Landscape based metrics to assess livestock carrying capacities associated with selected planetary boundaries

Catherine Pfeifer, Simon Moakes, Adrian Müller

Landscape 2021 online, 22.09.2021
Content

1. Introduction: Livestock, a good or a bad?
2. Livestock sustainability assessments
 • What is the debate?
 • Why looking beyond the farm?
3. A conceptual framework to assess livestock‘s impact on planetary boundaries
4. Reflection
Livestock, a good or a bad?

Livestock, a good or a bad?

• Is a major threat to the environment
 • 10% EU GHG emissions (with current accounting methods)
• Consumed in large quantities contributes unhealthy diet
• Driver of land use change (planted fodder)
Livestock, a good or a bad?

In Europe
- Represents 40% of agricultural activity and 170 billion euro
- Employs 4 million people
- Is central to a healthy diet
- Managing grassland
- Helps close cycles (reduced fertilizer, increased carbon sequestration)

- Is a major threat to the environment
 - 10% EU GHG emissions (with current accounting methods)
- Consumed in large quantities contributes unhealthy diet
- Driver of land use change (planted fodder)
How to make livestock more sustainable?

Two narratives shaping the livestock discourse
Sustainable intensification ⇔ Agroecology
How to make livestock more sustainable?

Sustainable intensification

- more efficient animals

\[
\frac{\text{ressources}}{\text{kg animal source food}} \downarrow
\]

Efficiency - relative performance

Assessment through Life Cycle Analysis (LCA)
How to make livestock more sustainable?

Sustainable intensification

• more efficient animals

\[
\text{ressources} \quad \downarrow \quad \text{kg animal source food}
\]

Efficiency - relative performance

Assessment through Life Cycle Analysis (LCA)
How to make livestock more sustainable?

Agroecology

- Integrate livestock in ecosystem processes (Dumont, 2012) in food system (van Zanten, 2019)
- Sufficency - Absolute performance
- Can be linked to planetary boundaries
How to make livestock more sustainable?

Agroecology

• Integrate livestock in ecosystem processes (Dumont, 2012) in food system (van Zanten, 2019)
• Sufficiency - Absolute performance
• Can be linked to planetary boundaries

No metrics why?

Levels of organisation relevant for livestock science

Examples of assessment methods

- Mass flow model (SOLm or CIFOS)
- Life Cycle Assessment (LCA)
Landscape: Why look beyond the farm?

- Ecological processes are generally not bound to the farm
- Account for spatial heterogeneity
- Account for possible interactions of farmers (feed and fodder, manure transfers)

=> Circularity and linkage to planetary boundaries
Levels of organisation relevant for livestock science

- **Examples of assessment methods**
 - Mass flow model (SOLm or CIFOS)
 - => to be developed (GeoSOL)
 - Life Cycle Assessment LCA

GeoSOL principle

SOL-m

Bottom-up mass-flow model
Model inputs and outputs, (all physical flows) related to individual agricultural activities based FAO STAT
GeoSOL principle

SOL-m
Bottom-up mass-flow model
Model inputs and outputs, (all physical flows) related to individual agricultural activities based FAO STAT OR aggregated from spatial data

Spatial allocation

Open access GIS layers

Spatially explicit modeling
Interactions; livestock - ecosystem processes
- Nitrogen
- Phosphorous
- Water
- (Carbon)
- (Biodiversity)
GeoSOL principle

SOL-m
Bottom-up mass-flow model
Model inputs and outputs, (all physical flows) related to individual agricultural activities based FAO STAT OR aggregated from spatial data

Spatial allocation

Open access GIS layers

Spatially explicit modeling
interactions; livestock - ecosystem processes
- Nitrogen
- Phosphor
- Water
- (Carbon)
- (Biodiversity)

Assessing planetary boundaries locally
Linkage with carrying capacity aggregated to landscapes
- Soil nutrient balance
- Agricultural water balance

GeoSOL principle

SOL-m

Bottom-up mass-flow model
Model inputs and outputs, (all physical flows) related to individual agricultural activities based FAO STAT OR aggregated from spatial data

Open access GIS layers

Spatial allocation

Spatially explicit modeling
interactions livestock - ecosystem processes
- Nitrogen
- Phosphor
- Water
- (Carbon)
- (Biodiversity)

Assessing planetary boundaries locally
Linkage with carrying capacity aggregated to landscapes
- Soil nutrient balance
- Agricultural water balance

What we plan to achieve?

- Assess the role of livestock for circularity
- Provide local carrying capacity related metrics for livestock
- Understand how mixed farming supports livestock production within planetary boundaries