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Abstract

Management practices such as tillage, crop rotation, irrigation, organic and inorganic inputs

application are known to influence diversity and function of soil microbial populations. In this

study, we investigated the effect of conventional versus organic farming systems at low and

high input levels on structure and diversity of prokaryotic microbial communities. Soil sam-

ples were collected from the ongoing long-term farming system comparison trials estab-

lished in 2007 at Chuka and Thika in Kenya. Physicochemical parameters for each sample

were analyzed. Total DNA and RNA amplicons of variable region (V4—V7) of the 16S rRNA

gene were generated on an Illumina platform using the manufacturer’s instructions. Diver-

sity indices and statistical analysis were done using QIIME2 and R packages, respectively.

A total of 29,778,886 high quality reads were obtained and assigned to 16,176 OTUs at 97%

genetic distance across both 16S rDNA and 16S rRNA cDNA datasets. The results pointed

out a histrionic difference in OTUs based on 16S rDNA and 16S rRNA cDNA. Precisely,

while 16S rDNA clustered by site, 16S rRNA cDNA clustered by farming systems. In both

sites and systems, dominant phylotypes were affiliated to phylum Actinobacteria, Proteo-

bacteria and Acidobacteria. Conventional farming systems showed a higher species rich-

ness and diversity compared to organic farming systems, whilst 16S rRNA cDNA datasets

were similar. Physiochemical factors were associated differently depending on rRNA and

rDNA. Soil pH, electrical conductivity, organic carbon, nitrogen, potassium, aluminium, zinc,

iron, boron and micro-aggregates showed a significant influence on the observed microbial

diversity. The observed higher species diversity in the conventional farming systems can be

attributed to the integration of synthetic and organic agricultural inputs. These results show

that the type of inputs used in a farming system not only affect the soil chemistry but also the

microbial population dynamics and eventually the functional roles of these microbes.
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Introduction

Microorganisms play an important role in soil fertility by carrying out biochemical transfor-

mations thereby making soil a source and sink of mineral nutrients. Plant-associated microbes

colonize both exterior and interior plant surfaces, while surrounding soil acts as major source

for resources needed by microbes [1]. There is usually a dynamic interaction between plant

and microorganisms in different agricultural ecosystems [2]. Agricultural management effects

on the soil microbial communities are complex and diverse [3, 4] and retrieving comprehen-

sively effective explanations on organic and conventional farming systems is thought-provok-

ing. Management practices influence soil microbial community structure [5] hence, intensive

farming practices may undermine the welfare of natural habitats leading to disruption of eco-

system services [6]. Although it has been suggested that low-input farming systems promote

higher abundance and diversity of most organisms [7], studies conducted in the last ten (10)

years have not conclusively established the beneficial effects or otherwise of organic agriculture

on microbial diversity and plant-associated microorganisms [8, 9, 10, 11]. Therefore, under-

standing how changes in land management affect soil microbial community structure could

provide an important index for assessing the relative ability of soils to respond to future distur-

bance [12, 13]. Long-term experiments on farming systems, especially when compared to

medium and/or short-term experiments can generate important information to predict the

dynamics of the soil microbial community with time. High throughput sequencing of both

DNA and RNA has proven to be a powerful tool that provides valuable insights about the

structure, functions, and interactions of different microbial communities in an ecosystem [14,

15]. These methods involve direct isolation and analysis of nucleic acids from samples [14, 15,

16, 17, 18] and assist in exploration of mixed microbial communities existing in various natu-

ral environments [19, 20]. In this study, we used amplicon sequencing of the 16S rDNA and

16S rRNA cDNA genes to create a taxonomic profile of soil prokaryotic communities in long-

term experiment study sites located at Chuka and Thika within central highlands of Kenya.

Materials and methods

Study sites characteristics

The study was done in the ongoing long term experiment trial sites established in 2007 [21] at

Chuka and Thika in the sub-humid zones of central highlands in Kenya (https://systems-

comparison.fibl.org/). The study sites were initiated by the Research Institute of Organic Agri-

culture (FiBL) and their local partners; International Centre for Insect Physiology and Ecology

(icipe) and Kenyan Agricultural and Livestock Research Organization (KALRO) to compare

productivity, profitability and sustainability of organic and conventional farming systems in

the tropics. These sites were established based on Food and Agricultural Organization (FAO)

world reference system of soil classification. The soil at Thika site is classified as Rhodic Nitisol,

while that of Chuka is classified as Humic Nitisol [22]. The site characteristics are as summa-

rized in Table 1.

Table 1. Long term SysCom experiment trial sites characteristics.

