Effect of anaerobic digestion of cover crops and straw on N and S availability in the digestate

Doline Fontaine¹, Yolanda Maria Lemes Perschke², Lu Feng², Henrik B. Møller², Jørgen Eriksen¹, Peter Sørensen¹

¹ Department of Agroecology, University of Aarhus (AU), Blichers Allé 20, 8830 Tjele, Denmark

² Department of Engineering, University of Aarhus (AU), Blichers Allé 20, 8830 Tjele, Denmark

(E-mail: doline.fontaine@agro.au.dk)

Abstract

Lack of nutrients and poor synchrony between nutrient availability and crop demand are often reasons for low yields in organic farming. A field experiment conducted in Denmark aims to use cover crops (CC) to produce extra biomass for biogas production and afterwards utilize the digestate as nitrogen (N) and sulfur (S) fertilizer. The influence of the main crop harvest time and the straw management on biomass production of cover crops is investigated. A spring barley crop and an under-sown CC (clover and chicory mixture) were established to compare early and late barley harvest time and different straw management, including a treatment with high stubble. The dry matter (DM) yield of CC in October was 2.5 t/ha for early barley harvest and 2.3 t/ha for late harvest. At early barley harvest with high stubble treatment, an extra DM yield of 1.3 t/ha was obtained. The harvested CC was ensiled and used as substrates for mono- and co-digestion with cattle manure in 15L digesters. The silages contained mixtures of CC and straw at ratios 1:0, 3:1 and 10:1 (fresh weight basis). Anaerobic digestion (AD) increased the fraction of NH₄⁺ in total N from 0.07 to 0.41 in a reactor fed with CC silage only, for example. This increase was lower for reactors fed with higher ratio of straw in the silage mixture.

In 2018, the N fertilizer value of cattle manure and different digestates and raw silages are tested in a new spring barley crop in confined microplots. Yields and N uptake of spring barley will be measured and the fertilizer value of digested materials will be compared with corresponding undigested cover crops. In addition, the fate of N and S in the soil with different cover crop-straw mixtures and digestion management will be investigated.

Effect of anaerobic digestion of cover crops and straw on N availability in the digestate

Doline Fontaine¹, Yolanda Maria Lemes Perschke², Lu Feng², Henrik B. Møller², Jørgen Eriksen¹, Peter Sørensen¹ ¹ Aarhus University, department of agroecology ² Aarhus University, department of engineering

Project

NUTHY : NUTrients for Higher organic crop Yields

ASA AND CSSA 2018 DOLINE FONTAINE 7 NOVEMBER 2018 PHD STUDENT Source: 2017 estimate by Organic Denmark, USDA

Nutrient N limitation in organic farming

> Organic ressources Higher mineral N content Poor sync. between nutrient availability and plant demand

Lack

Improvement of N utilization

DOLINE FONTAINE ASA AND CSSA 2018 PHD STUDENT 7 NOVEMBER 2018

Digestate from AD

Substrates

			Harvested s Barley straw CC in A	eparately : in Summer Autumn	Harvested together : Barley straw + CC in aut	tumn
	Barley straw	(tons FM/ha)	5.	0	1.8	
	Cover Crop (CC)	(tons FM/ha)	18	.0	19.6	
	Ratio CC	:Straw	3.	б	11.0	
/	AARHUS UNIVERSITY DEPARTMENT OF AGROECOLOGY		ASA AND CSSA 2018 7 NOVEMBER 2018	DOLINE FONTAINE PHD STUDENT		STORE IN THE STORE AND A STORE

Substrates

Lab-scale reactors

ん	AARHUS UNIVERSITY DEPARTMENT OF AGROECOLOGY
	DEFARTHENT OF ADROEDDEDOT

Reactor		Digestion management			
	Mixtures	% silage	% CM	% water added	
R1	CC:straw 1:0	75	-	25	Mono-digestion
R2	CC:straw 10:1	39	-	61	Mono-digestion
R3	CC:straw 3:1	31	-	69	Mono-digestion
R4	CC:straw 1:0 + CM	63	17	20	Co-digestion
R5	CC:straw 10:1 + CM	30	33	37	Co-digestion
R6	CC:straw 3:1 + CM	20	38	42	Co-digestion
R7	СМ	-	100	-	-

CM: Cattle manure

Substrates and digestates composition and methane yields

Feeding mixtures	VS (%)		рН	Total N (kg N/ton DM)	CH ₄ yield
	before AD	after AD	after AD	After AD	$(\operatorname{mi} \operatorname{CH}_4/\operatorname{gvS})$
CC:straw 1:0	7.8	4.3	7.9	57.3±0.3	323
CC:straw 10:1	6.5	4.4	7.7	38.4±0.3	216
CC:straw 3:1	8.9	5.0	7.4	24.5±0.3	184
CC:straw 1:0 + CM	7.8	4.6	8.1	60.5±0.9	317
CC:straw 10:1 + CM	7.4	4.4	8.0	57.8±0.5	243
CC:straw 3:1 + CM	8.4	5.6	8.0	41.5±0.3	228
СМ	7.0	4.3	8.4	77.4±0.2	159
Average reduction (-) or					
increase (+) between before	- 39 %		+ 0.9	0	-
and after AD					

Mineral N transformation

- > AD increases fraction of NH_4^+ in total N
- > Lowest increase for reactor fed with higher ratio of straw
- > No effect on the proportion of NH_4^+ in digestates from co-digestion with manure

Field experiment in microplots

- N fertilizer response
- 15 treatments
- 1 control
- 4 references of N

April 2018

- ➢ Injection of digestates/manure
- Sowing Spring Barley \succ

August 2018

- Harvest \geq
- Yield response & N \geq uptake

ASA AND CSSA 2018 7 NOVEMBER 2018 PHD STUDENT

DOLINE FONTAINE

Crop N uptake

UNIVERSITY

PEPARTMENT OF AGROECOLOGY

> Higher crop N uptake after application of digestates ≻ Average increase: 16 kg N/ha between before AD (74) and after AD (90) AARHUS

ASA AND CSSA 2018

7 NOVEMBER 2018

DOLINE FONTAINE

PHD STUDENT

Nitrogen fertilizer replacement value

Negative NFRV of substrates with high straw contents

Average NFRV increase from 14% (before AD) to 39% (after AD)

Nitrogen fertilizer replacement value

➢ Increase NH₄⁺/total N ratio → higher crop N uptake
➢ Lower C/N ratio → reduction of potential for immobilisation

Conclusion

Anaerobic digestion improves the use of crop residues and cover crops in organic farming systems :

- > Increase fraction of NH_4^+ in total N
 - ➤ Increase N fertilizer replacement value from 14% to 39%
- ➢ Reduction of C/N ratio
 - > Less immobilisation, improve synchrony with crop demand
- Additional biogas yields
- Other benefits:
 - > Mobile manure \rightarrow Spatio-temporal application
 - > Less residual N in soil \rightarrow reduce risk of N leaching

Thank you for your attention

