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Abstract: The use of robotic systems in organic farming has taken on a leading role in recent years;
the Sureveg CORE Organic Cofund ERA-Net project seeks to evaluate the benefits of strip-cropping
to produce organic vegetables. This includes, among other objectives, the development of a robotic
tool that facilitates the automation of the fertilisation process, allowing the individual treatment
(at the plant level). In organic production, the slower nutrient release of the used fertilisers poses
additional difficulties, as a tardy detection of deficiencies can no longer be corrected. To improve the
detection, as well as counter the additional labour stemming from the strip-cropping configuration,
an integrated robotic tool is proposed to detect individual crop deficiencies and react on a single-crop
basis. For the development of this proof-of-concept, one of the main objectives of this work is
implementing a robust localisation method within the vegetative environment based on point clouds,
through the generation of general point cloud maps (G-PC) and local point cloud maps (L-PC) of
a crop row. The plants’ geometric characteristics were extracted from the G-PC as a framework in
which the robot’s positioning is defined. Through the processing of real-time lidar data, the L-PC is
then defined and compared to the predefined reference system previously deduced. Both subsystems
are integrated with ROS (Robot Operating System), alongside motion planning, and an inverse
kinematics CCD (Cyclic Coordinate Descent) solver, among others. Tests were performed using a
simulated environment of the crop row developed in Gazebo, followed by actual measurements
in a strip-cropping field. During real-time data-acquisition, the localisation error is reduced from
13 mm to 11 mm within the first 120 cm of measurement. The encountered real-time geometric
characteristics were found to coincide with those in the G-PC to an extend of 98.6%.

Keywords: organic farming; ROS; strip cropping; robotic systems; point cloud localisation; lidar

1. Introduction

In recent years, there has been a global increase in food consumption [1–3]. Due to
the use of fertilisers and herbicides in conventional agricultural practices [4], however,
agricultural production has been progressively damaged, generating: soil erosion [5], river
and land pollution [6–8], loss of soil nutrients, [9], and increasing CO2 emissions to the
atmosphere [10]. Precision agriculture allows for the production of higher quality prod-
ucts, through sustainable development [11], technological tools, sensory systems [12,13],
and modern actuation systems; robotic systems within precision agriculture has allowed
optimising the fertilisation process, to develop specialised treatments based on the specific
needs of each plant [14–17].

The Sureveg project [18] focuses on applying diversified strip-cropping systems to
intensive organic vegetable cultivation, reusing biodegradable waste, and developing
automated machinery for the management of strip-cropping systems (Sureveg concept
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Appendix A). A manually operated set-up is proposed for the latter, containing three lidar
sensors, a multi-spectral camera, and a 5-DOF (degrees-of-freedom) manipulator. A nozzle
connected to a tank of organic fertiliser is used as the end-effector of the actuator.

In this work, the real-time acquisition of point cloud data (L-PC) is compared to a
previously obtained world model (G-PC) to deduce the platform’s estimated location.
This method is based on feature extraction and matching techniques to apply the fertiliser
at the base of the individual plants without damaging any of the crops.

The updated world model subsequently forms the basis for the robot arm’s path
planning, to avoid collisions with its environment. This precision allows for a drastic
reduction in fertiliser use, thereby mitigating herbicides’ harmful effects on the soil and
the environment.

To develop the proposed tasks, it is essential to have a good localisation. Conven-
tional methods use GPS [19,20], inertial sensors [21–24], cameras [25–28], odometry [29,30],
lidars [31–35], kinect [36,37], or combined systems [36,38,39]. Other specific sensors highly
used in agriculture are multi-spectral ones, although their application focuses more on the
recognition and vegetative analysis than on the location within an environment [40–42].
For this proof-of-concept (POC), the focus was on limiting the amount of sensors necessary
to keep the platform simple and more affordable. Lidars were selected due to their high
reliability under different (outdoor) lighting conditions and high spatial resolution. In the
future, these methods could be complemented by other stand-alone localisation algorithms,
which is outside of the scope of this work.