Site Coordinates Agro ecological Zone Altitude Rainfall pattern Temperature Range Cropping Seasons Cropping Period

Thika 01˚ 0.231’ S 37˚ 04.747’ E UM 3 1518 m 840 mm 19.5–20.7˚C Long Rain March—June

Short Rain October—December

Chuka 0˚ 20.864’ S 37˚ 38.792’ E UM 2 1458 m 1373 mm 19.2–20.6˚C Long Rain March—June

Short Rain October—December

UM 2 –Main Coffee Zone b) UM 3 –Sunflower and Maize Zone.

https://doi.org/10.1371/journal.pone.0236574.t001
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Farming systems

Conventional (Conv) and organic (Org) farming systems were compared at low input levels

(Conv-Low and Org-Low), where nitrogen and phosphorous application rates mirrored

small-scale farmers’ practices in the region; and at high input levels (Conv-High and Org-

High), which represented the recommended nitrogen and phosphorous input levels used in

market-oriented and large-scale production systems. In Conv-High system, nutrients were

applied in form of synthetic fertilizers (diammonium phosphate, triple super phosphate, cal-

cium ammonium nitrate) and decomposed manure. Nutrient application rate was based on

recommendations by [23], while in Org-High system, nutrients were applied in form of com-

post, green manure, plant tea and phosphate rock [24] at the same nutrient levels for Phospho-

rus and Nitrogen as in Conv-High system. The high input systems received supplementary

irrigation during the dry period and pest and disease were controlled based on a scouting pro-

gram [21]. In the low input conventional and organic farming systems, nutrients were applied

in form of synthetic fertilizers and fresh farmyard manure (Conv-Low) and decomposed

manure, biomass of Tithonia diversifolia and low amounts of phosphate rock (Org-Low) (S1

Table).

In both sites, the four farming systems were randomly replicated four times. At Chuka, the

replicates were designated as; Conv-High (plots 3C, 6C, 12C and 14C), Conv-Low (plots 2C,

7C, 11C and 16C), Org-High (plots 4C, 8C, 9C and 15C) and Org-Low (plots 1C, 5C, 10C and

13C). At Thika, the replicates were designated as; Conv-High (plots T2, T7, T9 and T20),

Conv-Low (plots T1, T6, T12 and T18), Org-High (plots T3, T8, T11 and T17) and Org-Low

(plots T4, T5, T10 and T19) (Fig 1A and 1B).

Soil sampling and physicochemical analysis

Soil sampling was done before land preparation in March 2015. Surface organic materials were

removed and a composite soil sample collected from 12 single cores within top soil (0–20 cm

depth) which is the root zone of majority crops grown in the trial sites. Two batches of sixteen

(16) composite samples from each site were packed in sterile 500 g containers. Samples for

molecular analysis were preserved on dry ice and transported to the laboratory at icipe for

Fig 1. a. Chuka long-term farming system comparison experiment field trial layout. b. Thika long-term farming system comparison experiment field trial layout.

https://doi.org/10.1371/journal.pone.0236574.g001
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preservation at -80 ºC whilst the batch of samples for physicochemical analysis were trans-

ported to the laboratory at icipe and preserved at room temperature. Soil physicochemical

parameters were analyzed using methods summarized in Table 2.

Microbial community analysis

Total community DNA was extracted from 0.2 g of the soil samples in triplicates exactly as

described [32]. Total RNA was extracted from 0.25 g of soil samples in triplicates using Trizol

RNA extraction protocol [33]. The respective nucleic acids extracted from triplicate samples

were pooled during the precipitation stage, pellets air dried and sent to Molecular Research

DNA Lab (www.mrdnalab.com, Shallowater, TX, USA) for cDNA synthesis [34], amplicon

generation and sequencing. PCR amplification of the 16S rRNA gene V4 variable region was

carried out from extracted DNA and cDNA generated from rRNA, using barcoded bacteria/

archaeal primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHV
GGGTWTCTAAT-3’) as described [35]. Sequencing was performed on a MiSeq 2x300bp Ver-

sion 3 following the manufacturer’s guidelines.

Bioinformatic sequence processing and taxonomic identification

The generated amplicons were analyzed using QIIME2 pipeline [36]. The FASTQ sequences

were demultiplexed, quality checked and a feature table constructed using dada2 [37]. This

pipeline denoises sequences, removes chimeras, creates OTU table, picks representative

sequences and calculates denoising statistics. Sequences which were< 200 base pairs after

phred20- base quality trimming, with ambiguous base calls, and those with homopolymer

runs exceeding 6bp were removed. Representative sequences were aligned using MAFFT and

highly variable regions were masked to reduce the noise in phylogenetic analysis [38]. Phyloge-

netic trees for use in phyloseq analysis were created and rooted at midpoint [39]. Taxonomic

classification of representative sequences obtained from the OTU clustering was done using

QIIME feature-classifier [36]. Sequences were submitted to NCBI Sequence Read Archive with

SRA accession: PRJNA523239 (https://www.ncbi.nlm.nih.gov/sra/PRJNA523239) and SRA

accession: PRJNA523223 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA523223)

for 16S rDNA and 16S rRNA cDNA datasets, respectively. Microbial diversity analysis was car-

ried out using Vegan Community Ecology Package version 2.5.2 [40] while microbiome cen-

sus was analyzed using phyloseq version 1.24.2 in R [41] (R Development Core Team, 2012).

