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We present RootPainter, a GUI-based software tool for the rapid
training of deep neural networks for use in biological image
analysis. RootPainter facilitates both fully-automatic and semi-
automatic image segmentation. We investigate the effectiveness
of RootPainter using three plant image datasets, evaluating its
potential for root length extraction from chicory roots in soil,
biopore counting and root nodule counting from scanned roots.
We also use RootPainter to compare dense annotations to cor-
rective ones which are added during the training based on the
weaknesses of the current model.

Deep Learning | GUI | Segmentation | Phenotyping | Biopore | Rhizotron | Root
nodule | Interactive segmentation

Correspondence: ags@di.ku.dk

Introduction
Plant research is important because we need to find ways to
feed a growing population whilst limiting damage to the en-
vironment (1). Plant studies often involve the measurement
of traits from images, which may be used in phenotyping for
genome-wide association studies (2), comparing cultivars for
traditional breeding (3) or testing a hypothesis related to plant
physiology (4). Plant image analysis has been identified as a
bottleneck in plant research (5). A variety of software ex-
ists to quantify plant images (6) but is typically limited to a
specific type of data or task such as leaf counting (7), pollen
counting (8) or root architecture extraction (9).
Convolutional neural networks (CNNs) represent the state-
of-the-art in image analysis and are currently the most pop-

ular method in computer vision research. They have been
found to be effective for tasks both in plant image analysis
(10–13) and agricultural research (14, 15).
Developing a CNN-based system for a new image analysis
task or dataset is challenging because dataset design, model
training and hyper-parameter tuning are time-consuming
tasks requiring competencies in both programming and ma-
chine learning.
Three questions that need answering when attempting a su-
pervised learning project such as training a CNN are: how to
split the data between training, validation and test datasets;
how to manually annotate or label the data; and how to de-
cide how much data needs to be collected, labelled and used
for training in order to obtain a model with acceptable perfor-
mance. The choice of optimal hyper-parameters and network
architecture are also considered to be a ‘black art’ requiring
years of experience and a need has been recognised to make
the application of deep learning easier in practice (16).
The question of how much data to use in training and valida-
tion is explored in theoretical work that gives indications of
a model’s generalisation performance based on dataset size
and number of parameters (17). These theoretical insights
may be useful for simpler models but provide an inadequate
account of the behaviour of CNNs in practice (18).
Manual annotation may be challenging as proprietary tools
may be used which are not freely available (19) and can in-
crease the skill set required. Creating dense per-pixel anno-
tations for training is often a time consuming process. It has
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Fig. 1. RootPainter corrective annotation concept. (a) Roots in soil. (b) AI root predictions. (c) Human corrections. (d) AI learns from corrections.
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been argued that tens of thousands of images are required,
making small scale plant image datasets unsuitable for train-
ing deep learning models (7).
The task of collecting datasets for the effective training of
models is further confounded by the unique attributes of each
dataset. All data are not created equal, with great variability
in the utility of each annotated pixel for the model training
process (20). It may be necessary to add harder examples
after observing weaknesses in an initial trained model (21),
or to correct for a class imbalance in the data where many
examples exist of a majority class (22).
Interactive segmentation methods using CNNs such as (23,
24) provide ways to improve the annotation procedure by al-
lowing user input to be used in the inference process and can
be an effective way to create large high quality datasets in
less time (25).
When used in a semi-automatic setting, such tools will speed
up the labelling process but may still be unsuitable for situ-
ations where the speed and consistency of a fully automated
solution is required. For example when processing data from
large scale root phenotyping facilities such as (26) where in
the order of 100,000 images or more need to be analysed.
In this study we present and evaluate our software Root-
Painter which makes the process of creating a dataset, train-
ing a neural network and using it for plant image analy-
sis accessible to ordinary computer users by facilitating all
required operations with a cross-platform, open-source and
freely available user-interface. The RootPainter software was
initially developed for quantification of roots in images from
rhizotron based root studies. However, we found its versatil-
ity to be much broader, with an ability to be trained to recog-
nise many different types of structures in a set of images.
RootPainter allows a user to inspect model performance dur-
ing the annotation process so they can make a more informed
decision about how much and what data is necessary to label
in order to train a model to an acceptable accuracy. It allows
annotations to be targeted towards areas where the current
model shows weakness in order to streamline the process of
creating a dataset necessary to achieve a desired level of per-
formance. RootPainter can operate in a semi-automatic way,
with a user assigning corrections to each segmented image,
whilst the model learns from the assigned corrections, reduc-
ing the time-requirements for each image as the process is
continued. It can also operate in a fully-automatic way by ei-
ther using the model generated from the interactive procedure
to process a larger dataset without required interaction, or in
a more classical way by using a model trained from dense
per-pixel annotations which can also be created via the user
interface.
We evaluate the effectiveness of RootPainter by training
models for three different types of data and tasks without
dataset-specific programming or hyper-parameter tuning. We
evaluate the effectiveness on a set of rhizotron root images,
and in order to evaluate the versatility of the system, also on
two other types of data, a biopores dataset, and a legume root
nodules dataset, both involving objects in the images quite
different from roots.