Furthermore, this POC is also used to extract geometric characteristics of the plants
as the basis for planning the robot’s movements at the time of fertilisation, for which the
robot arm must follow a path near the plant base to apply the treatment. The vegetative
state and developmental status are determined as discussed in [43] resulting in a map of
fertilisation prescriptions for the robot to carry out.

The algorithms have been developed in ROS and tested and verified in a virtual
environment developed in Gazebo that recreates the conditions of the crops found in the
organic industry.

This paper is structured as follows: in Section 2, the experimental fields, hardware,
and algorithms are introduced in detail, followed by the Results and Discussion in Section 3,
containing the extracted point cloud features and localisation among others. To conclude,
Section 4 summarises the main findings.

2. Materials and Methods
2.1. Materials

To develop this research, experiments were conducted in fields with cabbages in
single rows, located at ETSIAAB-UPM (40◦26’38.9” N 3◦44’19.3” W), as shown in Figure 1.
The crops were planted at the beginning of September 2019, obtaining cabbages with a
mean diameter of 50 cm and an average height of 25 cm (Figure 1) at harvest.

Figure 1. Test fields with single cabbage rows. Source: Author.
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The specialised fertilisation tasks were developed using a mobile platform (Figure 2a,b),
with general dimensions of 1.6 (length) × 1.5 (height) × 0.8 (width) meters; it was built
from aluminum profiles (Bosch Rexroth 45 × 45) and supported the robotic arm (Robolink
Igus CPR RL-DC-5 STEP RL-D-RBT-5532S-BF). In Table 1, the sensors and actuators of the
mobile platform are detailed.

(a) (b)

Figure 2. Structure with the robot arm positioned in the center of the platform. (a) mobile platform assembled, (b) robotic
platform—on field. Source: Author.

Table 1: Elements and components of the mobile platform.

Element Amount Description

Robot Igus CPR 5 DOF 1 Actuator
Lidar (SICK AG) 3 2D Laser sensor
Parrot Sequoia 1 Multi-spectral camera
User interface 1 ROS Central Core
Control box 1 Electrical system

2.2. Interaction between Subsystems

In the information processing and the execution of the robotic fertilisation, several
subsystems interact cyclically. The central processing core runs on a computer with Ubuntu
18.04, with ROS (Robot Operating System) Melodic installed. ROS provides a structured
communications layer for integrating heterogeneous systems (e.g., sensors, drivers, actu-
ators, etc.) [44]. The use of nodes and topics allowed information exchange between the
subsystems as shown schematically in Figure 3, where topics can be regarded as a channel
containing the information published by a node. This information can be of different types
such as sensor data, joint states, point clouds, etc. [44].

First, three lidars provide point clouds describing the crop row. This information
is sent through an ROS topic called “PointCloudRead”, to which the subsystems called
“clusterisation and geometrical parameters extraction” and “robot location” both subscribe.
The first produces the center coordinates and specific diameters of each plant, while the
latter publishes the current relative location within the previously known point cloud
directly to a ROS topic. Based on the plant characteristics, the “placement in fertilisation
area” subsystem calculates a series of spraying positions taking into account each of the
plants’ diameters to cover the entire circumference. These final joint positions are published
in a ROS topic used by Moveit to run the collision-free planner to ensure a movement
through all prescribed positions without violating any constraints, as e.g., the crop itself
or the platforms’ hardware. Finally, this planner generates a sequence of positions and
speeds for each of the five arm-motors, transmitted to the robot through a factory owner’s
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specialised node. To visualize the resulting path in real-time, an interface in Rviz has been
implemented to simultaneously see the platform’s position situated within the general
crop row point cloud as well as the actuator’s movements.

Figure 3. Layout of subsystems connection: data acquisition, clusterisation and geometrical parameters extraction, place-
ment in fertilisation area, localisation and motion planning. Source: Author.

2.2.1. Data Acquisition and Communications

Prior to the fertilisation stage, the robot and the sensors go over the crop row to
take spatial and vegetative measurements of the plants. The obtained point clouds are
processed offline to generate the general cloud of the entire crop row (G-PC), as detailed
in [43]. The processed cloud is published in a ROS topic “/point_cloud_2”.

