ifoam-eu.org
Autores: Vicente Rodríguez Estévez, Carolina Reyes-Palomo, Santos Sant-Hernández, Olímpio Ota-Gerona, Catedra de Canología Ecologica ECOVALIA, Universidad de Córdoba
Revisados: Lindsay Whittington, Organic Research Centre, UK; Lauren Dietemann, FiBL, Switzerland; Ieva Miller, FiBL, Switzerland

Contacto: ericleveine@uocs.es
Link: Organic-farmknowledge.org/food/37947
OK-Net EcoFeed: Esta ficha práctica se elaboró en el proyecto Organic Knowledge Network en Alimentación Animal Feed. Este proyecto lleva en marcha desde enero de 2018 a diciembre de 2020. La finalidad del OK-Net EcoFeed es ayudar a los ganaderos, criadores e industria de procesado de alimento ecológico para alcanzar el objetivo de un 100% de alimentación ecológico y local para monovacunos.
Web del proyecto: ok-net-ecofeed.eu

Sociedades del proyecto: IFOAM-EU Group (project coordinator), BE: Arhus University (CRONOS), UK: Organic Research Centre (ORC), UK: Institut Technique de l’Agriculture Biologique (ITAB), FR: Research Institute of Organic Agriculture (FiBL), CH: Bio-alliance, IT: Associazione Italiana per l’Agricoltura Biologica (AIRB), IT: Bioagro Srl, US: Swedish University of Agricultural Sciences, SE; ECOVALIA, ES; Sota Asociación, UK.
© 2019

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773918. This communication only reflects the author’s view. The Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not accept responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice advice.

ECOVALIA: Universidad de Córdoba. Bases para el engorde de cerdos en ecológico. OK-Net EcoFeed Ficha Práctica.
PA035 Whey for fattening organic pigs

Whey for fattening organic pigs

Problem
According to the EU regulations, the organic farming will be obliged to provide feed derived from 100% organic origin by 2021. To assure the sustainability of the feed supply, the regional feeds and raw materials shall be preferred. It is necessary to look for mutually beneficial collaborations with the organic sector stakeholders, such as food industry.

Solution
Whey is an alternative source of high-quality protein for fattening pigs (figure 1). It can supply one-third of their protein needs. At the same time, whey is an important byproduct of the cheese producers, as it represents approximately 70 to 80% of the milk volume. Collaboration of organic cheese companies with the nearby organic farms can be mutually beneficial.

Benefits
- Whey is a natural ingredient derived from fresh milk and is characterized by its high nutritive value, palatability, and digestibility.
- It promotes feed intake in the post-weaning period.
- Whey fosters animal performance and gut health.
- Whey contains high-quality protein. It can supply one-third of the protein needs for fattening pigs.

Applicability box

<table>
<thead>
<tr>
<th>Theme</th>
<th>Pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context</td>
<td>Farms close to an organic cheese factory.</td>
</tr>
<tr>
<td>Application time</td>
<td>Year-round (more availability during spring and summer).</td>
</tr>
<tr>
<td>Required time</td>
<td>None; but no more than two days of storage.</td>
</tr>
<tr>
<td>Period of impact</td>
<td>3 to 6 months, depending on the slaughtering age and weight.</td>
</tr>
<tr>
<td>Equipment</td>
<td>Special equipment is needed, such as an automatic system for liquid feeding and two storage tanks, so that they can be cleaned between batches. Other cheaper option is tanks (these can be portable) connected to drinking troughs (figure 2). High salt content and low pH can deteriorate steel feeders and other equipment.</td>
</tr>
<tr>
<td>Best in</td>
<td>Growers and fattening pigs.</td>
</tr>
</tbody>
</table>

Practical recommendation
- Whey is a quite seasonal product; hence, this determines the period when it can be used and the number of pigs that can be fattened.

Figure 1: Whey in a cheese factory, V. Rodríguez-Estévez, Universidad de Córdoba

Figure 2: Fatteners drinking whey, V. Rodríguez-Estévez, Universidad de Córdoba

Whey for fattening organic pigs. Ecowalia & Universidad de Córdoba. OK Net EcoFeed Practice Abstract.
Whey can deteriorate very easily; two storage tanks are needed for hygiene reasons.