For each dataset we compare the performance of models
trained using the dense and corrective annotation strategies
on images not used during the training procedure. If annota-
tion is too time-consuming, then RootPainter will be unfeasi-
ble for many projects. To investigate the possibility of rapid
and convenient model training we use no prior knowledge
and restrict annotation time to a maximum of two hours for
each model. We hypothesize that (1) in a limited time period
RootPainter will be able to segment the objects of interest
to an acceptable accuracy in three datasets including roots,
biopores and root nodules, demonstrated by a strong corre-
lation between the measurements obtained from RootPainter
and manual methods. And (2) a corrective annotation strat-
egy will result in a more accurate model compared to dense
annotations, given the same time for annotation.
Prior work for interactive training for segmentation includes
(27) and (28). (27) evaluated their method using neuronal
structures captured using Electron Microscopy, and found the
interactively trained model to produce better segmentations
than a model trained using exhaustive ground truth labels.
(28) combined interactive segmentation with interactive
training by using the user feedback in model updates. Their
training approach requires an initial dataset with full ground-
truth segmentations, whereas our method requires no prior
labelled data, which was a design choice we made to increase
the applicability of our method to plant researchers looking
to quantify new objects in a captured image dataset.
As opposed to (27) we use a more modern, fully convolu-
tional network model, which we expect to provide substan-
tial efficiency benefits when dealing with larger images. Our
work is novel in that we evaluate an interactive corrective
annotation procedure in terms of annotation time to reach a
certain accuracy on real-world plant image datasets. Syn-
thetic data is often used to evaluate interactive segmentation
methods (29–31). To provide more realistic measurements of
annotation time we use real human annotators for our exper-
iments.

Roots in Soil. Plant roots are responsible for uptake of water
and nutrients. This makes understanding root system devel-
opment critical for the development of resource efficient crop
production systems. For this purpose, we need to study roots
under real life conditions in the field, studying the effects of
crop genotypes and their management (32, 33), cover crops
(34), crop rotation (35) and other factors. We need to study
deep rooting, as this is critical for the use of agriculturally
important resources such as water and nitrogen (36, 37).
Rhizotron based root research is an important example of
plant research. Acquisition of root images from rhizotrons
is widely adopted (38), as it allows repeated and non-
destructive quantification of root growth and often to the full
depth of the root systems. Traditionally the method for root
quantification in such studies involves a lengthy procedure to
determine the root density on acquired images by counting
intersections with grid-lines (39).
Manual methods require substantial resources and can in-
troduce undesired inter-annotator variation on root density,
therefore a faster and more consistent method is required.
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More recently, fully automatic approaches using CNNs have
been proposed (40); although effective, such methods may be
challenging to re-purpose to different datasets for root scien-
tists without the required programming expertise. A method
which made the re-training process more accessible and con-
venient would accelerate the adoption of CNNs within the
root research community.

Biopores. Biopores are tubular or round-shaped continuous
voids formed by root penetration and earthworm movement
(41). They function as preferential pathways for root growth
(42) and are therefore important for plant resource acquisi-
tion (43, 44). Investigation of soil biopores is often done by
manually drawing on transparent sheets on an excavated soil
surface (45). This manual approach is time consuming and
precludes a more in-depth analysis of detailed information
including diameter, surface area or distribution patterns such
as clustering.

Root Nodules. Growing legumes with nitrogen-fixing ca-
pacity reduces the use of fertilizer (46), hence there is an in-
creased demand for legume-involved intercropping (47) and
precropping for carry over effects. Roots of legumes form as-
sociations with rhizobia, forming nodules on the roots, where
the nitrogen fixation occur. Understanding the nodulation
process is important to understand this symbiosis and the
nitrogen fixation. However, counting nodules from the ex-
cavated roots is a cumbersome and time consuming proce-
dure, especially for species with many small nodules such as
clovers (Trifolium spp.).

Method
Software Implementation. RootPainter uses a client-server
architecture, allowing users with a typical laptop to utilise
a GPU on a more computationally powerful server. The
client and server can be used on the same machine if it is
equipped with suitable hardware, reducing network IO over-
head. Instructions are sent from the client to server using
human-readable JSON (JavaScript Object Notation) format.
The client-server communication is facilitated entirely with
files via a network drive or file synchronisation application.
This allows utilisation of existing authentication, authorisa-
tion and backup mechanisms whilst removing the need to
setup a publicly accessible static IP address. The graphi-
cal client is implemented using PyQt5 which binds to the Qt
cross-platform widget toolkit. The client installers for Mac,
Windows, and Linux are built using the fman build system
which bundles all required dependencies. Image data can
be provided as JPEG, PNG or TIF and in either colour or
grayscale. Image annotations and segmentations are stored
as PNG files. Models produced during the training process
are stored in the python pickle format and extracted measure-
ments in comma-separated value (CSV) text files.
A folder referred to as the sync directory is used to store
all datasets, projects and instructions which are shared be-
tween the server and client. The server setup (supplementary
note 4) requires familiarity with the Linux command line so

should be completed by a system administrator. The server
setup involves specification of a sync directory, which must
then be shared with users. Users will be prompted to in-
put the sync directory relative to their own file system when
they open the client application for the first time and it will
be automatically stored in their home folder in a file named
root_painter_settings.json which the user may delete or mod-
ify if required.

Creating a Dataset. The Create training dataset functional-
ity is available as an option when opening the RootPainter
client application. It is possible to specify a source image
directory, which may be anywhere on the local file system
and whether all images from the source directory should be
used or a random sample of a specified number of images. It
is also possible to specify the target width and height of one
or more samples to take from each randomly selected image;
this can provide two advantages in terms of training perfor-
mance. Firstly, RootPainter loads images from disk many
times during training which can for larger images (more than
2000 × 2000 pixels) slow down training in proportion to
image size and hardware capabilities. Secondly, recent re-
sults (48) indicate that capturing pixels from many images
is more useful than capturing more pixels from each image
when training models for semantic segmentation, thus when
working with datasets containing many large images, using
only a part of each image will likely improve performance
given a restricted time for annotation.
When generating a dataset, each image to be processed is
evaluated for whether it should be split into smaller pieces.
If an image’s dimensions are close to the target width and
height then the image will be added to the dataset without it
being split. If an image is substantially bigger then all possi-
ble ways to split the image into equally sized pieces above the
minimum are evaluated. For each of the possible splits, the
resultant piece dimensions are evaluated in terms of their ra-
tio distance from a square and distance from the target width
and height. The split which results in the smallest sum of
these two distances is then applied. From the split image, up
to the maximum tiles per image are selected at random and
saved to the training dataset. The source images do not need
to be the same size and the images in the generated dataset
will not necessarily be the same size but all provided images
must have a width and height of at least 572 pixels, and we
recommend at least 600 as this will allow random crop data
augmentation. The dataset is created in the RootPainter sync
directory in the datasets folder in a subdirectory which takes
the user-specified dataset name. To segment images in the
original dimensions, the dataset creation routine can be by-
passed by simply copying or moving a directory of images
into a subdirectory in the RootPainter datasets directory.