Alpha diversity measures (Richness—S’ and Shannon—H’) were used to test significant

Table 2. Soil physicochemical parameters analyzed and their respective methods.

Parameter Method

pH and Electrical conductivity (EC) Potentiometric [25]

Cation exchange capacity (CEC), Potassium (K), Calcium (Ca), Magnesium

(Mg), Sulphur (S), Sodium (Na), Copper (Cu), Boron (B), Zinc (Zn) and Iron

(Fe)

Mehlich 3 [26]

Exchangeable Aluminium (Exch. Al) Spectrophotometry [27]

Organic Carbon (OC) Wet oxidation [28]

Total Nitrogen (N) Kjeldahl acid digestion [29]

Total Phosphorous (P), Olsen [25]

Soil moisture and Temperature Soil Moisture Meter (IMKO

GmbH–Germany)

Aggregate size separation (Small macro-aggregates and micro-aggregates) Wet sieving [30]

Soil mineralogy Diffraction [31]

https://doi.org/10.1371/journal.pone.0236574.t002
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differences between high and low input farming systems. Rarefaction curves were generated,

plotted and customized using Vegan Community Ecology Package [40]. Community and envi-

ronmental distances were compared using Analysis of similarity (ANOSIM) while significance

was determined at 95% confidence interval (P<0.05). Calculation of Bray-Curtis dissimilarities

between datasets and hierarchical clustering were carried out using Vegan package in R [40].

Diversity between samples (β diversity) was estimated by computing the Principal Component

Analysis (PCA) of soil physicochemical characteristics versus prokaryotic taxa in R [41]. In

order to understand the influence of farming systems on soil physicochemical characteristics,

analysis of variance was performed at P < 0.05, 0.01 and 0.001 using a linear mixed-effect

model with lmer function from lme4 package [42] with system and site as fixed effects, while

replication was used as random effect. Computation of least mean squares was done using

lsmeans package. Means were separated using Tukey’s ad hoc method implemented using cld
from multicomp package as developed by [43] in R software version Ri386 3.1.1 [44].

Results

General sequence analysis

After demultiplexing, quality filtering, denoising, and removal of potential chimeras, 476,103

and 632,573 high quality sequences were obtained from 16S rDNA and 16S rRNA cDNA data-

sets, respectively at Chuka site. These were clustered into 4,916 and 530 OTUs at 97% genetic

distance in 16S rDNA and 16S rRNA cDNA datasets, respectively. The 16S rDNA OTUs were

further classified into 29 phyla, 96 classes and 166 orders while 16S rRNA cDNA OTUs were

assigned to 14 phyla, 30 classes and 52 orders. At Thika site, 931, 400 and 937,810 high quality

sequences were obtained from 16S rDNA and 16S rRNA cDNA datasets, respectively. These

were clustered into 10,082 and 648 OTUs at 97% genetic divergence in 16S rDNA and 16S

rRNA cDNA datasets, respectively. The 16S rDNA OTUs were assigned to 35 phyla, 123 clas-

ses and 229 orders while 16S rRNA cDNA OTUs were assigned to 14 phyla, 35 classes and 57

orders within prokaryotic domain (Table 3). Composition and diversity assessment of pro-

karyotic communities within sites and farming systems displayed Thika site to harbor more

unique OTUs as compared to Chuka site. For instance, at Thika site, Conv-High (2,444) and

Org-Low (1,633) systems had the highest number of unique OTUs within 16S rDNA dataset.

Bacterial groups were the most abundant within datasets at both sites. The top 10 most

abundant classes of bacteria comprised Alphaproteobacteria, Actinobacteria, Thermoleophila,

Unknown phyla, Bacillus, Blastocatellia, Betaproteobacteria, Acidimicrobia, Solibacteres and

Gammaproteobacteria. Archaeal groups were represented by Thaumarchaeota and Euryarch-
aeota. The distribution of high-quality sequences, OTUs and prokaryotic taxa are summarized

in Table 3; while the most predominant phyla within each dataset are as shown on Fig 2.