Do not feed whey stored over 2 days.

Sweet whey is the by-product remaining after the production of soft cheeses, while acid whey comes from hard cheeses and has a lower pH. It is important to consider that salt is added to the cheese before pressing; hence, the remaining liquid whey can contain as much as 10% dry matter of salt.

Pigs should be provided with water access ad libitum to avoid salt toxicity. Additionally, reduction or elimination of supplemental salt in the diet formulation should be considered.

Salt and lactose contents should be considered to determine the daily intake rate. Fresh whey contains approximately 5% lactose, and growing pigs tolerate feeds containing up to 20-30% lactose (less for the older ones). Hence, whey should be analysed to determine the threshold for its inclusion before formulating pig diets.

Further information

Video

The video "Whey for the pigs" shows pigs drinking whey.

The video "Suero lácteo en la alimentación de cerdos | La Finca de Hoy" (Spanish) shows pigs drinking whey.

Further reading

Weblinks

Further documents can be found on the Organic Farm Knowledge website.

About this practice abstract and OK-Net EcoFeed

Publishers:
Universidad de Córdoba, Campus Universitario de Rabanales, Departamento de Producción Animal, Facultad de Veterinaria, ES-24071 Córdoba www.usc.es
Research Institute of Organic Agriculture (IOF)
Ackerstrasse 113, Postfach 239, CH-5601 Wädenswil
Phone: +41 62 865 72 71, info@iof.ch, www.iof.ch
IFOM EU, Rue du Commerce 124, BE-1000 Brussels
Phone: +32 2 286 12 23, info@ifom.eu, www.ifom-eu.org

Authors: Carolina Reyes-Pérez, Jonisa Sanz-Sanz Fernández, Cipriano Sanz-Cao, Manuel Sánchez-Andújar, Vicente Rodríguez-Estévez, Cátedra de Ganadería Ecológica Ecovialia, Universidad de Córdoba, Spain

Contact: victor@ecovalia.es

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders, and the organic feed processing industry in achieving the goal of 20% use of organic and regional feed for monogastrics.

Project website: www.oknet-ecofeed.eu

Project partners: IOFAM EU Group (project coordinator), IFOM, Organic Research Centre (UK), IUC, Institut Technique de l'Hypoderme Biologique (ITHB), IAR, Research Institute of Organic Agriculture (IOF), CSIRO, ICL (SP), Association European des Fermiers d'Exploitations Agricoles Biologiques (AEAB), IF, Donna Soja 05, AT, Swedish University of Agricultural Sciences, SE, ECOPALIA, ES, Soil Association, UK.
© 2020
FICHA PRÁCTICA

Suero para cerdos de engorde en ecológico

Problema
Según la normativa de la UE sobre producción ecológica, a partir de 2021, el 100% del alimento proporcionado a los animales deberá ser ecológico. Para asegurar la sostenibilidad del suministro, es preferible que los alimentos y materias primas procedan de la región; por lo que es necesario buscar colaboradores dentro del sector ecológico, como es el caso de la industria láctea, que genera suero de quesería como subproducto.

Solución
El suero es un subproducto importante de la producción de queso, ya que representa aproximadamente el 70-80% del volumen de leche. Al mismo tiempo, el suero es una fuente alternativa de proteínas de alta calidad para los cerdos de engorde (foto 1); pudiendo suministrar un tercio de sus necesidades de proteínas. La colaboración entre productores ecológicos de queso y granjas ecológicas cercanas puede ser beneficiosa para ambos.

Beneficios
- El suero es un ingrediente natural derivado de la leche fresca y se caracteriza por su alto valor nutritivo, palatabilidad y digestibilidad.
- Promueve la ingesta de alimento en el período de post-dešete.
- Fomenta el rendimiento del animal y la salud intestinal.
- Contiene proteínas de alta calidad. Puede suministrar un tercio de las necesidades de proteínas para el engorde de cerdos.

