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Abstract
1.	 Agricultural management intensity and landscape heterogeneity act as the main 
drivers of biodiversity loss in agricultural landscapes while also determining eco-
system services. The trait-based functional diversity approach offers a way to as-
sess changes in community functionality across agroecosystems. We focused on 
carabids and spiders, because they are an important component of crop field bio-
diversity and have significant biological control potential.

2.	 We assessed the effect of small- vs. large-scale agricultural landscapes, organic 
farming, and within-field position on functional diversity of spiders and carabids. 
We sampled pairs of organic and conventional winter wheat fields in small-scale 
agricultural landscapes (former West Germany) and in neighbouring large-scale 
agricultural landscapes (former East Germany). We sampled arthropods with fun-
nel traps in transects at field edges, field interiors (15 m from edge), and field 
centres.

3.	 The gradient from field edges towards the centres played an important role: spi-
der body size decreased; ballooning ability increased, and hunting strategy 
switched from active hunters to more web-builders—presumably, due to higher 
microhabitat stability in the field centre. Higher trait diversity of spiders in field 
edges suggested higher biocontrol potential in small-scale agriculture. In contrast, 
carabid feeding switched from herbivores to carnivores, presumably due to higher 
pest densities inside crop fields. Furthermore, small-scale agricultural landscapes 
and organic management supported larger, i.e., less dispersive carabids.

4.	 Synthesis and applications. In our research, spiders were more sensitive to edge 
effects and less sensitive to management and landscape composition than car-
abids. Smaller fields and longer edges, as well as organic management increase 
carabid functional diversity, which may increase resilience to environmental 
change. Since many spider species are confined to field edges, the effect of within-
field position on functional diversity is more important in small-scale agricultural 
landscapes with more edge habitat than in large-scale agricultural landscapes. Our 
findings suggest that European Union policy should acknowledge the high bene-
fits of small-scale agriculture for the functional role of major predators such as 
spiders and carabid beetles, as the benefits are equal to those from a conversion 
to organic agriculture.
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1  | INTRODUC TION

Biodiversity loss in agricultural landscapes has been driven by the 
spread of intensive agricultural management, which has led to a de-
cline in ecosystem services such as biological pest control (Batáry, 
Báldi, Kleijn, & Tscharntke, 2011; Sutcliffe et al., 2015; Tscharntke, 
Klein, Kruess, Steffan-Dewenter, & Thies, 2005). The intensification 
of local agricultural practices, such as fertilizer and pesticide use, to-
gether with landscape simplification, such as enlarged farmland size, 
decreases the number of crop types and the amount of seminatural 
landscape elements. These processes are all potential contributors 
for the loss of biodiversity (Bertrand, Burel, & Baudry, 2016; Ekroos, 
Olsson, Rundlöf, Wätzold, & Smith, 2014).

Organic agricultural methods are reported to increase biodi-
versity in the agricultural landscape (Tuck et al., 2014); however, 
the effect of organic farming is highly heterogeneous, the results 
are taxon-specific (Bengtsson, Ahnström, & Weibull, 2005), and 
the effectiveness may depend on the landscape context (Batáry 
et al., 2011; Tscharntke et al., 2012). Low-intensity agricultural land 
use is enhanced by different incentives in many countries. In the 
European Union, agrienvironment schemes are a major source of 
nature conservation funding and exist in all member states (Batáry, 
Dicks, Kleijn, & Sutherland, 2015). The main aim of the programs 
focusing on organic farming is to reduce management intensity 
through abolishment of pesticide and inorganic fertilizer inputs 
(Tuck et al., 2014).

In agricultural landscapes, spatial heterogeneity, which is 
a combination of compositional and configurational heteroge-
neity (Duflot, Georges, Ernoult, Aviron, & Burel, 2014; Fahrig 
et al., 2011), is regarded as an important driver of biodiversity. 
Landscape composition can be measured as the variety and abun-
dance of different cover types, whereas configuration refers to 
the complex spatial arrangement, size, and position of landscape 
elements or the cumulative length of edges (Concepción, Díaz, & 
Baquero, 2008; Fahrig et al., 2011). Landscape structure is par-
ticularly important for arthropod assemblages, as several studies 
found an increase in spider and carabid diversity with spatial het-
erogeneity (e.g., Fahrig et al., 2015; Palmu, Ekroos, Hanson, Smith, 
& Hedlund, 2014). However, studies addressing configurational 
heterogeneity controlling for compositional heterogeneity are 
scarce (Pasher et al., 2013; Perović et al., 2015). Recent research 
has shown that several species of the same taxonomic group may 
respond differently to landscape configurational heterogeneity 
gradients (Duflot et al., 2014; Neumann, Griffiths, Hoodless, & 
Holloway, 2016). Here, we addressed the effect of high landscape 
configurational heterogeneity, which can be obtained by reducing 
field sizes (Fahrig et al., 2011).