The central node is “/move_group”, which receives the current robot joints’ position
data, the platform’s position concerning the ground, as well as the real-time status of the
detected plant (as point clouds).

Based on the data received, the central node performs the planning of robot’s move-
ments avoiding collisions with the plants. Finally, trajectory and speeds were published
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in a topic “/move_group/display_planned_path” to move the real robot. The operating
frequency of ROS and the system is 10 ms, while the speed of the platform is 1 km/h, so the
laser measurements and the commands sent to the robot are processed without delay.

2.2.2. Robot Positioning Based on Geometrical Parameters Extraction of the Plants

As mentioned in Section 2.2, some plant parameters are required to define the fertiliser
application zone, in which a semi-circular path can then be marked to apply the fertiliser.
In [43], the removal of the soil points from the initial point cloud is discussed, leaving
only the crop points. Based on this reduced cloud, the height (h), center (x, y), and plant
boundaries are calculated. The edges are enveloped by a cylinder producing a crop radius
R. The centers and radii are calculated for each of the plants present in the reduced point
cloud as discussed in this section.

Firstly, the reduced point cloud is divided into clusters using the unsupervised learn-
ing algorithm K-means, which allows similar group data based on regions [45,46]. This is
an iterative method that requires as inputs the data from the unlabeled point cloud and the
number k of searched groups. The process starts by randomly assigning the centers [47,48],
after which each point is assigned to the nearest centroid based on the Euclidean square
distance. For the resulting clusters, the average location of each of the assigned points
yields an updated location for the clusters’ centroid. This process is repeated until either
the centroids remain unchanged or the change falls below a predefined threshold [49].

Each of the clusters are enveloped by cylinders around the previously mentioned cen-
troids, which defines the maximal plant radius R. These cylinders are subsequently inclined
inwards towards the soil to achieve a conical shape. With these geometric parameters,
the kinematic positioning of the robot is calculated using the iterative CCD (Cyclic Coordi-
nate Descent) algorithm. Ideally, the position and orientation of the end-actuator should
be placed in an exact position with respect to the plant. This relative position depends on
the plant’s occupied surface area and height, and could theoretically be outside the robot’s
working area, which is why this iterative method [50] is used to approximate the joint
positions to cover the area of application of the treatment, while respecting the limitations.

Figure 4a shows an example of the desired positioning for fertilisation, where the
plant is enveloped with the conical figure based on the centroids and radius R, defining the
inner boundary for the treatment application. This form was found to best encapsulate the
experiment plants. Furthermore, the inclination of the cones allows for an inclination of
the robot’s final joint.

(a) (b)

Figure 4. Positioning strategy for fertiliser application based on geometrical parameters. (a) Geometric description of robot
positioning and movement, (b) fertiliser application by robotic arm. Source: Author.
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Figure 4b shows the robot’s positioning based on the described method and the
application of the fertiliser jet. The dosage of the fertiliser varies depending on the plant’s
geometric characteristics, thus optimising the amount applied. The fertiliser irrigation is
developed by activating a solenoid valve and a nozzle attached to the robot’s end.

2.3. Robot Localisation System in Row-Growing

One of the essential aspects during the application of fertiliser with the robotic arm
is to locate the robotic platform within the crop at all times. The aspects required for the
location include the changing process of the plants’ vegetative state (considering minor
variations between one or two days); and the wind’s action.

The proposed method is based on point clouds captured from a set of three lidars
placed with their respective positions and orientations concerning the platform. The process
is developed for each row, taking the data previously, creating a G-PC and the second
cloud L-PC, concerning the sections of G-PC that the platform reads while moving forward
(being initially small).

For this development, the “python-PCL” libraries have been used; the point clouds
are handled in PCD (Point Cloud Data) format. The proposed algorithm consists of two
phases, the first one determines the position by rotation and translation of L-PC over G-PC
and the second allows for adjusting the position by extracting key points.