Working with Projects. Projects connect datasets with mod-
els, annotations, segmentations and messages returned from
the server. They are defined by a project file (.seg_proj)
which specifies the details in JSON and a project folder con-
taining relevant data. The options to create a project or open
an existing project are presented when opening the Root-
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Painter client application. Creating projects requires speci-
fying a dataset and optionally an initial model file. Alter-
natively a user may select ‘random weights’ also known as
training from scratch, which will use He initialization (49) to
assign a models initial weights. A project can be used for in-
specting the performance of a model on a given dataset in the
client, or training a model with new annotations which can
also be created using drawing tools in the client user inter-
face.

Model architecture. We modified the network architecture
from (40) which is a variant of U-Net (50) implemented in
PyTorch (51) using Group Normalization (52) layers. U-Net
is composed of a series of down-blocks and up-blocks joined
by skip connections. The entire network learns a function
which converts the input data into a desired output repre-
sentation, e.g. from an image of soil to a segmentation or
binary map indicating which of the pixels in the image are
part of a biopore. In the down-blocks we added 1 × 1 con-
volution to halve the size of the feature maps. We modified
both down-blocks and up-blocks to learn residual mappings,
which have been found to ease optimization and improve ac-
curacy in CNNs (53) including U-Net (54). To speed up in-
ference by increasing the size of the output segmentation, we
added 1 pixel padding to the convolutions in the down-blocks
and modified the input dimensions from 512 × 512 × 3 to
572×572×3, which resulted in a new respective output size
of 500 × 500 × 2, containing a channel for the foreground
and background predictions. The modified architecture has
approximately 1.3 million trainable parameters, whereas the
original had 31 million. These alterations reduced the saved
model size from 124.2 MB (55) to 5.3 MB, making it small
enough to be conveniently shared via email.

Creating Annotations. Annotations can be added by drawing
in the user interface with either the foreground (key Q) or
background (key W) brush tools. It’s also possible to undo
(key Z) or redo brush strokes. Annotation can be removed
with the eraser tool (key E). If an image is only partially an-
notated then only the regions with annotation assigned will
be used in the training. Holding the alt key while scrolling
can be used to alter the brush size and holding the command
key (or windows key) will pan the view. Whilst annotating
it’s possible to hide and show the annotation (key A), im-
age (key I) or segmentation (key S). When the user clicks
Save & next in the interface, the current annotation will be
saved and synced with the server, ready for use in training.
The first and second annotations are added to the training and
validation sets respectively (see Training Procedure below).
Afterwards, to maintain a typical ratio between training and
validation set, annotations will be added to the validation set
when the training set is at least five times the size of the vali-
dation set, otherwise they will be added to the training set.

Training Procedure. The training procedure can be started by
selecting Start training from the network menu which will
send a JSON instruction to the server to start training for the
current project. The training will only start if the project has

at least two saved annotations as at least one is required for
each of the training and validation set. Based on (40) we use a
learning rate of 0.01 and Nestorov momentum with a value of
0.99. We removed weight decay as results have shown sim-
ilar performance can be achieved with augmentation alone
whilst reducing the coupling between hyperparameters and
dataset (56). The removal of weight decay has also been sug-
gested in practical advice (57) based on earlier results (58)
indicating its superfluity when early stopping is used. We do
not use a learning rate schedule in order to facilitate an indef-
initely expanding dataset.
An epoch typically refers to a training iteration over the entire
dataset (59). In this context we initially define an epoch to be
a training iteration over 612 image sub-regions correspond-
ing to the network input size, which are sampled randomly
from the training set images with replacement. We found an
iteration over this initial epoch size to take approximately 30
seconds using two RTX 2080 Ti GPUs with an automatically
selected batch size of 6. If the training dataset expands be-
yond 306 images, then the number of sampled sub-regions
per epoch is set to twice the number of training images, to
avoid validation overwhelming training time. The batch size
is automatically selected based on total GPU memory and all
GPUs will be used by default using data parallelism.
After each epoch, the model predictions are computed on the
validation set and F1 is calculated for the current and previ-
ously saved model. If the current model’s F1 is higher than
the previously saved model then it is saved with its number
and current time in the file name. If for 60 epochs no model
improvements are observed and no annotations are saved or
updated then training will stop automatically.
We designed the training procedure to have minimal RAM re-
quirements which do not increase with dataset size, in order
to facilitate training on larger datasets. We found the server
application to use less than 8GB of RAM during training and
inference, and would suggest at least 16GB RAM for the ma-
chine running the server application. We found the client to
use less than 1GB RAM but have not yet tested on devices
equipped with less than 8GB of RAM.

Augmentation. We modified the augmentation procedure
from (40) in three ways. We changed the order of the trans-
forms from fixed to random in order to increase variation. We
reduced the probability that each transform is applied to 80%
in order to reduce the gap between clean and augmented data,
which recent results indicate can decrease generalization per-
formance (60). We also modified the elastic grid augmenta-
tion as we found the creation of the deformation maps to be a
performance bottleneck. To eliminate this bottleneck we cre-
ated the deformation maps at an eighth of the image size and
then interpolated them up to the correct size.