Comparison of prokaryotic diversity at order level within 16S rDNA, revealed 79 and 115

shared orders across all farming systems at Chuka and Thika sites respectively. The number of

unique taxa within each farming system are indicated in (Fig 3A–3F) at Chuka site and (Fig

3G–3L) at Thika site. Twenty one (21) and 35 prokaryotic orders were shared across all farm-

ing systems at Chuka (Fig 4A and 4B) and Thika (Fig 4G and 4H) sites respectively, within 16S

rRNA cDNA dataset. Unique taxa within 16S rRNA cDNA dataset are shown in (Fig 4C–4F)

at Chuka and (Fig 4I–4K) at Thika sites. Mean abundances of the most notable bacterial and

archaeal orders in each farming system indicated Proteobacteria orders (Caulobacterales, Rhi-
zobiales, Burkholderiales, Sphingomonadales, Pseudomonadales and Enterobacteriales); Actino-
bacteria orders (Acidimicrobiales, Corynebacteriales, Solirubrobacterales and Gaiellales); and

Firmicutes (Bacillales and Lactobacillales) as key drivers of biological processes. The mean

abundances are summarized on (S2 and S3 Tables).
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Diversity indices of soil prokaryotic communities

Alpha diversity indices within farming systems and sites showed no significant difference

(P>0.05) in Richness (S) and Shannon index (H’). However, at Thika there was a higher spe-

cies richness and the communities were more diverse (H) compared to Chuka (Table 3). At

Chuka site, low input farming systems were found to exhibit higher total species richness

(Conv-Low = 407.00 and Org-Low = 405.50) as compared to high farming systems (Conv-

High = 358.00 and Org-High = 350.25). At Thika, Conv-High had higher total species rich-

ness (877.2) and diversity (H = 6.26) but Org-High and Conv-Low exhibited higher active

species richness (81) and active species diversity (H = 2.66), respectively. Analysis of similar-

ity pointed to highly significant differences between OTUs within high and low input farm-

ing systems (P<0.001) at Chuka site. However, there were no significant differences

observed at Thika site (ANOSIM P<0.672 and 0.241 within 16S rDNA and 16S rRNA cDNA

datasets, respectively). The prokaryotic taxa in each farming system were visualized using

rarefaction curves. A steep slope that flattened to the right was observed in the rarefaction

curves indicating that a reasonable number of prokaryotic groups had been sequenced and

more intensive sampling was likely to yield only a few additional species. The sampling

curves tended to be asymptotic, denoting that prokaryotic communities were relatively

deeply sampled (Fig 5A–5D).

Table 3. Distribution of high-quality sequences, OTUs, diversity indices and prokaryotic taxa at Chuka and Thika sites sorted as per total number of OTUs.

Site System High quality

sequences

OTUs Unique

OTUs

Richness Shannon

(H)

Phyla Classes Orders Unknown

orders

Most abundant taxa

(order level)

16S rDNA Thika Conv-

High

319678 3193 2444 877.2 6.26 19 97 170 81 Solirubrobacterales

Org-

High

182931 2314 1565 757.5 6.09 27 87 151 68 Uncultured Chloroflexi

Org-Low 207067 2307 1633 823.4 6.12 29 87 144 62 Burkholderiales
Conv-

Low

221724 2268 1594 728.6 6.09 27 83 154 66 Uncultured Chloroflexi

Chuka Conv-

Low

108652 1737 1400 407 5.29 23 77 120 45 Gaiellales

Conv-

High

115842 1497 1210 358 4.74 21 64 110 36 Sphingomonadales

Org-Low 145520 862 525 405.5 5.33 23 72 119 46 Acidimicrobiales
Org-

High

106089 820 533 350.25 5.08 23 71 111 41 Acidimicrobiales

16S rRNA

cDNA

Thika Org-

High

230728 174 75 81 2.56 12 25 41 7 Corynebacteriales

Conv-

High

242725 164 65 72.6 1.68 13 29 49 12 Rhizobiales

Conv-

Low

181506 160 73 76 2.66 12 24 43 11 Corynebacteriales

Org-Low 282851 150 63 65 1.77 12 26 42 9 Corynebacteriales
Chuka Conv-

Low

156088 144 67 62 2.4 11 23 40 7 Enterobacteriales

Org-Low 193582 136 59 58 1.55 11 22 37 6 Rhizobiales
Org-

High

122091 126 63 54.75 2.05 11 22 37 4 Rhizobiales

Conv-

High

160812 124 61 55.75 2.03 11 19 35 6 Rhizobiales

https://doi.org/10.1371/journal.pone.0236574.t003
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Fig 2. Relative abundance of the most predominant phyla in both datasets at Chuka and Thika sites.

https://doi.org/10.1371/journal.pone.0236574.g002

Fig 3. a-f. Shared and unique prokaryotic taxa in 16S rDNA at Chuka. The Venn diagram (3a) show number of shared and unique taxa at order level within farming

systems. The pie diagrams (3b - f) show most abundant and unique taxa at order level across farming systems. g-l. Shared and unique prokaryotic taxa in 16S rDNA at

Thika. The Venn diagram (3g) show number of shared and unique taxa at order level within farming systems. The pie diagrams (3h - l) show most abundant and unique

taxa at order level across farming systems.