Recomendaciones prácticas
- El suero es un producto bastante estacional, por lo tanto, esto determina el período en que puede usarse y la cantidad de cerdos que se pueden engordar.

Tema
Cerdos
Área de influencia
Granjas cercanas a una industria láctea.
Tiempo de aplicación
Todo el año (mayor disponibilidad durante primavera y verano).
Tiempo requerido
Ninguno; pero no almacenar más de dos días.
Periodo de empleo
De 3 a 6 meses, dependiendo de la edad y peso al sacrificio.

Equipamiento
Se necesita un equipo adecuado, como un sistema automático de alimentación líquida y dos depósitos de almacenamiento, para que puedan limpiarse entre un lote de suero y otro. Otra opción más barata son los tanques, que pueden ser portátiles, conectados a bebéderos (foto 2). El alto contenido de sol y el bajo pH pueden deteriorar las partes metálicas de los equipos.

Especially para
Cerdos de engorde

Foto 1: Suero en una quesería. V. Rodríguez-Estévez, Universidad de Córdoba
Foto 2: Cerdos bebiendo suero. V. Rodríguez-Estévez, Universidad de Córdoba
FICHA PRÁCTICA

- El suero puede deteriorarse muy fácilmente; por lo que, por razones higiénicas, se necesitan dos tanques de almacenamiento.
- No alimentar a los animales con el suero almacenado durante más de 2 días.
- El suero dulce es el subproducto que queda después de la producción de quesos blandos, mientras que el suero ácido procede de la producción de quesos duros y tiene un pH más bajo. Es importante tener en cuenta que al queso se le agrega sal antes de prensarlo; por lo tanto, el suero líquido restante puede contener hasta un 10% de materia seca de sal.
- Los cerdos deben tener acceso al líquido para evitar la intoxicación por sal. Además, se debe considerar la reducción o eliminación de la sal suplementaria en la formulación de la dieta.
- Se debe considerar el contenido de sal y lactosa para determinar la tasa de ingesta diaria. El suero fresco contiene aproximadamente un 5% de lactosa, y los cerdos en crecimiento toleran alimentos que contienen hasta un 20-30% de lactosa (menos para los de más edad). Por lo tanto, el suero debe analizarse para determinar el umbral de inclusión antes de formular las raciones.

MÁS INFORMACIÓN

Video
- El video "Whey for the pigs" muestra una planta de cerdos tomando suero.
- El video "Suero lácteo en la alimentación de cerdos | La Finca de Hoy" muestra una planta de cerdos tomando suero.

Otras lecturas
- EWPA (en/d). Whey in animal nutrition. A valuable ingredient.

WEBLINKS

- Más información puede encontrarse en la web Organic Farm Knowledge.

SOBRE ESTA FICHA PRÁCTICA Y EL PROYECTO OK-NetEcoFeed

Edición
Asociación Valor Ecológico – Ecovalia, Avenida Diego Martínez Barca 10, 28007 Madrid, España, info@ecovalia.org, www.ecovalia.org.
Research Institute of Organic Agriculture (FiBL) Admistrativa 143, Postfach 2100, CH-5001 Frick, Switzerland, phone +41 62 865 72 72, info@fibil.ch, www.fibil.org
IFUON, EU, Rue de Commerce 120, BE-1000 Bruselas, phone +32 2 280 12 25, info@ifuon.be, www.ifuon.be/
Autores: Carolina Keyes-Palma, Santos Sanz-Hernández, Cristóbal Díaz-Gimeno, Manuel Sánchez Rodríguez, Vicente Rodríguez Martínez, Centros de Ganadería Ecológica Ecovalia, (Universidad de Córdoba).
Revisión: Lindsay Whistler, Organic Research Centre, UK, Lauren Dietmann, IFU, Switzerland, Helga Willer, Fibi, Switzerland.

Contacto: info@ecovalia.org
Link: Organic Farm Knowledge http://www.organicfarming.org

OK-Net EcoFeed: Esta ficha técnica se elaboró en el proyecto Organic Knowledge Network en Meioecasys Animal Feed. Este proyecto lleva a cabo desde enero de 2019 a diciembre de 2020. El objetivo del OK-Net EcoFeed es ayudar a los ganaderos, criadores y industria de procesado de alimentos ecológicos para alcanzar el objetivo de un uso de alimentación 100% ecológica y local para monopeces.