Creating Segmentations. It is possible to view segmentations
for each individual image in a dataset by creating an associ-
ated project and specifying a suitable model. The segmen-
tations are generated automatically via an instruction sent to
the server when viewing each image and saved in the seg-
mentations folder in the corresponding project.

4 | bioRχiv Smith et al. | RootPainter

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 12, 2020. . https://doi.org/10.1101/2020.04.16.044461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044461
http://creativecommons.org/licenses/by/4.0/


A Datasets

When the server generates a segmentation, it first segments
the original image and then a horizontally flipped version.
The output segmentation is computed by taking the average
of both and then thresholding at 0.5. This technique is a type
of test time data augmentation which is known to improve
performance (61). The segmentation procedure involves first
splitting the images into tiles with a width and height of
572 pixels, which are each passed through the network and
then an output corresponding to the original image is recon-
structed.
It’s possible to segment a larger folder of images using the
Segment folder option available in the network menu. To
do this, an input directory, output directory and one or more
models must be specified. The model with the highest num-
ber for any given project will have the highest accuracy in
terms of F1 on the automatically selected validation set. Se-
lecting more than one model will result in model averaging,
an ensemble method which improves accuracy as different
models don’t usually make identical errors (59). Selecting
models from different projects representing different training
runs on the same dataset will likely lead to a more diverse
and thus more accurate ensemble, given they are of similar
accuracy. It it is also possible to use models saved at various
points from a single training run, a method which can pro-
vide accuracy improvements without extending training time
(62).

Extracting Measurements. It is possible to extract measure-
ments from the produced segmentations by selecting an op-
tion from the measurements menu. The Extract length option
extracts centerlines using the skeletonize method from scikit-
image (63) and then counts the centerline pixels for each im-
age. The Extract region properties uses the scikit-image re-
gionprops method to extract the coordinates, diameter, area,
perimeter and eccentricity for each detected region and stores
this along with the associated filename. The Extract count
method gives the count of all regions per image. Each of
the options require the specification of an input segmentation
folder and an output CSV.

A. Datasets.

A.1. Biopore Images. Biopore images were collected near
Meckenheim (50◦37′9′′N 6◦59′29′′E) at a field trial of Uni-
versity of Bonn in 2012 (see (45) for a detailed description).
Within each plot an area was excavated to a depth of 0.45
m. The exposed soil surface was carefully flattened to reveal
biopores and then photographed.

Bersoft software (Windows, Version 7.25) was used for bio-
pore quantification. Using the eclipse function, the visible
biopores were marked, then the count number was generated
as a CSV file. Pores smaller than 2 mm were excluded from
biopore counting.
We restricted the analysis to images with a suitable resolu-
tion and cropped to omit border areas. For each image, the
number of pixels per mm was recorded using Gimp (MacOS,
Version 2.10) in order to calculate pore diameter. We split
the images into two folders. BP_counted which contained
39 images and was used for model validation after training
as these images had been counted by a biopore expert and
BP_uncounted which contained 54 images and was used for
training.

A.2. Nodule Images. Root images of persian clover (Tri-
folium resupinatum) were acquired at 800 DPI using a water-
bed scanner (Epson V700) after root extraction. We used
a total of 113 images which all had a blue background, but
were taken with two different lighting settings. From the 113
images, 65 appeared darker and underexposed where as 48
were well lit and appeared to show the nodules more clearly.
They were counted manually using WinRhizo Pro (Regent
Instruments Inc., Canada, Version 2016). Image sections
were enlarged and nodules were selected manually by click-
ing. Then, the total number of marked nodules were counted
by the software. We manually cropped to remove the borders
of the scanner using Preview (MacOS, Version 10.0) and con-
verted to JPEG to ease storage and sharing. Of these 50 were
selected at random to have subregions included in training
and the remaining 63 were used for validation.

A.3. Roots Dataset. We downloaded the 867 grid counted
images and manual root length measurements from (67)
which were made available as part of the evaluation of U-
Net for segmenting roots in soil (40) and originally captured
as part of a study on chicory drought stress (4) using a 4 m
rhizobox laboratory described in (68). We removed the 10
test images from the grid counted images, leaving 857 im-
ages. The manual root length measurements are a root inten-
sity measurement per-image, which was obtained by count-
ing root intersections with a grid as part of (4).

B. Annotation and Training. For the roots, nodules and
biopores we created training datasets using the Create train-
ing dataset option. We used random sample, with the details
specified in Table 1. The two users (user a and user b) that
we used to test the software were the two first authors. Each
user trained two models for each dataset. For each model,

Table 1. Details for each of the datasets created for training. The number of images and tiles were chosen to enable a consistent dataset size of 200 images. Only 50 images
were sampled from for the biopores and nodules, in order to ensure there were enough images left in the test set. The datasets created are available to download from (64).