https://doi.org/10.1371/journal.pone.0236574.g003
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Soil physicochemical properties for the different sites

In this study we assessed the prokaryotic community composition in 32 soil samples collected

from long-term farming system comparison trials at Chuka and Thika in Kenya. The physico-

chemical characteristics for the samples analysed are presented (Table 2). Tukey’s separation

of means revealed a trend in the means of soil pH, P, K, Ca, Mg, B and small macro-aggregates

that were found to be significantly higher (P<0.05) in Org-High farming system. Higher

means of Fe and micro-aggregates were recorded in Conv-High and Conv-Low systems,

respectively (Table 4). Soils from Chuka contained as much as 59.4% primary clay minerals

and 40.6% secondary clay minerals, while soils from Thika were characterized by high primary

minerals (78.3%) and low secondary clay minerals (21.7%). Congruently, the rate of formation

and stabilization of macro aggregates was found to be higher at Thika than Chuka site.

Key environmental drivers of prokaryotic communities

In order to assess how environmental variables shaped soil prokaryotic community structure,

PCA was performed on soil physicochemical characteristics within farming systems and pro-

karyotic taxa at species level. Each characteristic was assessed on its ability to influence diver-

sity positively or negatively within sites and farming systems. At Chuka, pH, OC, N, Zn, Fe

and Al were found to be the major drivers of prokaryotic diversity within farming systems

while at Thika, key properties displayed were pH, EC, OC, N, K, Fe, Zn, B and micro-aggregate

(MA) as shown on Fig 6A–6D.

The relationship between most predominant phyla within both datasets in the two study

sites and farming systems was analyzed using hierarchical clustering. Heatmaps revealed clus-

tering of sites into two major groups while farming systems clustered into four sets on the den-

dogram, representing the two sites, each with four farming systems under investigation. There

was an indication that farming systems in both sites harbored prokaryotic taxa within active

diversity dataset which possibly interacted with one another to perform essential ecological

functions as shown on Fig 7A and 7B.

Discussion

In this study, we used experimentally manipulated farming systems and high-throughput

sequencing of 16S rDNA and 16S rRNA cDNA amplicons to demonstrate that farming inputs

whether organic or conventional have an immense influence on the prokaryotic community

Fig 4. a-f. Shared and unique prokaryotic taxa in 16S rRNA cDNA at Chuka. The Venn diagram (4a) show number of shared and unique taxa at order level within

farming systems. The pie diagrams (4b - 4f) show most abundant and unique taxa at order level across farming systems. g-k. Shared and unique prokaryotic taxa in 16S

rRNA cDNA at Chuka. The Venn diagram (4g) show number of shared and unique taxa at order level within farming systems. The pie diagrams (4h - k) show most

abundant and unique taxa at order level across farming systems.

https://doi.org/10.1371/journal.pone.0236574.g004
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Fig 5. a-d. Rarefaction curves indicating level of sequence coverage.

https://doi.org/10.1371/journal.pone.0236574.g005
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structure and presumptively function. The number of OTUs and alpha diversity analysis show

with confidence that we achieved good coverage of the resident microbial diversity. Abun-

dance of phylotypes affiliated to Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Dei-
nococcus-Thermus, Firmicutes, Fusobacteria, Gemmatimonadetes, Planctomycetes and
Verrucomicrobia were observed in this study. Members of these phyla are major contributors

to soil biogeochemical processes and have also been reported in other studies [45]. Here, the

authors describe the taxonomic composition of microbial community established in soil fol-

lowing long-term exposure to conventional and organic farming systems. Within the soil eco-

system, different groups perform varied functions hence a shift in the diversity and abundance

due to effect of inputs on soil and plant health. Major families within Proteobacteria comprised

Rhodospirillaceae, Beijerinckiaceae, Burkholderiaceae and Bradyrhizobiaceae. Some representa-

tives of these families (e.g. Burkholderiaceae) are known to degrade recalcitrant organic matter

in soil while other groups (e.g. Beijerinckiaceae) fix atmospheric nitrogen in the soil [46, 47].

At high relative abundance, these microbial groups could increase available nitrogen in

organic farming system without fertilizer supplementation. Actinobacteria have been found to

play a major role in organic matter turnover and carbon cycling. They can decompose recalci-

trant carbon sources like cellulose and chitin and degrade herbicides and pesticides [48, 47]. In

this study, Prokaryotic community composition and diversity analysis within sites and farming

Table 4. Soil physicochemical characteristics as influenced by farming systems.