Web del proyecto: ok-net-ecofeed.eu
Socios del proyecto: IFUON, EU Group (project coordinators), BE: Aarhus University (ICROPS), DK; Organic Research Centre (ORC), UK; Institute Technique de l’Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (FiBL), CH; Biokultur, DE; Associazione Italiana per l’Agricoltura Biologica (AIB), IT, Danmarks Næringsvildsforbund, DK, AT; Swedish University of Agricultural Sciences, SE; COVALIA, ES; Soil Association, UK.
© 2020
Focus on the amino acid content of energy feedstuff components

Problem
Switching poultry rations from 95% to 100% organic feed can lead to a reduction in the use of home-grown and regional feed. Currently, conventional maize gluten and conventional potato protein are replaced by organic oilcake (soya, sunflower, rapeseed, sesame). Oilcake has a comparatively low content of important amino acids such as methionine and so higher proportions of oilcake must be used. This can lead to further reductions in the use of regionally produced and home-grown feed components such as cereals.

Solution
Energy feedstuff components contain different amounts of amino acids such as methionine. Some grain species have a high methionine content and can grow well in most regions by the farmers themselves. The best examples are proso millet (Panicum miliaceum) and naked oats (Avena nuda) followed by spelt, naked barley (Hordeum vulgare L. var. nudum Hook. f.) and buckwheat with all containing higher levels of methionine than wheat or maize.

Figures 1 and 2 show the harvest and a field visit as part of the project “Proso millet in poultry feed”

Benefits
In the present ration example, the use of oil cake can be reduced from 34.8% (see Table 1) to 16.1% (see Table 2). This means that the share of home-grown and regional components can be increased by more than 8% since the oil content could also be reduced.

Focus on the amino acid content of energy feedstuff components
OK NET - EMARK - Bioland - EU GROUP - PRACTICE ABSTRACT

PA036 Focus on the amino acid content of energy feedstuff components
Practical recommendation

In prosso millet, the methionine content is high, but the lysine content is low. Lysine can be added easily to the ration with grain legumes such as peas, field beans, lupins or soya. The low crude protein of millet is positive, as it is well complemented by the higher crude protein content of other feedstuffs, e.g. grain legumes. Overfeeding crude protein is undesirable as it puts a strain on the animal’s metabolism and leads to excessive nitrogen excretion. Naked oats have a high content of amino acids plus a high fat content so that the use of oil can be reduced.

Proso millet and naked oats are cereals that are easy to grow in many regions in Central and Southern Europe.

Table 1: Ration for 100% organic feeding of laying hens with energy feed based on corn and wheat