The historical division of Germany after the World War II re-
sulted in different landscape structures of the former East and West 
Germany. After the collectivization in the 1950s, agricultural man-
agement in East Germany switched to large-scale homogeneous 
agriculture. The differences in landscape structure are still visible 
(Batáry et al., 2017). The average farm size is six times bigger in the 
Eastern part of Germany (Batáry et al., 2017), offering the opportu-
nity to study the effect of configurational landscape heterogeneity 
under similar agricultural management and climatic conditions.

Trait-based functional diversity can be defined as the rela-
tive abundance, range, and dispersion of functionally meaningful 
life-history trait values of organisms. It relates the functional trait 
characteristics of species to ecosystem properties and functioning 
(Díaz et al., 2007; Petchey & Gaston, 2006). For example, the higher 
functional diversity of predatory arthropods of agroecosystems im-
plies not only different hunting strategies and prey items, but also a 
higher potential for biological pest control (Letourneau & Bothwell, 
2008). Thus, the functional diversity approach offers a useful tool 
to assess ecosystem functions and services (Díaz & Cabido, 2001). 
Recent research shows increasing interest in the link between func-
tional diversity and land use change (Sams et al., 2017), with some 
studies focusing on the effect of configurational heterogeneity on 
invertebrate functional diversity (Neumann et al., 2016; Perović 
et al., 2017). However, there is a need to address the effects of land 
use change on functional diversity along a landscape heterogeneity 
gradient (De Lima, Dallimer, Atkinson, & Barlow, 2013). Furthermore, 
relatively little is known about the effect of edges on the functional 
diversity of arthropods (but see e.g., Gallé, Szabó, Császar, & Torma, 
2018; Krauss, Gallenberger, & Steffan-Dewenter, 2011).

Many carabid beetles and all spiders are polyphagous preda-
tors commonly found in winter wheat (Triticum aestivum). They are 
among the most important biological control agents of winter wheat 
pests (Diekötter, Wamser, Wolters, & Birkhofer, 2010). The aim of 
our study was to compare the effectiveness of organic farming for 
conservation of spider and carabid functional diversity in small- vs. 
large-scale agriculture, and thereby to assess the effect of configura-
tional heterogeneity on within-field patterns of functional diversity. 
We selected pairs of organic and conventional fields in small-scale 
agricultural landscapes in the former West (lower Saxony) and in 
large-scale agricultural landscape in the former East (Thuringia) 
Germany. We hypothesized that (a) smaller fields have higher func-
tional diversity than large fields, (b) organic farming supports more 
functional diversity than conventional farming, and (c) contrast be-
tween field edges and centres is lower in small fields than in large 
fields. The overall goal of our study was to provide evidence how 
landscape structure, organic farming, and within-field position shape 
spider and carabid functional diversity.
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2  | MATERIAL S AND METHODS

2.1 | Study sites

We selected nine pairs of organic and conventional winter wheat 
fields in Thuringia, in the Eastern part of Germany and another nine 
pairs in the Western part of Germany in Lower Saxony (N = 36). We 
selected winter wheat as it is the economically most important arable 
crop of the region (Batáry et al., 2017). The average size of organic 
fields was 21.7 ± 5.5 ha (East, mean ± SEM) and 3.7 ± 0.7 ha (West) 
and the average size of conventional fields was 18.3 ± 2.1 ha (East) 
and 3.3 ± 0.3 ha (West) (for further details and map see Batáry et al., 
2017). The major difference in the landscape structure between 
East and West was due to landscape configuration. Configurational 
heterogeneity was higher in the West with 70% more field edges 
(11.0 ± 0.8 km East organic (mean ± SEM); 10.8 ± 0.6 km East con-
ventional; 18.3 ± 1.3 km West organic, and 19.5 ± 1.2 km West 
conventional).

