

A new method for estimating mixing ability: application to winter wheat variety mixtures and propositions for plant breeding

Emma Forst¹, **Jérôme Enjalbert**¹, Vincent Allard², Christophe Ambroise³, Inès Krissaane⁴, Tristan Mary-Huard^{1,4}, Stéphane Robin⁴ & Isabelle Goldringer¹

Context: growing interest in variety mixtures

Wheat variety mixtures in France

- Strong progression of wheat variety mixtures in France
- → Strong interest of farmers
- Recent evolution of regulation :
 - → sales of variety mixtures authorized (July 2018)

Context: interest in variety mixtures

• Farmers: agroecological practice, easy to implement, possibility to design mixtures tailored for local context

- Agronomy: buffering of abiotic and biotic stresses → stabilization of production, reduction of foliar disease development (Finckh and Mundt 1992)
- Ecology: mobilization of species and genetic diversity → complementarity, compensation and synergy effects (Tilman et al. 1997, Creissen et al. 2016)
- Need to identify varieties adapted to this practice: lack of references due to evaluation in pure stand only (unpredictability of mixture performances)
 - → estimation of mixing ability

Number of genotypes

Development of methods for estimating mixing ability

Objectives:

- Identify the best performers in mixture from a panel
- Screening of a large number of genotypes (! combinatorics)
- Propose the integration of these methods in breeding programs for mixtures

<u>Methodological approaches (Performance based - trait blind):</u>

Evaluation of a set of mixtures (analogy with combining ability)

Yar1 Var2 Var3 Var4 Var5

II. Evaluation of individual components in nursery trials (competitive ability)

Number of genotypes

Development of methods for estimating mixing ability

Objectives:

- Identify the best performers in mixture from a panel
- Screening of a large number of genotypes (! combinatorics)
- Propose the integration of these methods in breeding programs for mixtures

Methodological approaches:

Evaluation of a set of mixtures (analogy with combining ability)

II. Evaluation of individual components in nursery trials (competitive ability)

I. Modeling mixing ability (following Griffing 1956)

Analogy with the concept of combining ability, evaluation of mixtures

Evaluation of a panel of genotypes in binary mixtures

- Model (fixed effects): $Y_{12} = \mu + \frac{1}{2} (GMA_1 + GMA_2) + SMA_{12}$
- General Mixing Ability: Mean performance of a genotype in mixture

$$GMA_1 = (Y_{12} + Y_{13} + Y_{14} + Y_{15}) / 4 - \mu$$

I. Modeling mixing ability (following Griffing 1956)

Analogy with the concept of combining ability, evaluation of mixtures

Evaluation of a panel of genotypes in binary mixtures

- Model (fixed effects): $Y_{12} = \mu + \frac{1}{2} (GMA_1 + GMA_2) + SMA_{12}$
- General Mixing Ability: Mean performance of a genotype in mixture

$$GMA_1 = (Y_{12} + Y_{13} + Y_{14} + Y_{15}) / 4 - \mu$$

• Specific Mixing Ability: Deviation of a mixture performance from the predicted value based on its components' GMA (interaction term):

$$SMA_{12} = Y_{12} - \mu - \frac{1}{2} (GMA_1 + GMA_2)$$

I. Modeling mixing ability (following Griffing 1956)

Analogy with the concept of combining ability, evaluation of mixtures

Evaluation of a panel of genotypes in binary mixtures

- Model (fixed effects): $Y_{12} = \mu + \frac{1}{2} (GMA_1 + GMA_2) + SMA_{12}$
- General Mixing Ability: Mean performance of a genotype in mixture

$$GMA_1 = (Y_{12} + Y_{13} + Y_{14} + Y_{15}) / 4 - \mu$$

• **Specific Mixing Ability**: Deviation of a mixture performance from the predicted value based on its components' GMA (**interaction** term):

$$SMA_{12} = Y_{12} - \mu - \frac{1}{2} (GMA_1 + GMA_2)$$

GMA and SMA are relative to the panel and the experimental conditions

- Evaluation of a panel in all possible binary mixtures (diallel-like design)
- Limit: the curse of combinatorics (the number of possible mixtures increases with the size of the panel) -> 1 incomplete designs

Fig.1: Complete design

Fig.2: Incomplete design

- Evaluation of a panel in all possible binary mixtures (diallel-like design)
- Limit: the curse of combinatorics (the number of possible mixtures increases with the size of the panel) -> 1 incomplete designs

Fig.1: Complete design

Fig.2: Incomplete design

- Development of <u>mixed models</u>, variance components framework (ReML, BLUP):
- ✓ Mixed model with GMA ~ N (0, σ_{GMA}^2), SMA ~ N (0, σ_{SMA}^2) and e ~ N (0, σ_{e}^2)
- ✓ Estimation of variances: σ_{GMA}^2 and σ_{SMA}^2 (ReML procedure),
- ✓ Prediction of the GMA and SMA values (**BLUP**)