<table>
<thead>
<tr>
<th>Components</th>
<th>Share %</th>
<th>ME</th>
<th>Protein</th>
<th>Fat</th>
<th>Fibre</th>
<th>Lys</th>
<th>Met</th>
<th>Met+Cys</th>
<th>Trp</th>
<th>Ca</th>
<th>P</th>
<th>Na</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>20.00</td>
<td>2.88</td>
<td>1.72</td>
<td>0.72</td>
<td>0.84</td>
<td>0.05</td>
<td>0.03</td>
<td>0.09</td>
<td>0.00</td>
<td>0.01</td>
<td>0.06</td>
<td>0.00</td>
<td>600</td>
</tr>
<tr>
<td>Wheat</td>
<td>19.50</td>
<td>2.24</td>
<td>2.11</td>
<td>0.51</td>
<td>0.60</td>
<td>0.00</td>
<td>0.04</td>
<td>0.09</td>
<td>0.03</td>
<td>0.01</td>
<td>0.06</td>
<td>0.00</td>
<td>585</td>
</tr>
<tr>
<td>Milled grass</td>
<td>6.00</td>
<td>0.32</td>
<td>0.97</td>
<td>0.22</td>
<td>1.50</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>180</td>
</tr>
<tr>
<td>Peas</td>
<td>8.10</td>
<td>1.02</td>
<td>1.70</td>
<td>0.22</td>
<td>0.55</td>
<td>0.13</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.00</td>
<td>243</td>
</tr>
<tr>
<td>Feed lime</td>
<td>8.00</td>
<td>0.00</td>
<td>240</td>
</tr>
<tr>
<td>Sunflower oil</td>
<td>1.40</td>
<td>0.52</td>
<td>0.00</td>
<td>42</td>
</tr>
<tr>
<td>Premix</td>
<td>2.20</td>
<td>0.00</td>
<td>66</td>
</tr>
<tr>
<td>Sunflower cake</td>
<td>14.00</td>
<td>1.19</td>
<td>4.66</td>
<td>1.53</td>
<td>3.63</td>
<td>0.15</td>
<td>0.08</td>
<td>0.13</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>420</td>
</tr>
<tr>
<td>Sesame cake</td>
<td>4.50</td>
<td>0.36</td>
<td>2.21</td>
<td>1.70</td>
<td>0.27</td>
<td>0.05</td>
<td>0.04</td>
<td>0.08</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
<td>135</td>
</tr>
<tr>
<td>Soya cake</td>
<td>16.10</td>
<td>1.78</td>
<td>7.24</td>
<td>1.30</td>
<td>1.57</td>
<td>0.47</td>
<td>0.03</td>
<td>0.23</td>
<td>0.09</td>
<td>0.05</td>
<td>0.13</td>
<td>0.00</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>10.31</td>
<td>20.61</td>
<td>7.52</td>
<td>8.36</td>
<td>0.94</td>
<td>0.31</td>
<td>0.68</td>
<td>0.27</td>
<td>3.81</td>
<td>0.63</td>
<td>0.18</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Table 2: Ration for 100% organic feeding of laying hens with energy feed based on prosso millet and naked oats

<table>
<thead>
<tr>
<th>Components</th>
<th>Share %</th>
<th>ME</th>
<th>Protein</th>
<th>Fat</th>
<th>Fibre</th>
<th>Lys</th>
<th>Met</th>
<th>Met+Cys</th>
<th>Trp</th>
<th>Ca</th>
<th>P</th>
<th>Na</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>12.90</td>
<td>1.38</td>
<td>1.30</td>
<td>0.31</td>
<td>0.37</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.00</td>
<td>360</td>
</tr>
<tr>
<td>Proso millet</td>
<td>20.00</td>
<td>2.50</td>
<td>2.04</td>
<td>0.54</td>
<td>1.48</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
<td>0.06</td>
<td>0.01</td>
<td>600</td>
</tr>
<tr>
<td>Naked oats</td>
<td>15.00</td>
<td>2.10</td>
<td>1.52</td>
<td>1.05</td>
<td>0.23</td>
<td>0.05</td>
<td>0.04</td>
<td>0.10</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
<td>0.00</td>
<td>450</td>
</tr>
<tr>
<td>Milled grass</td>
<td>6.00</td>
<td>0.32</td>
<td>0.97</td>
<td>0.22</td>
<td>1.50</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>180</td>
</tr>
<tr>
<td>Peas</td>
<td>10.00</td>
<td>1.26</td>
<td>2.10</td>
<td>0.27</td>
<td>0.68</td>
<td>0.16</td>
<td>0.02</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>0.05</td>
<td>0.00</td>
<td>300</td>
</tr>
<tr>
<td>Feed lime</td>
<td>8.00</td>
<td>0.00</td>
<td>240</td>
</tr>
<tr>
<td>Sunflower oil</td>
<td>0.70</td>
<td>0.26</td>
<td>0.00</td>
<td>0.67</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>21</td>
</tr>
<tr>
<td>Premix</td>
<td>2.20</td>
<td>0.00</td>
<td>66</td>
</tr>
<tr>
<td>Sunflower cake</td>
<td>6.00</td>
<td>0.51</td>
<td>2.00</td>
<td>0.65</td>
<td>1.35</td>
<td>0.06</td>
<td>0.03</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>180</td>
</tr>
<tr>
<td>Sesame cake</td>
<td>4.90</td>
<td>0.39</td>
<td>2.40</td>
<td>1.85</td>
<td>0.29</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>147</td>
</tr>
<tr>
<td>Soya cake</td>
<td>15.20</td>
<td>1.66</td>
<td>6.75</td>
<td>1.22</td>
<td>1.09</td>
<td>0.44</td>
<td>0.08</td>
<td>0.21</td>
<td>0.08</td>
<td>0.05</td>
<td>0.12</td>
<td>0.00</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>10.38</td>
<td>19.07</td>
<td>6.78</td>
<td>7.20</td>
<td>0.92</td>
<td>0.31</td>
<td>0.68</td>
<td>0.26</td>
<td>3.79</td>
<td>0.62</td>
<td>0.19</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Target values