Farming Systems System x Site Source of

variation

Chuka Thika System System x

SiteConv-

High

Org-

High

Conv-

Low

Org-

Low

Conv-

High

Org-

High

Conv-

Low

Org-

Low

Conv-

High

Org-

High

Conv-

Low

Org-Low

pH 5.68a 6.61ab 5.43a 5.87a 5.64ab 6.50bc 5.58ab 5.75ab 5.72ab 6.71c 5.23a 5.98abc ��� ns

EC.S (uS/cm) 85.75a 113.75a 60.13a 75.50a 48.50a 74.00ab 46.50a 48.50a 123.00bc 153.50c 73.75ab 102.50abc ns ns

OC (%) 2.29a 2.52a 2.29a 2.34a 2.60cd 2.89d 2.78d 2.51bcd 1.97ab 2.16abc 1.79a 2.16abc ns ns

N (%) 0.19a 0.205a 0.185a 0.196a 0.208cde 0.223e 0.203bcde 0.215de 0.173ab 0.188abcd 0.168a 0.178abc ns ns

S (ppm) 16.37a 8.00a 15.59a 14.04a 10.09ab 1.22a 9.80ab 8.10ab 22.65b 14.78ab 21.39b 19.97b ns ns

P (ppm) 30.80ab 42.31b 16.97a 20.18a 35.75a 39.08a 14.55a 19.23a 25.86a 45.55a 19.38a 21.14a �� ns

K (ppm) 472.63a 1077.25b 453.13a 541.63a 339.00a 994.25bc 334.75a 366.00a 606.25ab 1160.25c 571.50a 717.25ab ��� ns

Ca (ppm) 1462a 2086b 1438a 1539a 1765ab 2315b 1598ab 1695ab 1159a 1858ab 1279a 1384a �� ns

Mg (ppm) 248a 342b 260a 245a 250ab 344c 237a 235a 246a 340bc 283abc 256abc ��� ns

Na (ppm) 21.63a 32.73a 18.03a 18.34a 7.17ab 9.29ab 4.48a 5.70ab 36.10bc 56.18c 31.58abc 30.98abc ns ns

Exch. Al (meq/

100g)

0.07a 0.04a 0.19a 0.11a 0.78ab 0.12a 0.53ab 0.04a 0.06ab 0.07ab 0.33b 0.17ab ns ns

B (ppm) 0.58a 0.96b 0.55a 0.68a 0.54a 0.93ab 0.53a 0.58a 0.63ab 0.99b 0.58a 0.78ab ��� ns

Mn (ppm) 434a 443a 446a 429a 567.50b 533.50b 575.75b 553.75b 300.50a 353.25a 315.25a 303.75a ns �

Fe (ppm) 89.25b 70.19a 83.70b 77.33ab 97.93c 72.76ab 89.63bc 83.78abc 80.58ab 67.60a 77.75ab 70.88a �� ns

Zn (ppm) 8.89a 10.51a 7.19a 8.06a 12.23de 12.80e 9.55cd 10.80cde 5.49ab 8.23bc 4.82a 5.32ab ns ns

Small Macro-

aggregate (g)

48.11ab 52.15b 42.17a 42.28a 46.09b 48.56bc 36.53a 36.76a 50.15bc 55.75c 47.82bc 47.80bc �� ns

Micro-

aggregate (g)

21.15ab 17.43a 28.66b 27.13b 25.58bc 22.29b 34.22c 33.81c 16.72ab 12.58a 23.10b 20.46ab � ns

Letters a-d designate significant differences at P� 0.05. b) Means followed by the same letter are not significantly different. ns = not significant

�P � 0.05

�� P � 0.01 and

��� P� 0.001.

https://doi.org/10.1371/journal.pone.0236574.t004
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systems displayed Thika site to harbor more shared and unique OTUs compared to Chuka

site. This is a factor we attribute to soil aggregate composition and mineralogy. In both sites,

conventional farming systems supported higher species richness although, there was no

observable significant difference. This was attributed to integration of farmyard manure and

inorganic fertilizer into the systems, promoting copiotropic prokaryotic groups to thrive due

to high nutrient availability within the cropping season. On the other hand, low nutrient levels

at the end of cropping season enhanced high abundance of unique prokaryotic groups

Fig 6. a-d. Principal component analysis of soil physicochemical characteristics that drive diversity within farming systems. OH, CH, OL and CL represents Org-High,

Conv-High, Org-Low and Conv-Low farming systems.

https://doi.org/10.1371/journal.pone.0236574.g006
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observed in conventional systems. Analysis of the 16S rRNA cDNA gives an indication of

active microbial diversity at the time of sampling which explains the low OTU numbers in

both sites (Chuka—390 and Thika—501 OTUs) as compared to 16S rDNA dataset. These

could have been the communities carrying out the various biological processes within farming

systems at the time. The low number of OTUs affiliated to active microbial diversity was attrib-

uted to lack of cropping activities within farming systems at the time of sampling. In this data-

set, the most abundant phylotypes were affiliated to the classes Alphaproteobacteria,

Actinobacteria, Gammaproteobacteria, Betaproteobacteria, Acidimicrobia, Bacilli and

Unknown bacterial phyla. The unknown groups could form the basis for further studies in

order to reveal their role within the farming systems.