- Evaluation of a panel in all possible binary mixtures (diallel-like design)
- Limit: the curse of combinatorics (the number of possible mixtures increases with the size of the panel) -> incomplete designs

Fig.1: Complete design

Fig.2: Incomplete design

Development of <u>mixed models</u>, variance components framework (ReML, BLUP)

 Comparisons with pure stand performances: 2 inclusion of the pure stands in the analysis (SMA_{ii})

- Evaluation of a panel in all possible binary mixtures (diallel-like design)
- Limit: the curse of combinatorics (the number of possible mixtures increases with the size of the panel) -> 1 incomplete designs

Fig.1: Complete design

Fig.2: Incomplete design

- Development of <u>mixed models</u>, variance components framework (ReML, BLUP)
- Comparisons with pure stand performances: (2) inclusion of the pure stands in the analysis (SMA_{ii})
- Accounting for genotypic frequencies: \bigcirc **neighboring probabilities** \rightarrow Introduction of intra-genotypic interactions within mixtures for SMA modeling

Example of proportions in binary mixture 50% A, 50% B

Interactions between pairs of plants: ¼ AA + ½ AB + ¼ BB (considering AB=BA)

- Evaluation of a panel in all possible binary mixtures (diallel-like design)
- Limit: the curse of combinatorics (the number of possible mixtures increases with the size of the panel) -> 1 incomplete designs

Fig.1: Complete design

Fig.2: Incomplete design

• Development of mixed models, variance components framework (ReML, BLUP)

- Comparisons with pure stand performances: 2 inclusion of the pure stands in the analysis (SMA_{ii})
- 50% i, 50% j Accounting for genotypic frequencies: 3 neighboring probabilities

4 Generalization to higher order mixtures (>2 components)

$$Y_{nbr} = \mu + \alpha_b + \frac{1}{K(n)} \sum_{k=1}^{K(n)} GMA_{k(n)} + \frac{1}{K(n)^2} \sum_{k=1}^{K(n)} \sum_{k'=1}^{K(n)} SMA_{k(n)k'(n)} + e_{nbr}$$

Block b, replicate r, mixture n, and K the number of components

Application: binary mixtures experimental design

Diversified panel:

Elites varieties, organic varieties, landraces, INRAE lines **25 genotypes**

Mixtures design:

75 binary mixtures (/300 possible) + 25 pure stands Each genotype observed in 6 different mixtures Le Moulon (France), 2014-2015, 2 replicates of 7,5m² plots Economic level of nitrogen fertilization

Response variables: yield and yield components

Results: binary mixtures experiment

Correlation between the mixtures and the mean of their pure stand components:

0.51 for yield, 0.51 for the nb of spikes/m², 0.42 for the grain nb/spike and 0.91 for TKW

<u>Importance of SMA effects (model with neighboring probabilities):</u>

$$\sigma_{\text{SMA}}^2 / \sigma_{\text{GMA}}^2$$

Yield 0.27

Spike density 0.61 → Strong plasticity for tillering

Gr nb/spike 0.00

TKW 0.07

→ correlation between observed vs predicted (based on GMA-SMA) mixture yield: 0.88

Predictions: model comparison

Model 2 = GMA + SMA following Griffing (1956)

Model 3 = GMA + SMA including intra-genotypic interactions within mixtures

→ Only slight improvement with SMA models

Predicted values for observations

TKW: thousand kernel weight

Results: prediction of mixture performance

N N N N R R R

→ The GMA-SMA approach is more efficient in predicting mixture performance

Number of genotypes

Development of methods for estimating mixing ability

Objectives:

- Identify the best performers in mixture from a panel
- Screening of a large number of genotypes (! combinatorics)
- Propose the integration of these methods in breeding programs for mixtures

Methodological approaches:

I. Evaluation of a set of mixtures (analogy with combining ability)

II. Evaluation of individual components in nursery trials (competitive ability)
Producer associate model → see Haug et al. 2021 (interspecific)

$$Y_{bi(jj')} = \mu + B_b + Pr_i + As_j + As_{j'} + E_{bi(jj')}$$

→ Identification of genotypes with both high Producer and Associate effects

Integrating mixing ability in breeding programs

Objective

Methodology

GMA correlated with pure stand performance

Dev multi-purpose varieties for pure and mixed stands

Few adaptations from a classical program:

- Evaluation **single-row plots**
- Few mixtures/candidate genotype: with a tester

2GMA poorly correlated with pure stand perf. + low SMA

Dev pool of varieties to combine or higher order mixtures

Focus on indiv components:

- Eval single-row plots
- Eval **mixtures** with testers or diallel-like design
- Eval mixtures with sorted components

3 important SMA

Dev 3-4 component mixtures

- a) Structuring the panel:
- Eval structured single-row / diallels
- → determine the best <u>combination</u> <u>groups</u>, identify testers
- b) Evaluate with testers
- -> identify **best genotype combinaitions**