| | 10.60 | 17.50 | 6.00 | 5.00 | 0.80 | 0.32 | 0.73 | 0.17 | 3.70 | 0.54 | 0.18 |

Abbreviations: ME = Metabolisable Energy; Mf = Megajoule; Lys = Lysine; Met = Methionine; Cys = Cystaine; Trp = Tryptophan; Ca = Calcium; P = Phosphorus; Na = Sodium (Bovism)

Values for Protein, Fat and Fibre - crude

Further information

Weblinks
- Check the Organic Farm Knowledge platform for more practical recommendations.

About this practice abstract and OK-Net EcoFeed

Publishers:
Öko-Bearbeitungsgesellschaft mbH
Eschweiler 3, 58431 Hattingen, Germany
Phone: +49 8183 6372-000, www.naturland.de
Bioland Beratung GmbH
KölnQRST, 50354 Köln, Germany
Phone: +49 611 29797-28, www.bioland.de
Research Institute of Organic Agriculture (IFOAM)
Eichergasse 131, 3011 Zürich, Switzerland
Phone: +41 44 619 70 70, contact@ifoam.org, www.ifoam.org
IFOAM EU, Rue de Commerce 124, B-1000 Brussels
Phone: +32 2 266 12 73, info@ifoam-eu.org, www.ifoam-eu.org

Authors: Winfried Vogt-Kaute, Öko-Bearbeitungsgesellschaft
Ernst Schnebel, Bioland Beratung GmbH

Review: Lindsay Whitstone, Organic Research Centre, UK
Contact: w.vogt-kaute@naturland-beratung.de

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2015 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of offering a variety of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

Project partners: IFOAM EU group (Project coordinator), BE: Aarhus University (KORFU), DK: Organic Research Centre (ORC), UK: Institute Technique de l’Agriculture Biologique (ITAB), FR: Research Institute of Organic Agriculture (IBAU), CH: Bioland, CH: Association Italiana per l’Agricultura Biologica (ABA), IT: Dairius Saji DS, AT: Swedish University of Agricultural Sciences, SF; ECOSIA, FI; Saf Association, UK.
© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733031. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
PA037 Feeding insects for organic layers

Feeding insects for organic layers

Problem
A key challenge remains to achieve organic and sustainable monogastric feeding strategies: meeting their protein and essential amino acid needs with locally sourced feedstuffs.

Solution
Feeding of insects offers new possibilities to overcome the protein gap in organic farming. Insect feeds offer a sustainable and local alternative to commonly used protein feed sources.

Benefits
Live insects and larval meal can replace soy in feed rations. The amino acid profile of insects corresponds to the dietary needs of fish, poultry or swine animals, especially relating to amino acids like lysine, threonine, methionine, and tryptophan.

Practical recommendations
- Processed insect protein legally belongs to the group of ‘animal proteins’ and is currently not permitted in livestock feed; however, this legislation does not apply to the feeding of live insects, as this is not a processed feed.
- Due the high fat content of the live larvae or worms there is an upper limit, which cannot be determined at present with the available results from the feeding trial.
- Feeding live mealworms (*Tenebrio*) (Fig. 2) to laying hens does not reduce aggressive behaviour (based on results of a FIBL trial, where hens received 10 g of live mealworms per day).

