

Fertilisers from legumes and recycled waste products for cabbage, spinach and winter wheat

Carolin Weiler, Sadia Sana, Sabine Zikeli Center for Organic Farming University of Hohenheim

Introduction

Problem?

Organic horticulture works without animal husbandry, therefore strongly dependent on external commercial fertilisers

- Contentious inputs from conventional farming e.g. feather meals, pig bristles or manure from intensive conventional animal husbandry
- Some products from conventional origin (e.g. vinasse) may contain contaminations with plant protection products
- Risk of nutrient imbalances: nutrient outputs via harvested products ≠ nutrient inputs of the fertilisers: risk of K depletion and excess P inputs

Alternatives needed: N sources from within farm + external fertilisers that are "non-contentious"

Introduction

Solutions?

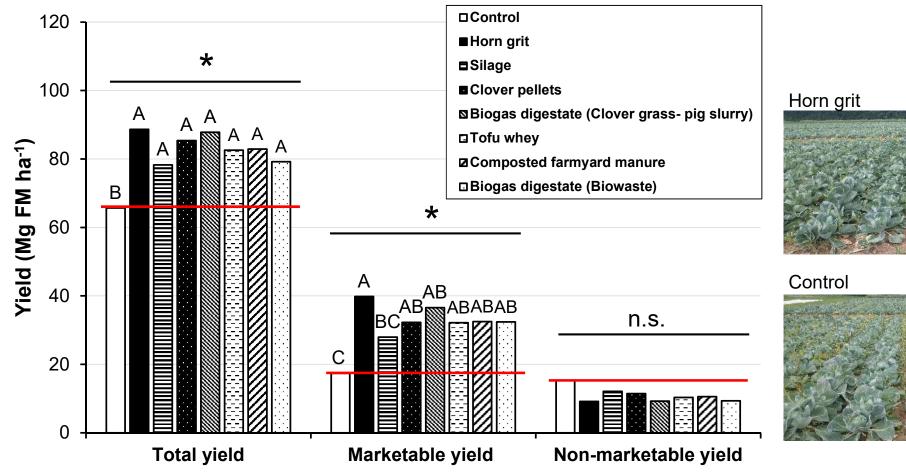
- Clover-grass based fertilisers from the farm itself or from other sources (vegan, of organic origin)
- Biogas digestates from organic origin or from household waste (closing rural urban nutrient cycles)
- **Residues** from (organic) **food industries**: e.g. Tofu ۲ whey (vegan, of organic origin)

Material & Methods - 2019

Two experimental years (2019 and 2020) with a two year crop rotation \rightarrow system approach

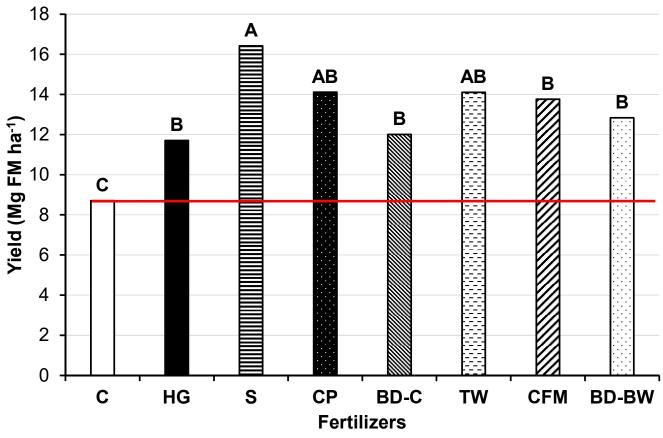
- Crop rotation (varieties):
 - Early white cabbage for direct consumption (Amazon F1)
 - Spinach (Eagle RZ F1)
 - Winter wheat baking (KWS Livius)
- 8 treatments/fertilisers (Fertiliser requirements of cabbage: 220 kg N ha⁻¹):
 - Control (no fertilisation)
 - Horn grit
 - Silage
 - Clover pellets
 - Biogas digestate (clover grass-pig slurry)
 - Tofu whey
 - Farmyard manure
 - Biogas digestates (biowaste)