Object Name Source folder Source URL To sample Max tiles Target size

Biopores BP_750_training BP_uncounted (65) 50 4 750
Nodules nodules_750_training counted_nodules (66) 50 4 750
Roots towers_750_training grid_counted_roots (67) 200 1 750
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the user had two hours (with a 30 minutes break between
them) to annotate 200 images. We first trained a model using
the corrective annotation strategy whilst recording the finish
time and then repeated the process with the dense annotation
strategy, using the recorded time from the corrective training
as a time limit. This was done to ensure the same annotation
time was used for both annotation strategies. With corrective
annotations, the annotation and training processes are cou-
pled as there is a feedback loop between the user and model
being trained that happens in real time. Whereas with dense
the user annotated continuously, without regard to model per-
formance. The protocol followed when using corrective an-
notations is outlined in Supplementary Note 1 and annotation
advice given in Supplementary Note 2. For the first six anno-
tations on each dataset, we added clear examples rather than
corrections. This was because we observed divergence in the
training process when using corrective from the start in pre-
liminary experiments. We suspect the divergence was caused
by the user adding too many background classes compared to
foreground or difficult examples. When creating dense anno-
tations, we followed the procedure described in Supplemen-
tary Note 3.
When annotating roots, in the interests of efficiency, a small
amount of soil covering the root would still be considered as
root if it was very clear that root was still beneath. Larger
gaps were not labelled as root. Occluded parts of nodules
were still labelled as foreground (Figure 2). Only the centre
part of a nodule was annotated, leaving the edge as undefined.
This was to avoid nodules which were close together being
joined into a single nodule. When annotating nodules which
were touching, a green line (background labels) was drawn
along the boundary to teach the network to separate them so
that the segmentation would give the correct counts (Figure
3).
After completing the annotation, we left the models to finish
training using the early stopping procedure and then used the
final model to segment the respective datasets and produce
the appropriate measurements.
We also repeated this procedure for the projects but using a
restricted number of annotations by limiting to those that had
been created in just 30, 60, 90, 120 and 150 minutes (includ-
ing the 30 minute break period) to give us an indication of
model progression over time with the two different annota-
tion strategies.

C. Measurement and Correlation. For each project we
obtained correlations with manual measurements using the
portion of the data not used during training to give a mea-
sure of generalization error, which is the expected value of
the error on new input (59). For the roots dataset, the man-
ual measurements were compared to length estimates given
by RootPainter, which are obtained from the segmentations
using skeletonization and then pixel counting.
For the biopores and nodules datasets we used the extract re-
gion properties functionality from RootPainter, which gives
information on each connected region in an output segmenta-
tion. For the biopores the regions less than 2mm in diameter

Fig. 2. We annotated nodules occluded by roots as though the roots were not there.
The red brush was used to mark the foreground (nodules) and the green brush to
mark the background (not nodules).

Fig. 3. Adjacent nodules were separated using the background class. The red
brush was used to mark the foreground (nodules) and the green brush to mark the
background (not nodules).

were excluded. The number of connected regions for each
image were then compared to the manual counts.

Results

We report the R2 for each annotation strategy for each user
and dataset (Table 2). Training with corrective annotations
resulted in strong correlation (R2 ≥ 0.7) between the auto-
mated measurements and manual measurements five out of
six times. The exception was the nodules dataset for user b
with an R2 of 0.69 (Table 2). Training with dense annotations
resulted in strong correlation three out of six times, with the
lowest R2 being 0.55 also given by the nodules dataset for
user b (Table 2).
Table 2. R2 for each training run. These are computed by obtaining measure-
ments from the segmentations from the final trained model and then correlating
with manual measurements for the associated dataset.

Dataset User Corrective R2 Dense R2

Biopores a 0.78 0.58
Biopores b 0.78 0.67
Nodules a 0.73 0.89
Nodules b 0.69 0.55
Roots a 0.89 0.90
Roots b 0.92 0.90

For each annotation strategy, we report both the mean and
standard error for the obtained R2 values from all datasets
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Table 3. Mean and standard error of the R2 for each annotation strategy. These
are computed by obtaining measurements from the segmentations from the final
trained model and then correlating with manual measurements. Using mixed-effects
model with annotation strategy as a fixed factor and user and dataset as random
factors no significant effects were found (P ≤ 0.05).

Strategy Mean Standard error

Corrective 0.80 0.04
Dense 0.75 0.07

Fig. 4. Mean and standard error for the R2 values over time. These include the
30 minute break and are restricted to time points where multiple observations are
available.

and both users (Table 3). The mean of the R2 values obtained
when using corrective annotation shows they tended to be
higher compared with dense, but the differences were not sta-
tistically significant (Mixed-effects model; P≤0.05). We plot
the mean and standard error at each time point for which mul-
tiple R2 values were obtained (Figure 4). In general correc-
tive improved over time, overtaking dense performance just
after the break in annotation (Figure 4). The 30 minute break
period taken by the annotator after one hour corresponds to a
flat line in performance during that period (Figure 4). On av-
erage, dense annotations were more effective at the 30 minute
time period, whereas corrective were more effective after two
hours (including the 30 minute break) and at the end of the
training (Table 3).
We report the duration for each user and dataset (Table 5).
Five out of six times all 200 images were annotated in less
than the two hour time limit. The nodules dataset took the
least time, with annotation completed in 66 minutes and 80
minutes for users a and b respectively (Figure 5). The roots
dataset for user a was the only project where the two hours
time limit was reached without running out of images (Figure
5).
We show an example of errors found from the only model
trained correctively which did not result in a strong corre-
lation (Figure 6). There were cases when the vast majority
of pixels were labelled correctly but a few small incorrect
pixels could lead to substantial errors in count (Figure 6).
We show examples of accurate segmentation results obtained
with models trained using the corrective annotation strategy
(Figures 7, 8 and 9) along with the corresponding manual

Fig. 5. User reported duration in minutes for annotating each dataset, excluding
the 30 minutes break taken after one hour of annotation. The annotator would use
the same amount of time for both corrective and dense annotation strategies. It fell
below the limit of 2 hours (excluding break) when they ran out of images to annotate.

Fig. 6. Two correctly detected nodules shown with three false positives. Segmen-
tation is shown overlaid on top of a sub-region of one of the nodule images used
for evaluation. The correct nodules are much larger and on the edge of the root.
The three false positives are indicated by a red circle. They are much smaller and
bunched together.
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Fig. 7. Example input and segmentation output from biopore photographs not used in training. The segmentation was generated using the model trained with corrective
annotations by user b. The model was trained from scratch using no prior knowledge with annotations created using RootPainter in 1 hour and 45 minutes.

Fig. 8. Example input and segmentation output from the nodule scans not used in training. The segmentation was generated using the model trained with corrective
annotations by user a. The model was trained from scratch using no prior knowledge with annotations created using RootPainter in 1 hour and 6 minutes.