We selected fields belonging to one pair within the area of 
one village close to each other (2598 ± 583 m East [mean ± SEM]; 
1101 ± 216 m West). We selected three villages with one pair of or-
ganic and conventional fields (in both East and West) and we had 
three villages with two organic and conventional field pairs resulting 
in a cross-nested sampling design (Batáry et al., 2017). We explored 
the functional diversity pattern within fields with transects at three 
positions, (a) field edge, (b) field interior, 15 m from field edge, and (c) 
field centre, 120 and 75 m from field edge in large and small fields, 
respectively (Figure S1).

2.2 | Arthropod sampling and ecological traits

We collected arthropods using a pair of funnel traps at each tran-
sect inserted into the ground, flushed with the soil surface (diam-
eter = 10 cm, depth = 25 cm). We used 50% ethylene-glycol and 
water solution as preservative and a few drops of odourless deter-
gent (Drogerie Markt, Denkmit Spülmittel Ultra Sensitive) to reduce 
the surface tension. The traps were applied with a funnel to re-
duce vertebrate by-catches and a plastic roof (25 × 25 cm, 8–10 cm 
aboveground level) to prevent the dilution of preservative (Lange, 
Gossner, & Weisser, 2011). In each transect, we placed traps at least 
10 m from each other. There were two 1-week long sampling peri-
ods with 5 weeks break between them. We chose sampling dates 
in mid-May and late June (2013) before the full ripening of wheat. 
The funnel trap contents were preserved in 70% alcohol for further 
identification. Adult spiders and carabids were identified to species 
using standard keys (Hurka, 1996;  Nentwig, Blick, Gloor, Hänggi, 
& Kropf, 2017). Voucher specimens are stored in the collection of 
Agroecology, University of Göttingen (carabids) and in the collection 
Department of Ecology, University of Szeged (spiders).

We selected three ecological traits for spiders and carabids 
(body size, feeding trait, dispersal ability). Average body size of each 
species was given as continuous variable using literature data in mm 
following Nentwig et al. (2017) for spiders and Homburg, Homburg, 

Schaefer, Schuldt, and Assmann (2014) for carabids. We ranged 
body size values between 0 and 1 to down weight the high values 
attributed to length of large arthropods. We used spider hunting 
strategy (web-builder, active hunter; coded as 0 and 1, respectively) 
and carabid feeding preference (herbivore, omnivore and carnivore; 
coded as 0, 0.5 and 1, respectively) as feeding trait (Cardoso, Pekár, 
Jocqué, & Coddington, 2011; Larochelle, 1990). Finally, we classi-
fied spider species as either frequently ballooning (code: 1), rarely 
ballooning (code 0.5) or nonballooning species (code: 0; Blandenier, 
2009) and carabid species wing system as macropterous (fully de-
veloped wings, code: 1), dimorph (either with developed or with re-
duced wings, code: 0.5), or apterous/brachypterous (reduced or no 
wings, code: 0; Hurka, 1996; Hendrickx et al., 2009), which corre-
sponds to the dispersal ability of species.

2.3 | Data analysis

We analysed transects (N = 108), thus we pooled data from the two 
funnel traps and two collection periods (Madeira et al., 2016), for 
spiders and carabids separately. We calculated community weighted 
mean values (CWM), i.e., the average of trait values weighted by the 
relative abundances of each species for each trait at each transect 
position (Lavorel et al., 2008; Ricotta & Moretti, 2011). We also cal-
culated functional divergence (FDvar), which shows higher values 
when the abundance is increasing towards either one or both mar-
gins of the trait distribution, and which is lower when abundance is 
concentrated towards the average value of the trait (Pla, Casanoves, 
& Di-Rienzo, 2012). We calculated FDvar indices according to Lepš, 
de Bello, Lavorel, and Berman (2006), and we used the R package 
(FD) to calculate CWM indices (Laliberte & Legendre, 2010).