Fertilisers – Nutrient content (2019)



	C (% DM)	N (% DM)	S (% DM)	Ca mg kg ⁻¹	K mg kg ⁻¹	Mg mg kg ⁻¹	P mg kg⁻¹	C:N Ratio	TS %
Tofu whey*	39.5	6.31	1.10	4512	14444	759	1463	6.4	2.24
Silage (clover gras)	40.3	2.64	0.15	5114	16327	2674	3278	15.3	51.12
Clover pellets	42.6	3.31	0.18	4074	16638	1810	3313	12.9	92.79
Biogas digestate (biowaste)	27.9	2.63	0.44	4079	15459	1753	3428	10.6	8.43
Biogas digestate (clover gras-pig slurry)	36.2	3.17	0.50	4013	16321	1796	3538	11.4	8.71
Composted farmyard manure	34.7	3.08	0.68	23367	32529	7253	10520	11.3	22.04
Horn grit	45.1	14.7	1.88	3813	15186	1907	3408	3.1	91.32

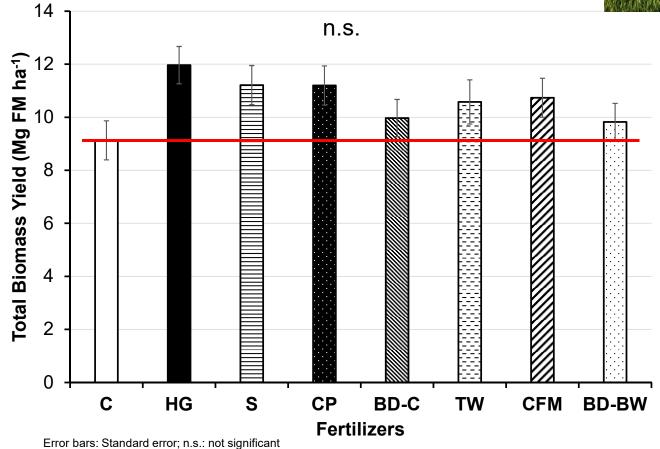
*Average of 2 Tofu whey samples


Values of Ca, K, Mg, P are based on DM (after freeze-drying)

Results – Early white cabbage Marketable yield: Heads > 1kg Non-marketable yield: Heads < 1kg

ORGANIC PLUS

Results - Spinach


С	Control - no fertilization
HG	Horn grit
S	Silage
СР	Clover pellets
BD-C	Biogas digestate – Clover grass-pig slurry
TW	Tofu whey
CFM	Composted farmyard manure
BD-BW	Biogas digestate - Biowaste

Different letters indicate significant differences for treatment (lower case) for P < 0.05.

Results – Winter wheat

С	Control - no fertilization
HG	Horn grit
S	Silage
СР	Clover pellets
BD-C	Biogas digestate – Clover grass-pig slurry
TW	Tofu whey
CFM	Composted farmyard manure
BD-BW	Biogas digestate - Biowaste

Conclusions

First preliminary results

→ fertilisers are suitable alternative fertilisers for organic horticulture without high yield losses (compared to horn grit)

→ Clover pellets and biogas digestates of clover grass and pig slurry are most promising alternative fertilizers

 \rightarrow Verification by the second experimental year

 \rightarrow Detailed evaluation of plant and soil analysis necessary

Problems:

- Clover pellets How high are the costs? Is it worth to buy it? 1 kg N→ ~81€ (Horn grit ~12€ per kg N)
- **Tofu whey** Is it worth to transport all the water? Possibilities to reduce the liquid fraction without loosing nutrients?
- Biogas digestates of biowaste In Germany → EU-Organic Certification needed!!!