Fig. 9. Example input and segmentation output from the grid-counted roots not used in training. The segmentation was generated using the model trained with corrective
annotations by user a. The model was trained from scratch using no prior knowledge with annotations created using RootPainter in two hours.
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C Measurement and Correlation

(a) (b) (c)

Fig. 10. Manual measurements plotted against automatic measurements attained using RootPainter. (a) Biopores using user b corrective model. (b) Nodules using user a
corrective model. (c) Roots in soil using user a corrective model.

Fig. 11. R2 for the annotations attained after 30, 60, 90, 120 minutes and the final time point for users a and b on the three datasets for dense and corrective annotation
strategies. trained to completion refers to models which were trained until stopping without interaction, using the annotations created within the specified time period, whereas
real time refers to models saved during the corrective annotation procedure as it happened. For the corrective annotations we plot both the performance of the model saved
during the training procedure and the same model if allowed to train to completion with the annotations available at that time.

measurements plotted against the automatic measurements
obtained using RootPainter (Figure 10).

The observed R2 values for corrective annotation had
a significant positive correlation with annotation duration
(P<0.001). There was no significant correlation between an-
notation time and R2 values for models trained using dense
annotations.

We plot the R2 for each project after training was completed
along with the R2 obtained with training done only on anno-
tations at restricted time limits, and refer to these as trained
to completion along with the models saved at that time point
during the corrective annotation procedure as it happened
which we refer to as real time (Figure 11). After only 60 min-

utes of annotation, all models trained for roots in soil gave a
strong correlation with grid counts (Figure 11, Roots a and b).
The performance of dense annotation for user b on the nod-
ules dataset was anomalous with a decrease in R2 as more an-
notated data was used in training (Figure 11, Nodules b). The
corrective models obtained in real time were similar to those
trained to completion, except nodules by user b, indicating
that computing power was sufficient for real time corrective
training (Figure 11).

We plot the number of images viewed and annotated for the
corrective and dense annotation strategies (Figure 12). For
the corrective annotation strategy, only some of the viewed
images required annotation. In all cases the annotator was
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Fig. 12. Number of images viewed and annotated for the dense and corrective annotation strategies. For dense all images are both viewed and annotated, where as
corrective annotations are only added for images where the model predictions contain clear errors.

Fig. 13. Total number of annotated pixels for dense and corrective annotation strategies over time during the annotation procedure. For dense almost all pixels in each image
are annotated. Corrective annotations are only applied to areas of the image where the model being trained exhibits errors.
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able to progress through more images using corrective anno-
tation (Figure 12).
For the roots and nodules datasets for user b for the first hour
of training, progress through the images was faster when per-
forming dense annotation (Figure 12, Roots b and Nodules
b).
We plot the amount of labelled pixels for each training proce-
dure over time for both corrective and dense annotations (Fig-
ure 13). With corrective annotation less pixels were labelled
in the same time period and as the annotator progressed
through the images the rate of label addition decreased (Fig-
ure 13).

Discussion
In this study we focused on annotation duration, as we con-
sider the time requirements for annotation rather than the
number of available images to be more relevant to the con-
cerns of the majority of plant research groups looking to use
deep learning for image analysis. Our results, for corrective
training in particular, confirm our first hypothesis by show-
ing that a deep learning model can be trained to a high accu-
racy for the three respective datasets of varying target objects,
background and image quality in less than two hours of an-
notation time.
Our results demonstrate the feasibility of training an accurate
model using annotations made in a short time period, which
challenges the claims that tens of thousands of images (7)
or substantial labelled data (69) are required to use CNNs.
In practice, we also expect longer annotation periods to pro-
vide further improvement. The R2 for corrective training had
a significant correlation with annotation duration indicating
that spending more time annotating would continue to im-
prove performance.
There was a trend for an increasing fraction of viewed images
to be accepted without further annotation later in the correc-
tive training (Figure 12), indicating fewer of the images re-
quired corrections as the model performance improved. This
aligns with the reduction in the rate of growth for the total
amount of corrections (Figure 13) indicating continuous im-
provement in the model accuracy over time during the cor-
rective training.
We suspect the cases where dense annotation had a com-
paratively faster speed in the beginning (Figure 12, Roots b
and Nodules b) were due to three factors. Firstly, switch-
ing through images has little overhead when using the dense
annotation strategy as there is no delay caused by waiting
for segmentations to be returned from the server. Secondly,
corrective annotation will take a similar amount of time to
dense in the beginning as the annotator needs to assign a large
amount of corrections for each image. And thirdly, many of
the nodule images did not contain nodules meaning dense an-
notations could be added almost instantly.
Although corrective annotation tended to produce models
with higher accuracy relative to dense (Table 3), the lack of
a statistically significant difference prevents us from coming
to a more substantive conclusion about the benefits of cor-
rective over dense annotation. Despite being unable to con-