To test whether landscape configuration, management type, 
transect position, and their second-order interactions had a signif-
icant effect on the trait composition and functional diversity of spi-
ders and carabids, we used linear mixed effects models and model 
averaging. We used lmer (lme4, Bates, Maechler, Bolker, & Walker, 
2014) models with random effect terms that included “field pair” 
embedded in “village” and “farmer”. The suite of all possible linear 
combination of predictor variables of the above models was used 
to generate parameter estimates for landscape configuration, field 
management, and within-field position. Akaike’s Information Criteria 
corrected for small sample sizes (AICc) was calculated to rank candi-
date models. The models with <6 ΔAICc of the best model (i.e., the 
model with the lowest AICc) were used for model averaging (Bolker 
et al., 2009; Richards, 2008) with the R package MuMIn (Barton, 
2009).

We used a three-table ordination method, the RLQ analysis to 
test the direct link between environmental conditions and spider or 
carabid species trait attributes. This analysis uses three data matri-
ces (Matrix R: landscape and management attributes by sites, Matrix 
L: species by sites, Matrix Q: species by traits). The RLQ analysis 
is an extension of coinertia analysis, which simultaneously takes 
into account the information contained in the tables R, L, and Q. It 
graphically summarizes and represents the main costructure in the 
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three matrices (Dray, Chessel, & Thioulouse, 2003). The overall sig-
nificance of the relationships between variables of the R-tables and 
species traits of the Q-tables was assessed by a Monte-Carlo test 
with 5000 permutations on total inertia of the RLQ analyses. Finally, 
we tested the link between site scores and environmental variables 
using Kendall tau rank correlation coefficients. We tested the link 
between species scores and trait values using Kendall tau for cate-
gorical variables and Spearman correlations for body size, the only 
continuous variable (Carrié et al., 2017). Analyses were conducted in 
R using the ade4 package (Dray & Dufour, 2007).

3  | RESULTS

3.1 | Spiders

From the 36 winter wheat fields, we recorded 4769 adult spiders 
belonging to 71 species (Appendix S1). The most abundant species 
were aerial dispersers such as linyphiid spiders, Oedothorax apicatus 
(Blackwall, 1850) and Erigone dentipalpis (Wider, 1834), represent-
ing 45.5% of all spider individuals caught. We captured 56 species 
and 2124 individuals in conventional fields; 53 species and 2645 
individuals in organic fields; 57 species and 2159 individuals in 
East Germany; 48 species and 2600 individuals in West Germany. 

Transect position strongly affected all trait indices (CWM, FDvar) 
of functional diversity, except FDvar body size. We found a signifi-
cantly higher proportion of web-builders, and larger bodied spiders 
at the edge than in the field centre. Whereas more active hunters 
and ballooning spiders occurred in the centre than in the edge. 
FDvar for hunting strategy and ballooning was significantly related 
to within-field position, as linear models and model averaging indi-
cated higher values in the field edges than in the centre; however, 
landscape configuration and organic management had no significant 
effect (Figure 1, Appendix S2). We did not find any significant effect 
of interactions.

The spider RLQ analysis indicated a significant relationship 
between environmental attributes and species trait composition 
(p < 0.001, permutation test). The first two RLQ axes explained 
90.5% of the total inertia (64.6% and 25.6%, respectively). The RLQ 
plot revealed that web-building, nonballooning, and large spiders 
were associated with edge habitats. Ballooning spiders were asso-
ciated with interior and centre transect position (Table 1, Figure 2a).

3.2 | Carabids

From the two sampling periods, we collected 14986 carabid bee-
tles belonging to 89 species. The most abundant species were 

F IGURE  1 Functional diversity indices of spider communities in organic (Org) and conventional (Conv) fields in small-scale (West) and 
large-scale (East) agricultural landscapes. (a) Community weighted mean (CWM) of body size (continuous in mm and ranged between 0 
and 1); (b) CWM hunting strategy (active hunter: 0, web-builder: 1); (c) CWM ballooning (nonballooning: 0, ballooning: 1); (d) Functional 
divergence (FDvar) size; (e) FDvar hunting strategy; (f) FDvar ballooning; Transects: E: field edge: I: interior, C: centre (see Table S2 for model 
averaging results) *p < 0.05, **p < 0.01, ***p < 0.001
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Anchomenus dorsalis (Pontoppidan, 1763) and Poecilus cupreus 
(Linne, 1758), representing 37.3% of the total carabid abundance 
(Appendix S3). We identified 72 species and 6240 individuals from 
conventional fields; 71 species and 8622 individuals from organic 
fields; 78 species and 8045 carabids from East Germany, 67 spe-
cies and 6851 carabids from West Germany. Region had a signifi-
cant effect on carabids, as we found larger species (CWM of size) 
and more carnivorous carabids (CWM food) with higher variance 
in feeding preference (FDvar food) in large-  than in small-scale 
agricultural landscapes. Organic management had a significant 
negative effect on the variance in flight ability (FDvar flight ability) 
and we found larger carabids and larger variance of carabid body 
size in organic than conventional fields (CWM size and FDvar size). 
We did not find any significant effect of interactions (Figure 3, 
Appendix S4).