Applicability box

Theme
Layers, Feeding and ration planning

Context
Organic laying hen operations

Application time
All-year-round in animal feeding

Period of impact
Permanent

Equipment
No special equipment required for feeding purchased insects or larval meal. Specialised equipment required for on-farm insect production

Best in
Monogastric animals, trial application done with laying hens

Restrictions
Larval meal (Fig. 1) is not permitted – only live insects (Fig. 2)

Figure 1. Insect larval meal mixed with concentrate feed. Photo: OK-Net Ecofeed video 'Feeding insect for organic layers' videoproduced by FIBLfilm, Image by Kaja Fröh.

Figure 2. Mealworms. Photo: OK-Net Ecofeed video 'Feeding insect for organic layers (OK-Net EcoFeed)' produced by FIBLfilm.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-FI02. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice statement.
PRACTICE ABSTRACT

Further information

Video
- Check the following video, Feeding insects for organic layers [OK-Net EcoFeed] for further instructions (Video in English with German and French subtitles). It served as a basis for this practice abstract.

Weblinks
- Check the Organic Farm Knowledge platform for more practical recommendations.

About this practice abstract and OK-Net EcoFeed

Publisher:
Research Institute of Organic Agriculture (FiBL)
Admonteuerstrasse 111, Postfach 210, CH 5070 Frick
Phone: +41 62 865 72 72, info@fibil.org, www.fibil.org
IFOAM EU, Rue du Commerce 12A, BE 1000 Brussels
Phone: +32 2 280 12 23, info@ifoam-eu.org, www.ifoam-eu.org

Authors: Barbara Führ, Thomas MPH, Jessica Coeling, all FiBL.

This practice abstract is based on the OK-Net EcoFeed electronic document ‘Feeding insects for organic layers (OK-Net EcoFeed)’. It is produced by FiBL’s team.

Contact: Barbara.Fuehr@fibil.org

Reviewers: Lauren Dietemann, FiBL, CH, and Lindsay Whistance, Organic Research Centre Em Farm, UK.

Permalink: OrganicFarmKnowledge.org/wox/39429

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders, and the organic feed-processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu

© 2020

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 730013. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume any responsibility or liability for any possible actual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
PA038 Free choice feeding - an alternative feeding method for laying hens

Problem
Formulated, complete diets for laying hens do not reflect their nutrient requirements since their needs change according to the weather and their age. As a consequence, nutrients are often under- or oversupplied.

Solution
With free choice feeding, the rations are not fed to the chickens as a complete feed but instead offered as separate components.

Benefits
By using feed produced on-farm, feed costs can be reduced, and at the same time, the hens can use their so-called “food wisdom” to create their own rations. The system is interesting, especially for mobile housing systems as they offer high amounts of young grass and can thus reduce the amount of protein concentrates used.

Practical recommendation
- The feed choices can be grouped into three feeds (not including grit). The difference in nutrients between the feeds must be clear to the hens.
- The energy component must contain a lot of starch and energy, the protein component a lot of protein, minerals and vitamins, and the third component a lot of calcium. With only moderate amounts, the differences are not large enough for learning to take place.
- If different types of grain are used in the energy component, they should be fed mixed in the same trough.
- The transition of feed to whole grains should be done slowly over two to three weeks so that the gizzard can build up the muscles necessary to crush the grains.
- Habituation to the free choice system with whole grains should take place one month before the start of laying, i.e., from about the 15th week of life. This allows the hen to get used to the choice feed before the nutrient requirements increase with egg production. Calcium reserves can also be built up if necessary.
- Vitamins or trace elements must not be given separately as a single component; otherwise, some animals may avoid them or eat too much, resulting in toxicity.
- To obtain a complete ration, the complementary feed must be suitable for mixing with cereals or cereals and limestone. Following the rearing supplement, the ration should be switched to the laying supplement, as usual, when egg production starts.
- A sufficient animal/feeding area ratio must be maintained, and there must be enough distance between the troughs. For example, for every 100 hens, two troughs per feed component.

There is further need for research on behaviour, potential savings and practical application.