As a preliminary stage, a down-sample is applied to reduce G-PC volume, in order
to minimize processing time and optimise computational resources. Additionally, the noise
present has been eliminated based on the local density method [51,52], which determines the
probability that the point is an outlier, if its value is great [0–1], determining its conservation
or elimination based on a threshold.

2.3.1. Normals Calculation

The first stage for the location comprises determining the normals of the surface;
based on the primary analysis of the components of the neighboring points, the normals
calculation is influenced by the radius and number of points in the neighborhood’s envi-
ronment. Thus, if the environmental data are insufficient, this calculation will be inaccurate.
To calculate the normal vector concerning a point, the normal vector to a plane tangent to
the surface of a point is estimated, using the least-squares adjustment. To get the normal
vector, the eigenvalues and eigenvectors of the covariance matrix of all the points that
make up the area are calculated.

To know the L-PC position in the G-PC, the relative pose is estimated using the
rotation and translation of L-PC on G-PC. This method is based on Normal Distribution
Transformation, which starts from the previously calculated normals [53,54].

2.3.2. Key Points Extraction

This first stage of the algorithm would be ideal for estimating the robotic platform
position. However, it does not contemplate changes or modifications within the environ-
ment, so a second stage has been implemented where the key points are calculated to be
more robust. For this, the Kdtree type structure is used, which stores a set of k-dimensional
points to perform searches between neighbors and establish correspondences between
groups of points, adjusting the initial T transformation.

The key points that correspond to the cloud’s relevant characteristics, such as cor-
ners or edges, whose environment has enough information and is stable against possible
disturbances. The NARF (Normal Aligned Radial Feature) detection method was used,
which extracts key points in areas where the underlying surface is stable and the neighbor-
ing points contain significant changes; and consider the edges of the objects. Points with
high-interest scores are considered key points [55].
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2.4. Simulated Gazebo Environment

To test the algorithms for the robot movement’s execution and its positioning next to
the plant before the execution with real data, a simulated world has been developed in
Gazebo, which is characterized by its power, realism, and object interaction [56]. The de-
veloped environment is shown in Figure 5, replicating the experimental site consisting
of extensive vegetation and rows cultivated with different species: cabbages and beans.
One of the advantages of using Gazebo is that it allows for simulating various types of
environments, including robot models and developments, as well as sensors. The platform
model with the robot arm has been incorporated into the simulation. Data taken from
Gazebo are very similar to that taken in the physical environment.

Figure 5. Simulated environment of strip-cropping field developed in Gazebo for algorithm tests.
Source: Author.

A pushbroom lidar is included in the simulation and allows recreation of the point
clouds, based on the progress over the crop rows. The laser data are published using ROS
topics following the situation in the real environment.

Similarly, the robot joint’s positions are calculated and published in a ROS topic, based
on the virtual readings from the simulated environment. In this manner, the planned
trajectories and movements can be verified and adjusted where necessary before execution
on the real robot. Through the simulated scanning of the virtual crops, the resulting point
cloud can be taken into account when calculating the robot’s movements, thereby avoiding
collisions with the crops.

The planning and control of movements were developed using ROS’s Moveit tool,
which generates the different states for the robot’s joints and the speeds for each state.
The fertilisation strategy to only apply to the soil immediately surrounding the plant,
taking into account the plant’s geometric characteristics, forms the main objective for
this optimisation.

The main benefit of including this pre-testing phase is to ensure that the developed
algorithms are compatible with the simulated robot as well as the real robot in their
respective environments.

3. Results and Discussion

The results shown below have allowed for verifying the algorithms and procedures
described in the methodology. Several tests have been developed using synthetic and real
point clouds.
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3.1. Geometrical Parameters Extraction from Point Cloud Plants

To verify the geometrical parameters extraction algorithm, tests have been developed
with synthetic data and later with real data. In the first instance, (synthetic data) have been
obtained from the gazebo environment, generating point clouds of the plants corresponding
to the XY plane (ground), to get the clusters, centers and radii. The heights correspond to
the cloud data on the z-axis (the maximum values).