The RLQ analysis performed on carabid data also showed a signif-
icant overall association between species trait composition and en-
vironmental attributes (p < 0.01, permutation test). First and second 
RLQ axes explained 84.12% of the total inertia (59.6% and 24.5%, 
respectively). Herbivore and apterous carabids were associated with 
edge position and large-scale agriculture, whereas carnivore cara-
bids with interior position (Table 1, Figure 2b).

4  | DISCUSSION

In accordance with our hypotheses (1) and (2), we found positive 
effects of increasing landscape configurational heterogeneity (i.e., 
smaller field size in West Germany) and organic management on 
carabid functional diversity. Concerning hypothesis (3), transect 

First RLQ axis Second RLQ axis

Corr. coeff. p-value Corr. coeff. p-value

Spiders, environmental variables

Region (E/W) 0.164 0.045 0.615 <0.001

Management (C/O) 0.369 <0.001 0.492 <0.001

Transect position 
(Centre)

0.565 <0.001 0.001 0.999

Transect position 
(Interior)

0.130 0.112 −0.261 0.002

Transect position (Edge) −0.696 <0.001 0.261 0.002

Spiders, traits

Body size −0.544 <0.001 0.091 0.448

Dispersal: ballooning −0.475 <0.001 −0.206 0.035

Dispersal: probable 
ballooning

0.225 0.021 0.257 0.008

Dispersal: nonballooning 0.352 <0.001 −0.001 0.998

Hunting: web/active −0.563 <0.001 0.493 <0.001

Carabids, environmental variables

Region (E/W) 0.738 <0.001 0.369 <0.001

Management (C/O) 0.287 <0.001 0.738 <0.001

Transect position 
(Centre)

0.001 0.999 0.001 0.999

Transect position 
(Interior)

−0.261 0.001 −0.174 0.034

Transect position (Edge) 0.261 0.001 0.174 0.034

Carabids, traits

Body size 0.186 0.080 0.366 <0.001

Feeding: carnivore −0.486 <0.001 0.026 0.763

Feeding: omnivore 0.257 0.003 −0.008 0.921

Feeding: herbivore 0.399 <0.001 −0.029 0.733

Flight ability: 
macropterous

0.059 0.496 −0.069 0.424

Flight ability: dimorph −0.060 0.489 0.110 0.207

Flight ability: apterous −0.001 0.901 −0.031 0.718

TABLE  1 Correlations between the 
first two RLQ axes with both 
environmental descriptors and species 
traits. Correlation coefficient (corr. coeff.) 
for factorial variables is Kendall’s tau, for 
the only continuous variable (body size) it 
is Spearman’s rho
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position affected spider but not carabid communities, irrespective 
of landscape configuration and management type, with higher func-
tional diversity towards the field edges.

4.1 | Landscape effects

Smaller field sizes at a landscape scale indicate a higher density 
and, thereby, presumably connectivity, through seminatural linear 
habitats (e.g., field margins, road verges), and thus, higher landscape 
configurational heterogeneity. We found that variation in carabid 
dispersal ability decreased with lower landscape configurational 
heterogeneity while higher configurational heterogeneity (small 
fields in our study) was associated with lower dispersal ability and 
smaller carabids. Body size of carabids is known to relate to their 
epigeic dispersal ability, with larger species moving longer distances 
than smaller carabids (Homburg, Schuldt, Drees, & Assmann, 2013). 

Landscape simplification, including reduced habitat quantity and 
lower matrix quality, may have a negative effect on species with 
high dispersal probabilities through increased dispersal mortality 
(Tscharntke et al., 2012). The decrease in carabid abundance, may 
result in lower biocontrol potential.