+ decentralized screening, on-farm evaluation

Take-home messages

- Broadening of the GMA-SMA models: incomplete designs, for any number of components (including pure stands) and proportions, proposing a new modeling of SMA effects
- **Producer-Associate model:** informative on indirect effect of a genotype on its neighbors
- This statistical framework and experimental designs can be further integrated into breeding programs for intra-specific or inter-specific mixtures
- Critical to link these mixing ability analyses with the description of underlying traits driving plant-plant interactions (ideotyping)
 - → See the work of Haug et al. 2021 (H2020 Remix)

GMA _{pea}	Pr _{pea}	As _{pea}	Biological interaction- function (BIF) of pea trait	patterr
ř	-	*	Commensalism	+/0
	*	1	Commensalism	0/+
	*	-	Mutualism	+/+
*	*		Antagonism	+/-
		*	Antagonism	-/+
	*	*	Neutralism	0/0
***	養	-	Amensalism	0/-
	-	*	Amensalism	-/0
		No.	Competition	-/-

Thank you!

GQE- Le Moulon :

Isabelle Goldringer Stéphane Robin

Jérôme Enjalbert Christophe Ambroise

Maxime Dairon (M2) Tristan Mary-Huard

Didier Tropée Inès Krissaane (M1)

Nathalie Galic

Sophie Pin <u>GDEC Clermont-Ferrand</u>:

Pauline L'hote Vincent Allard

Fundings: PICRI (Partenariat Institutions-Citoyens pour la Recherche et l'Innovation), LIVESEED (Horizon 2020), WHEATAMIX (ANR)

AgroParisTech :

References

- Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. et al (1997). The influence of functional diversity and composition on ecosystem processes. *Science*, *277*(5330), 1300-1302.
- Creissen, H.E., Jorgensen, T.H. & Brown, J.K.M., (2016). Increased yield stability of field-grown winter barley (*Hordeum vulgare* L.) varietal mixtures through ecological processes. *Crop protection*, 85 (2016), 1-8.
- Finckh, M.R., & Mundt, C.C. (1992). Stripe rust, yield, and plant competition in wheat cultivar mixtures. *Phytopathology*, 82(9), 905-913.
- Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian journal of biological sciences, 9(4), 463-493.
- Federer, W.T., Connigale, J.C., Rutger, J.N., Wijesinha, A. (1982). Statistical Analyses of Yields from Uniblends and Biblends of Eight Dry Bean Cultivars. *Crop Science* 22 (1): 111.
- Allard, R.W. & Adams, J. (1969) Population studies in predominantly self-pollinating species.XIII. Intergenotypic competition and population structure in barley and wheat. *Am Nat* 103, 621-645.
- Foucteau, V., Brabant, P., Monod, H., David, O., & Goldringer, I. (2000). Correction models for intergenotypic competition in winter wheat. *Agronomie*, 20(8), 943-953.
- Forst et al. (2019) A generalized statistical framework to assess mixing ability from incomplete mixing designs using binary or higher order variety mixtures and application to wheat. Field Crops Research 242, 107571.
- Haug, B., Messmer, M.M., Enjalbert, J., Goldringer, I., Forst, E., Flutre, T., Mary-Huard, T., Hohmann, P., 2021. Advances in Breeding for Mixed Cropping Incomplete Factorials and the Producer/Associate Concept. Front. Plant Sci. 11, 620400.

Models comparison

Model 1 = GMA only:

$$Y_{ij} = \mu + \alpha_i + \frac{1}{K(j)} \sum_{k=1}^{K(j)} GMA_{k(j)} + e_{ij}$$

Model 2 = GMA + SMA following Griffing (1956):

$$Y_{ij} = \mu + \alpha_i + \frac{1}{K(j)} \sum_{k=1}^{K(j)} GMA_{k(j)} + \frac{1}{C_{K(j)}^2} \sum_{k=1}^{K(j)} \sum_{k'=1}^{K(j)} SMA_{kk'(j)} + e_{ij} \begin{cases} k' \neq k \text{ in mixture} \\ k' = k \text{ in pure stand} \end{cases}$$

Model 3 = GMA + SMA including intra-genotypic interactions within mixtures:

$$Y_{ij} = \mu + \alpha_i + \frac{1}{K(j)} \sum_{k=1}^{K(j)} GMA_{k(j)} + \frac{1}{K(j)^2} \sum_{k=1}^{K(j)} \sum_{k'=1}^{K(j)} SMA_{kk'(j)} + e_{ij}$$

Higher order mixtures experimental design (CF trial)

16 pure stands from the same panel and 72 mixtures

Clermont-Ferrand (CF), 2014-2015, 2 replications, usual fertilization

Predicted values in CF

Correlation of the GMA between the two trials