The point clouds in Figure 6a–d were acquired from the gazebo environment. For this
data generation, 39 plants were placed and distributed by rows as shown in Figure 5,
with different spacing variations. As a result, Figure 6a–d shows each cloud’s center with
points in fuchsia color, the edges with black quadrilaterals, and each group has been
assigned a random color based on the classification to distinct each other.

(a) (b)

(c) (d)

(e)

Figure 6. K-means classification and geometrical parameters extraction from synthetic and real data. (a) Synthetic data
from 39 point clouds (distribution 1), (b) synthetic data from 39 point clouds (distribution 2), (c) synthetic data from
39 point clouds (distribution 3), (d) synthetic data from 39 point clouds (distribution 4), (e) real data from row cultivation.
Source: Author.

The classified data concerning the generated data have an incidence of 98.6%, a value
that has been measured based on the known labels (when obtained in Gazebo) and com-
pared with the algorithm classification labels. This value is substantial, considering that
several plants were placed close to each other to generate different complexity levels
for classification.

The data shown in Figure 6e correspond to a row of the plants in Figure 1 (the
development before this work [43] that follows the same line of the Sureveg project). As a
result, it shows the clustering assigned to each cloud of points, centers, defined edges and
color assignment to identify each cluster.

Table 2 shows the data obtained for this point cloud, sent to the arm positioning sub-
system, to generate the joint positions and execute the fertilisation. The X values in Table 2
concerning the horizontal distance of the clusters is not growing because the unsupervised
learning k-means algorithm used to form the clusters initializes its centres randomly. There-
fore, the resulting order of the centres won’t be strictly increasing; However, to send the
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plant’s geometric characteristics to the robot planner, these are ordered growing. Figure 4
show an example of a robot position based on geometrical parameters.

Table 2: Centers, radios and height obtained from Figure 6e.

Cluster 1 2 3 4 5 6 7 8 9 10

Radio (cm) 51 53 49 53 51 55 54 42 48 39
X pos (cm) 1610 380 920 20 1720 740 240 1190 810 1850
Y pos (cm) −39 −51 −41 −40 −38 −39 −37 −30 −39 −36

Height (cm) 40 41 39 44 42 45 44 39 41 40

3.2. Features Extraction from Point Clouds

This section shows the results obtained after applying the algorithms for the robot’s
localisation. To develop these tests, real point clouds have been used, obtained in the fields
of Figure 1, corresponding to a row with cabbage cultivation and are shown in Figure 7.

Figure 7. Normals calculated from G-PC with different down-sample levels applied, (a) 60%, (b) 40%, (c) 22%, (d) 10%, represented on
the original point cloud (G-PC). Source: Author.
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The location system is based on two-point clouds; the first called G-PC (Global Point
Cloud), previously obtained by making a pass over the row with the platform; it is used
as the basis for location. The second L-PC point cloud (Local Point Cloud) is obtained as
the platform advances; this second cloud is small at the beginning and increases as the
platform advances.

3.2.1. Normals Extraction

The respective normals calculated for each down-sample percentages applied to the
original cloud are shown; Figure 7a. 60%, Figure 7b. 40%, Figure 7c. 22%, Figure 7d.
10%. Normals are shown on the original cloud to show the loss of information as the
down-sample increases.

Based on the tests performed, the best results were obtained with a reduction of 22%
in the volume; in addition, there is no loss of relevant information, and the computational
process improves.

As the percentage reduction in the cloud’s volume increases, the number of normals
is also reduced (Figure 7a), losing information and making it difficult to locate with
great accuracy.

3.2.2. Key Points Extraction and Matching

Figure 8 in the lower part shows the G-PC (with a down-sample applied reducing
the volume from 2.361.060 to 524.313), while the upper part corresponds to a first section
(L-PC) read by the platform from the beginning of the row towards the middle, and the
next cloud (L-PC) corresponds to a part of the row read at a height between 6 and 8 m from
the G-PC. The clouds shown have been previously reduced with a down-sample of 22%
generating more relevant results.

Key points correspond to corners, edges, or sections that contain enough information;
although the environment is slightly changing from one day to the next because of the
wind or the slight growth of vegetables, the key points tested in the cloud remain the
same areas of the point clouds, according to different tests performed between readings on
different days.