firm our second hypothesis, that corrective annotation pro-
vides improved accuracy over dense in a limited time period,
it is still clear that it will provide many real-world advantages.
The feedback given to the annotator will allow them to better
understand the characteristics of the model trained with the
annotations applied. They will be able to make a more in-
formed decision about how many images to annotate to train
a model to sufficient accuracy for their use case.
Although strong correlation was attained when using the
models trained with corrective annotation, they in some cases
overestimated (Figure 10 a) or underestimated (Figure 10 b)
the objects of interest compared to the manual counts. For
the biopores (Figure 10 a) this may be related to the calibra-
tion and threshold procedure which results in biopores be-
low a certain diameter being excluded from the dataset. We
inspected the outlier in Figure 10 b where RootPainter had
overestimated the number of nodules compared to the manual
counts. We found that this image (043.jpg) contained many
roots which were bunched together more closely than what
was typical in the dataset. We suspect this had confused the
trained network and could be mitigated by using a consistent
and reduced amount of roots per scan, whilst using more of
the images for training and annotating for longer to capture
more of the variation in the dataset.
In one case, training with corrective annotation failed to pro-
duce a model that gave a strong correlation with the man-
ual measurements. This was for the nodules data for user b,
where the R2 was 0.69. We suspect this was partially due
to the limited number of nodules in the training data. Many
of the images in the dataset created for training contained no
nodules and only included the background. This also meant
the annotation was able to finish in less time. We consider
this a limitation of the experimental design as we expect that
a larger dataset which allowed for annotating nodules for the
full two hour time period would have provided better insights
into the performance of the corrective training procedure.
Figure 6 shows examples of some of the errors in the nod-
ules dataset. In practice, the annotator would be able to view
and correct such errors during training until they had abated.
We noticed that many of the nodule errors were smaller false
positives, so investigated the effect of filtering out nodules
less than a certain size (Figure 14). We found correlation in-
creased substantially from 0.69 to 0.75 when changing the
threshold from 0 to 5 pixels, which can be explained by the
removal of the smaller false positive artefacts (Figure 6).
The benefits of excluding small nodules continued up to a
threshold of 284 pixels, giving an R2 of 0.93. This indicates
that the model was producing many small false positive pre-
dictions, which could also explain some of the overestimation
of nodules (Figure 10 b).
The problem with small false positives may have been miti-
gated with the dense annotations as a larger amount of back-
ground examples are added, suppressing more of the false
positive predictions that arise in the limited training time.
The improvement in R2 when removing small nodules may
also be due to differences in subjective interpretation of what
is a nodule, between the original counter and annotator train-
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Fig. 14. Correlation between automated and manual nodule counting as a function
of size threshold for the automatically detected nodules. The thresholded nodules
include only those above the specified area in pixels.

ing the model.
The reduction in R2 as dense annotation time increased,
shown in nodules b (Figure 11) was highly unexpected. Al-
though in some cases increasing training data can decrease
performance when training CNNs (70), it is usually the case
that the opposite is observed. We suspect these anomalous
results are due to the large amount of variation in the suc-
cess of the dense training procedure, rather than revealing any
general relationship between performance and the amount of
data used.
As the nodule images are captured in a controlled environ-
ment, further improvements to accuracy could be attained by
reducing controllable sources of variation and increasing the
technical quality of the images. The lighting was also varying
for the nodules with approximately half of the images under-
exposed. We expect that more consistent lighting conditions
would further improve the nodule counting accuracy. Crop-
ping the nodule images manually could also become a time
consuming bottleneck, which could be avoided by ensuring
all the roots and nodules were positioned inside the border
and having the placement of the border be fixed in its posi-
tion in the scanner such that the cropping could be done by
removing a fixed amount from each image, which would be
trivial to automate.
Figure 4 indicates corrective annotation leads to lower R2

in the earlier phases of annotation (e.g. within 60 minutes).
We suspect this is due to dense annotation having an advan-
tage at the start as the user is able to annotate more pixels
in less time using dense annotation with no overhead caused
by waiting for segmentations from the server. We suspect
in many cases corrective annotation will provide no benefits
in terms of efficiency when the model is in the early stages
of training as the user will still have to apply large amounts
of annotation to each image, whilst slowed down by the de-
lay in waiting for segmentations. Later in training, e.g. af-
ter one hour and 40 minutes, corrective overtakes dense in
terms of mean R2 performance (Figure 4). We suspect this
is due to the advantages of corrective annotation increasing

as the model converges, when more of the examples are seg-
mented correctly and don’t need adding to the training data
as they would provide negligible utility beyond what has al-
ready been annotated. Our results show corrective annotation
achieves competitive performance with a fraction of the la-
belled pixels compared to dense (Figure 13). These results
align with (71) who confirmed that a large portion of the
training data could be discarded without hurting generaliza-
tion performance. This view is further supported by theoret-
ical work (72) showing in certain cases networks will learn a
maximum-margin classifier, with some data points being less
relevant to the decision boundary.
The corrective training procedure performance had lower
standard error after one hour (Figure 4) and particularly at the
end (Table 3). We conjecture that the corrective annotation
strategy stabilized convergence and increased the robustness
of the training procedure to the changes in dataset with the
fixed hyperparameters by allowing the specific parts of the
dataset used in training to be added based on the weaknesses
that appear in each specific training run.
In more heterogeneous datasets with many anomalies, we
suspect corrective annotation to provide more advantages in
comparison to dense, as working through many images to
find hard examples will capture more useful training data. A
potential limitation of the corrective annotation procedure is
the suitability of these annotations when used as a validation
set for early stopping, as they are less likely to provide a rep-
resentative sample, compared to a random selection. Our an-
notation protocol for corrective annotation involved initially
focusing on clear examples (Supplementary Note 1) as in pre-
liminary experiments we found corrective annotation did not
work effectively at the very start of training. Training start-up
was also found to be a challenge for other systems utilising
interactive training procedures (27), indicating future work in
this area would be beneficial.
Another possible limitation of corrective annotations is that
they are based on the model’s weaknesses at a specific point
in time. This annotation will likely become less useful as
the model drifts away to have different errors from those that
were corrected.
One explanation for the consistently strong correlation on the
root data compared to biopores and nodules is that the corre-
lation with counts will be more sensitive to small errors than
correlation with length. A small pixel-wise difference can
make a large impact on the counts. Whereas a pixel erro-
neously added to the width of a root may have no impact on
the length and even pixels added to the end of the root will
cause a small difference.
A limitation of the RootPainter software is the hardware re-
quirements for the server. We ran the experiments using
two NVIDIA RTX 2080 Ti GPUs connected with NVLink.
Purchasing such GPUs may be prohibitively expensive for
smaller projects and hosted services such as Paperspace,
Amazon Web Services or Google Cloud may be more afford-
able. Although model training and data processing can be
completed using the client user interface, specialist technical
knowledge is still required to setup the server component of
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the system.
In addition to the strong correlations with manual measure-
ments when using corrective annotation, we found the accu-
racy of the segmentations obtained for biopores, nodules and
roots to indicate that the software would be useful for the in-
tended counting and length measurement tasks (Figures 7, 8
and 9).
The performance of RootPainter on the images not used in
the training procedure indicate that it would perform well as
a fully automatic system on similar data. Our results are a
demonstration that for many datasets using RootPainter will
will make it possible to complete the labelling, training and
data processing within one working day.

