

Farm gate nutrient budgets for organic farming

Problem

Nutrient imbalances are often not noticed on organic farms. However, nutrient deficits can deplete the soil in the long-term and therefore reduce soil fertility.

Solution

Farm gate nutrient budgets are an easy and efficient tool to assess the main nutrient flows in and out of the farm. They can reveal whether there is a nutrient surplus or deficit.

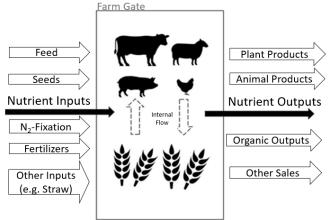
Outcome

The outcome is a farm gate nutrient budget for one or up to three years. Nutrient inputs can be adjusted to achieve a balanced nutrient budget.

Practical recommendations

To calculate the farm gate nutrient budget, all nutrient inputs and outputs need to be quantified. The difference between them shows if there is an imbalance or not (Figure 1).

The following groups are classified as nutrient inputs: im-


ported feed, fertilizer, soil amendments, seeds, and N-fixation by legumes. For all imported goods, the nutrients can be calculated by multiplying the amount with the given nutrient content. The N-fixation is calculated based on the yield of the leguminous crops. If yields are not available, typical N-fixation values per hectare are given for different cropping densities.

All sold products or by-products are classified as nutrient outputs. The nutrients can also be calculated by multiplying the amount with the given nutrient content.

The Excel tool (Figure 2) is an easy way to calculate a nutrient budget. It provides data on nutrient contents of common inputs and outputs, and it calcu-

lates the resulting N-fixation. The user only needs to enter the farm specific data. The tool will then calculate the farm gate nutrient budget. The Excel tool is available in English and German online on Organic eprints.

Applicability box							
Input used							
☐ Copper	\square Anthelmintics						
☐ Mineral oil	☐ Antibiotics						
x Fertilisers	\square Vitamins						
Geographical coverage							
Temperate climate zones							
Application time							
After each cropping season / year							
Required time 1-3 hours depending on quality of farm documentation							
Period of impact							
Future nutrient management							
Equipment							
Good farm documentation, computer							
Best in							

All types of organic farms

Figure 1: Scheme for calculating a farm gate nutrient budget (Source: Myles Oelofse, University of Copenhagen)

	Products		Amounts sold:													
			Either: Yield per hactar (in t) * cropped area (in ha)									Or: Total mass for			2015	
			2015			2016		2017			whole farm (t)			N	Р	
			t/ha	ha	Total (t)	t/ha	ha	Total (t)	t/ha	ha	Total (t)	2015	2016	2017	kg/a	kg/a
	Wheat (baking q	•	7.5	15	112.5			0			0		130	125	2092.5	393
	Barley	•			0	5	8	40			0	30		44	405	
	Oats	•	4.5	10	45	4.6	8.7	40.02	5	9	45				711	
	Peas	•			0			0			0	50	58	49.3	1720	:
	Broad beans	•	3.1	5	15.5	2.7	6	16.2	2.5	5	12.5				646.35	6
	Clover grass (30	•	25	7	175	28	8.5	238	24	7.8	187.2				752.5	
	Potatoes	•			0			0			0	217	243	208	716.1	99
	Carrots	•			0			0			0	131	119	140	183.4	36
					_			ļ_			_				0	

Figure 2: Cut-out from the Excel-tool showing the nutrient calculations for plant output as an example of data input (Source: Marie Reimer, Hohenheim University)

PRACTICE ABSTRACT

On-farm application

System approach and evaluation

Farm gate balancing is a useful approach for understanding the farming system. If the farm gate nutrient budget results in a high nutrient deficit for any nutrient, this means that the soil will be mined on the long-term. High nutrient surpluses, on the other hand, can result in nutrient losses with a negative impact on the environment (e.g. leaching). However, nutrient budgets must also be seen in relation to the soil nutrient status, e.g. a positive budget may be desirable to raise nutrient status of a depleted soil.

Further information

Further readings

Bachinger, J., & Stein-Bachinger, K. (2004). Nahrstoffmanagement im okologischen Landbau: ein Handbuch für Beratung und Praxis; Berechnungsgrundlagen, Faustzahlen, Schätzverfahren zur Erstellung von Nahrstoffbilanzen; Handlungsempfehlungen zum effizienten Umgang mit innerbetrieblichen Nahrstoffressourcen, insbesondere Stickstoff. Darmstadt: Landwirtschaftsverlag (German).

Reimer, Marie. "Reducing the Use of External Fertilisers in Organic Agriculture RELACS Partners' University of Hohenheim', 'University of Copenhagen' and the 'Research Institute of Organic Agriculture' (FiBL) Investigate Current Need and Use in 7 European Countries". RELACS News Stories, 11. Juli 2019. Retrieved from https://relacs-project.eu/wp-content/uploads/2019/09/ifoameu_projects_RELACS_news_story_Uni_Hohenheim farm gate balances final.pdf.

Watson, C., Topp, C. F., & Stockdale, L. (2010). A Guide to Nutrient Budgeting on Organic Farms, I–8. Retrieved from http://www.organicresearchcentre.com/manage/authincludes/article_uploads/iota/technical-leaflets/a-guide-to-nutrient-budgeting-on-farms.pdf.

Weblinks

Check the Farm Knowledge Platform for more practical recommendations.

The Excel tool is available in English and German online on Organic eprints.

About this practice abstract and RELACS

Publishers:

Research Institute of Organic Agriculture (FiBL) Ackerstrasse 113, Postfach 219, CH-5070 Frick

Phone +41 62 865 72 72, info.suisse@fibl.org, http://www.fibl.org

IFOAM Organics Europe

Rue du Commerce 124, BE-1000 Brussels

Phone +32 2 280 12 23, info@organicseurope.bio, www.organ-

icseurope.bio

University of Hohenheim

Schloss Hohenheim 1, 70599 Stuttgart

Phone +49 711 459 0, post@uni-hohenheim.de, www.uni-hohenheim.de

University of Copenhagen

Nørregade 10, PO Box 2177, 1017 Copenhagen K Phone: +45 3532 2626, ku@ku.dk, https://www.ku.dk

Authors: Marie Reimer, Myles Oelofse, Else Bünemann, Kurt Möller, Jakob Magid

Editors: Bram Moeskops, Verena Mitschke

RELACS: 'Replacement of Contentious Inputs in Organic Farming Systems' (RELACS) builds on results of previous research projects and takes far-advanced solutions forward. As a system approach to sustainable agriculture, organic farming aims to effectively manage ecological processes whilst lowering dependence on off-farm inputs. The RELACS partners will evaluate solutions to further reduce the use of external inputs and, if needed, develop, and adopt cost-efficient and environmentally safe tools and technologies.

Project website: www.relacs-project.eu

Social media: Facebook (RELACSeu) & Twitter (@RELACSeu)

© 2018