Soil microbial activity has been reported to affect soil carbon dynamics by releasing carbon

in form of carbon dioxide back into the atmosphere through respiration and is responsible for

about 80–95% of carbon mineralization [49]. The presence of a higher number of unique

OTUs and low organic carbon levels at Thika site as compared to Chuka site may be an indica-

tor that higher species richness may eventually lead to carbon depletion through increased

metabolic activities. Furthermore, Thika soils were found to contain higher sand content, a

property that exposes soil organic carbon to heightened microbial activity [50]. The high

amounts of organic carbon detected in the samples from Chuka confirms the findings of a pre-

vious study that indicated the soils found in humid regions contain more organic carbon than

Fig 7. a and b. Hierarchical clustering of the most predominant prokaryotic taxa at phylum level within each farming system of 16S rDNA and 16S rRNA cDNA

datasets in both sites. X-axis indicates the replicates within each system while the Y-axis indicates the taxonomic relationships. Total and active prokaryotic diversity is

represented by a and b, respectively. CCL = Chuka Conv-Low; COL = Chuka Org-Low; CCH = Chuka Conv-High; COH = Chuka Org-High and TCL = Thika Conv-

Low; TOL = Thika Org-Low; TCH = Thika Conv-High; TOH = Thika Org-High.

https://doi.org/10.1371/journal.pone.0236574.g007
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soils within drier regions [51]. After six (6) years of continuous cropping within the trial sites,

(Adamtey et al. unpublished results) pointed towards organic carbon build-up at Chuka and

organic carbon depletion at Thika sites.

Clay minerals and oxides of Fe and Al have been shown to play important roles in adsorb-

ing dissolved organic carbon [52, 53]. Since Thika soils contained high Fe levels coupled with

high primary clay minerals, this may have created a stable environment for microbes to thrive.

Chuka soils have been reported to contain the highest phyllosilicate clay minerals, especially

kaolinite, involved in dissolved organic carbon preservation [54], making it unavailable for

microbial attack and hence its build up at the site. In some occurrences within the current

study, low input systems were found to harbor more OTUs than high input systems. This

could be due to differences in soil macro-aggregates (> 250–2000 μM) and micro-aggregates

(< 53–250 μM) (Adamtey et al. unpublished results). The high macro-aggregates may have

provided unique environmental partitioning for soil microbiome which was isolated from its

surroundings. Macro-aggregates are considered as massively concurrent incubators that allow

enclosed microbial communities to pursue their own independent progression [55], hence cre-

ating more unique habitats for microbial colonization within these farming systems. Organic

inputs not only carry various types of organic compounds, but also indigenous prokaryotes

that remain in soil for a certain period of time [10]. Besides, incorporation of Tithonia diversi-
folia leaves and leaf extracts as well as Lantana camara leaves during composting and as starter

N in organic farming systems could have lowered microbial diversity. These plants have been

shown to contain anti-microbial properties resulting from steroids, saponins, tannins, poly-

phones and alkaloids which might be responsible for broad anti-bacterial activity [56, 57]. A

significant prokaryotic community structuring based on farming systems was observed, proba-

bly reflecting variations in agricultural input amounts and management practices. This obser-

vation suggests a high degree of agro ecosystem microbiomic endemism and implies that each

farming system harbors some degree of unique soil prokaryotic genetic resource. This result

has significance in maximizing microbial functions in agroecosystems which has become a

promising approach for the future of global agriculture. The data creates a better understand-

ing in application of the benefits of soil microorganisms for resource uptake, plant growth,

development and health, on agricultural production systems.

Conclusion

This study revealed that farming systems have a profound impact on soil prokaryotic commu-

nities. Conventional farming systems were shown to support diverse prokaryotic communities

compared to organic farming systems. It was also evident that prokaryotic diversity within the

farming systems was influenced by complex interactions between a wide range of soil proper-

ties and agricultural inputs, demonstrating that prokaryotes within the soils are remarkably

diverse. These inputs amend soil properties and microbial diversity, which in turn manipulates

nutrient cycling processes altering soil fertility, plant productivity and environmental sustain-

ability. Future studies should endeavor to build knowledge on soil and plant microbial biodi-

versity. This is in relation to common agronomic practices in different crop growth stages

within farming systems, unravelling functional relations of soil-plant microbe interactions as

well as developing strategies and tools for sustainable soil/plant management.

The aim for the future agricultural practices will be to safeguard agro-biodiversity by apply-

ing microbiome science in order to improve plant health, productivity, nutrient availability,

and defense to diseases; and provide clear agricultural practices that will harness plant micro-

biomes for a sustainable agriculture and environment.