In Figure 8, the key points determined by the system can be observed with black aster-
isks, giving 17,462 key points. The red lines show the correspondence of L-PC points with
the points of the G-PC, with a 97.3% efficiency. This allows for getting the position of the
local cloud, and thus the position of the robotic platform within the crop, the experiments
and measurements carried out are shown in the following section.

Figure 8. Matching correspondences between key points from L-PC (upper—two captured partial sections) to G-PC(lower).
Source: Author.
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3.3. Localisation Test

Tests performed to estimate the position consisted of taking readings of the point
clouds in seven different points of the row separated by a distance of 1.5 m and establishing
the location based on the G-PC that contains the cloud of all the row. Figure 9a shows the
robotic platform on the row in the test field, while Figure 9b shows the perception system
in RVIZ, where the point cloud and the estimated position of the platform are shown for
each instance.

(a) (b)

Figure 9. Test execution and data visualization for localisation. (a) Mobile robotic platform—on field, (b) mobile robotics
platform position and data visualization in rviz. Source: Authors.

As the robotic platform advances from point 1 to points 2, 3, ... , 7, the L-PC accumu-
lates earlier values, which improves the location estimation according to measurements
taken. The experiment was repeated ten times showing the following results in Figure 10.

Figure 10. Box diagram for measured location positions taken in Figure 9b. Source: Author.

Figure 10 shows the box plot of the data measured in the experiments carried out in
Figure 9b. Initially, the average error for positions 1 and 2 ranges between 12 mm; values
compared to the full extension of row 1200 mm approximately correspond to 0.1%.

This error does not affect fertilisation because it has been considered a margin of 5 cm
additional to the radius defined in the geometrical parameters extraction to encompass the
plant and define the passage zone of the robot’s trajectory, thus avoiding the fertiliser being
applied on the plant and damaging it.

As the platform progresses, new points are added to the L-PC, allowing for more key
points and improved localisation, resulting in errors with an average of 5 mm.

If the robot reaches the end of the row, the local point cloud L-PC is eliminated. The plat-
form turns around and is positioned in the new row. The G-PC is updated (previously cap-
tured for each row), and the L-PC begins to be generated again depending on the advance.
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4. Conclusions

This article shows the first proof-of-concept of an integrated robotic system for fertili-
sation using only lidar data to get the plants’ parameters as well as the platform’s relative
position. Point clouds allow high precision localisation while at the same time form the ba-
sis for the tracking of individual crop growth when recorded over time. To this end, several
subsystems were developed and integrated in ROS, alongside a simulation environment in
Gazebo, after which the method was executed and validated on a real field test.

The proposed method for localisation through point clouds in strip-cropping environ-
ments has demonstrated that the relative location can be reliably established from real-time
features’ extraction (in the L-PC) and point cloud matching with a previously established
base cloud (G-PC). Low localisation errors were achieved, in the 4 to 13 mm range, allowing
to develop with great precision the robotic fertiliser application without affecting the plant.

Applying the geometrical parameters’ extraction subsystem on the G-PC point clouds
and the unsupervised learning algorithm K-means allows for identifying clusters concern-
ing each individual plant in the crop row with a high incidence of 98.6%. Furthermore,
to extract the clusters’ main characteristics (center, radius, height), trajectory points for the
fertilisation movements can be developed for the robotic arm, depending on the plants’ size.

The interaction between the proposed subsystems allows the integral development
of fertilisation, exchanging information through ROS nodes and topics. Possible future
developments include the use of advanced interfaces for monitoring, and the development
of additional tasks such as irrigation, weeding, or picking.
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PCL Point Cloud Library
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Appendix A

Link to Sureveg Concept project: https://www.youtube.com/watch?v=s60mOl1v7
cA&t=5s.

http://projects.au.dk/coreorganiccofund/
https://www.youtube.com/watch?v=s60mOl1v7cA&t=5s.
https://www.youtube.com/watch?v=s60mOl1v7cA&t=5s.
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