Availability of data and materials
The nodules dataset is available from (66). The biopores
dataset is available from (65). The roots dataset is available
from (67). The client software installers are available from
(73). The source code for both client and server is avail-
able from (74). The created training datasets and final trained
models are available from (64).
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A Stage 1

Supplementary Note 1: Corrective Training Protocol

A. Stage 1.

• Start a timer immediately before starting to annotate

• Start training after clicking Save & Next for the second annotated image.

• Keep track of how many images you have annotated until you have annotated six images.

• Skip images which do not include clear examples of both classes.

• When images contain clear examples of both classes then label the clear and unambiguous parts of the image.

• Aim to label around 5-10 times as much background as foreground.

• Use a thinner brush to avoid boundaries when labelling the foreground class as these can be ambiguous and time con-
suming to label.

• After clicking Save & Next for the 6th image proceed to stage 2.

• Write down the image number for the 6th annotated image.

B. Stage 2.

• For each image press S to view the segmentation. Instead of labelling everything which is clear, focus on labeling the
parts of the image which have clearly been segmented incorrectly, whilst following the corrective annotation advice.

• Once you have proceeded through 10 images since the 6th annotated image then set pre-segment (from the options menu)
from 0 to 1. Increasing the pre-segment setting causes the server to create segmentations ahead of time for upcoming
images. This allows the user to progress through the images faster but presents a trade-off as they could potentially be
out of date as they are segmented with the best model available at the time and not updated. Thus we only increase
pre-segment once the user has worked through a few images, as their annotation time speeds up and necessitates the
adjustment.

• Once you have proceeded through 20 images since the 6th annotated image then set pre-segment from 1 to 2.

• Once 1 hour has passed on the timer then take a break for 30 minutes.

• After the 30 minute break then click Start Training again and proceed to annotate as before the break for another hour.

• After the second hour has been completed then stop annotating.

• Leave the network to stop training on its own.

Supplementary Note 2: Corrective Annotation Advice
• Use a large brush for the background (green) as this makes it quicker label all the false positive regions.

• Focus time and attention on the incorrectly predicted parts of the image

• It is not a problem to label some foreground as foreground which has already been predicted correctly.

• It is also not a problem to label some background as background if it has already been predicted correctly.

• Errors to avoid include labelling a background pixel as foreground or labelling some foreground as background. These
should be corrected using the eraser tool.

• It is not a problem to leave small areas unlabelled such as boundaries between foreground and background in the interest
of avoiding errors whilst annotating quickly.

• Press I (capital i) to hide and show the image in order to better check the networks segmentation prediction for errors
before proceeding to the next image.
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Supplementary Note 3: Dense Annotation Advice
• Set pre-segment (from the options menu) to 10 so that segmentation time does not impact ability to work through the

images. Increasing the pre-segment setting causes the server to create segmentations ahead of time for upcoming images.
For dense we don’t care about the segmentations so by segmenting 10 in advance it means the client software will never
stall their progression through the images because the segmentation has not yet loaded.

• Change the background colour from the default transparency level to a transparency level of 8%. This is because altering
the brush transparency allows viewing the object of interest through the background annotation.

• Label each image as all background with a single click using the large brush and proceeded to explicitly annotate all
objects of interest (using foreground brush) or ambiguous regions (using the eraser brush) before proceeding to the next
image.

• Leave ambiguous regions such as boundaries as undefined, rather than labelling them as foreground or background.

• Once the time limit is reached, use the eraser tool to mark areas not yet annotated in the current image as undefined, stop
annotating and click Start Training.

Supplementary Note 4: Server software setup instructions
For our tests we use a client-server architecture and run the client and server components of the system on different computers,
using Dropbox to facilitate IO between them. We do not use any Dropbox specific functionality so any service which synchro-
nises a folder between two computers should work. It is also possible to run the client and server on the same computer which
will reduce lag and eliminate the need to use a third party service or network drive to sync files. We tested the server component
using Python 3.7.5.

1. git clone --branch 0.2.4 https://github.com/Abe404/root_painter.git

2. cd root_painter/trainer

3. pip install torch==1.3.1 -f https://download.pytorch.org/whl/torch_stable.html

4. pip install -r requirements.txt

5. NOTE: pytorch installation may be more involved as it could require and consideration of the current CUDA version.
We have tested using pytorch version 1.3.1 but would expect it to work with more recent versions. See https://
pytorch.org/get-started/previous-versions/ for more details on how to install pytorch.

6. python3 main.py

7. You will be prompted to specify a sync location. For our tests we used Dropbox and a folder named paper_rp_sync so
we input ∼/Dropbox/paper_rp_sync

8. If the folder doesn’t exist then it will be created with the necessary sub folders (datasets, projects, models and instruc-
tions).

9. The system will start running and watching for instructions from the client. You must share access to the created folder
with the users using your file share service (such as Dropbox) or network drive. The users will then need to input this
when they first run the client software.

10. See section Software Implementation for further instructions for client software setup.

11. For our tests we ran the RootPainter server inside a tmux session but for more long running use cases a systemd service
will likely be more robust. See https://github.com/torfsen/python-systemd-tutorial for instruc-
tions on creating a systemd service with python.
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