PLOS ONE Diversity and structure of prokaryotic communities within farming systems in Kenya

PLOS ONE | https://doi.org/10.1371/journal.pone.0236574 August 13, 2020 13 / 17

https://doi.org/10.1371/journal.pone.0236574


Supporting information

S1 Table. SysCom trials soil fertility management plan.

(XLS)

S2 Table. Chuka taxonomic order level.

(XLSX)

S3 Table. Thika taxonomic order level.

(XLSX)

S1 Data.

(XLS)

Acknowledgments

We acknowledge the support received from field assistants; Jane Makena and Felistus Mutua

during field work.

Author Contributions

Conceptualization: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey, Anne Kelly

Kambura, Martha Musyoka, Komi Fiaboe, Romano Mwirichia.

Data curation: Edward Nderitu Karanja, Andreas Fliessbach, Anne Kelly Kambura, Romano

Mwirichia.

Formal analysis: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey, Anne Kelly

Kambura, Martha Musyoka, Komi Fiaboe, Romano Mwirichia.

Funding acquisition: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey, Komi

Fiaboe.

Investigation: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey, Anne Kelly

Kambura, Komi Fiaboe, Romano Mwirichia.

Methodology: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey, Anne Kelly

Kambura, Martha Musyoka, Komi Fiaboe, Romano Mwirichia.

Project administration: Edward Nderitu Karanja, Noah Adamtey, Martha Musyoka, Komi

Fiaboe.

Resources: Edward Nderitu Karanja, Noah Adamtey, Komi Fiaboe.

Software: Edward Nderitu Karanja, Anne Kelly Kambura, Romano Mwirichia.

Supervision: Andreas Fliessbach, Romano Mwirichia.

Validation: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey, Anne Kelly Kam-

bura, Martha Musyoka, Komi Fiaboe, Romano Mwirichia.

Visualization: Edward Nderitu Karanja, Noah Adamtey, Anne Kelly Kambura, Martha

Musyoka, Romano Mwirichia.

Writing – original draft: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey, Anne

Kelly Kambura, Komi Fiaboe, Romano Mwirichia.

Writing – review & editing: Edward Nderitu Karanja, Andreas Fliessbach, Noah Adamtey,

Anne Kelly Kambura, Martha Musyoka, Komi Fiaboe, Romano Mwirichia.

PLOS ONE Diversity and structure of prokaryotic communities within farming systems in Kenya

PLOS ONE | https://doi.org/10.1371/journal.pone.0236574 August 13, 2020 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0236574.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0236574.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0236574.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0236574.s004
https://doi.org/10.1371/journal.pone.0236574


References
1. Zarraonaindia I, Owens SM, Weisenhorn P, West K. The soil microbiome influences grapevine-associ-

ated microbiota. mBio. 2015; 6(2): e02527–14. https://doi.org/10.1128/mBio.02527-14 PMID:

25805735

2. Wei YJ, Wu Y, Yan YZ, Zou W, Xue J, Ma WR, et al. High-throughput sequencing of microbial commu-

nity diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PloS one. 2018; 13

(3): e0193097. https://doi.org/10.1371/journal.pone.0193097 PMID: 29565999

3. Bünemann EK, Schwenke GD, Van Zwieten L. Impact of agricultural inputs on soil organisms-a review.

Aust J Soil Res. 2006; 44(4):379–406. https://doi.org/10.1071/sr05125

4. Nelson AG, Spaner D. Cropping Systems Management, Soil Microbial Communities, and Soil Biological

Fertility. J Sustain Agr; 2010. 217–242. https://doi.org/10.1007/978-90-481-8741-6_8

5. Sun HY, Deng SP, Raun WR. Bacterial Community Structure and Diversity in a Century-Old Manure-

Treated Agroecosystem. Appl Environ Microb. 2004; 70(10): 5868–5874. https://doi.org/10.1128/AEM.

70.10.5868–5874.2004

6. Sachs J, Remans R, Smukler S, Winowiecki L. Monitoring the world’s agriculture. Nature. 2010; 466:

558–560. https://doi.org/10.1038/466558a PMID: 20671691

7. Postma-Blaauw MB, de Goede RG, Bloem J, Faber JH, Brussaard L. Soil biota community structure

and abundance under agricultural intensification and extensification. Ecology. 2010; 91(2): 460–73.

https://doi.org/10.1890/09-0666.1 PMID: 20392011

8. Hole DG, Perkins AJ, Wilson JD, Alexander IH. Does organic farming benefit biodiversity? Biol. Con-

serv. 2005; 122: 113–130. https://doi.org/10.1016/j.biocon.2004.07.018

9. Nacke H, Thu¨rmer A, Wollherr A, Will C. Pyrosequencing-Based Assessment of Bacterial Community

Structure along Different Management Types in German Forest and Grassland Soils. PLoS One. 2011;

6(2): e17000. https://doi.org/10.1371/journal.pone.0017000 PMID: 21359220
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