Landscape configuration had no effect on spider functional di-
versity according to the regression models. In line with these results, 
Martin, Seo, Park, Reineking, and Steffan-Dewenter (2016) did not find 
significant effects of landscape configuration on spiders. However, 
landscape configurational heterogeneity increases with the density 
of seminatural habitat-arable field interfaces that may facilitate the 
spillover of predator arthropods from edges into neighbouring fields 
(Martin, Reineking, Seo, & Steffan-Dewenter, 2013). It may also in-
crease the pool of species related to natural and seminatural habitats 
due to small-scale habitat diversity (Purtauf et al., 2005). Thus, com-
plex landscapes are generally associated with increased diversity of 
generalist arthropods (Chaplin-Kramer, O’Rourke, Blitzer, & Kremen, 
2011), irrespective of management type (Schmidt, Roschewitz, Thies, 
& Tscharntke, 2005). Higher species diversity does not necessarily 
mean a stronger functional differentiation (Bello, Lepš, Lavorel, & 
Moretti, 2007), but may increase resilience to environmental change 
and thereby, sustain ecosystem functioning (Tscharntke et al., 2012). 
However, the effect of configurational heterogeneity may not be 
uniform along a landscape composition gradient, changing with the 
amount of suitable habitat (Villard & Metzger, 2014).

4.2 | Management effect

Organic farming increases biodiversity according to a recent 
meta-analysis (Tuck et al., 2014). In our study, we confirmed the 
positive effect of organic farming on carabid functional diversity. 
Several earlier studies suggested that organic management may 
not enhance carabid species richness; however, organic and con-
ventional fields may differ in species composition (Purtauf et al., 
2005) and abundance (Birkhofer, Bezemer, Hedlund, & Setälä, 
2012; Diekötter, Wamser, Dörner, Wolters, & Birkhofer, 2016; but 
see Diekötter et al., 2010; Jonason, Smith, Bengtsson, & Birkhofer, 
2013). Organic fields may be more suitable habitats for arthropods 
than conventional fields. The lower management intensity and 
omission of pesticides reduce arthropod mortality (Schmidt et al., 
2005), and increase structural complexity of the habitat through 
higher weed density (Weiner, Griepentrog, & Kristensen, 2001). 
The heterogeneous habitat structure provides a broad spectrum 
of food resources, high prey abundance, and more potential sites 
for web-building spiders (Diekötter & Crist, 2013).

Our results showed a positive effect of organic farming on CWM of 
carabid body size. The mean body size of the individuals may decrease 
with increasing management intensity (Blake, Foster, Eyre, & Luff, 1994). 
Larger carnivorous and herbivorous carabid species require more and 
larger food items, which determines their functional role in biological 
pest control and weed-seed predation (Honek, Martinkova, Saska, & 
Pekar, 2007; Wheater, 1988). Rusch, Binet, Delbac, and Thiéry (2016) 
provided evidence that mean predator body size is among the best 

F IGURE  2 Ordination plots of landscape, management and 
transect descriptors (dots), and species trait categories (arrows) 
along the two-first axes of the RLQ analysis, for (a) spiders and (b) 
carabid beetles
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predictors of predation rates. An increased predator size leads to higher 
per capita predation rates and more efficient reduction of prey density 
and biomass (Emmerson & Raffaelli, 2004). However, predator body size 
may also relate to prey size preferences (Brose, 2010). Here, we showed 
that organic management was related to higher FDvar values, a higher 
variation in carabid size. This variation indicates a wider food preference 
of the carabid fauna in organic fields compared to conventional fields 
and thus a strong contribution of carabids to both insect pest and weed 
control in organic farming. Weed species diversity and cover is higher in 
organic than in conventional fields (Batáry et al., 2017). The weed con-
trol potential of carabids in arable fields is well known (Bohan, Boursault, 
Brooks, & Petit, 2011), since carabids can significantly reduce the weed-
seed stock (Diekötter et al., 2016; Kulkarni, Dosdall, & Willenborg, 
2015). Trichard, Alignier, Biju-Duval, and Petit (2013) detected local 
management and landscape effects on carabid diversity and weed seed 
predation; however, seed predation is temporally highly variable during 
the crop cycle (Westerman, Wes, Kropff, & Van der Werf, 2003).

4.3 | Edge effect

In agricultural landscapes, the majority of seminatural habitats are 
situated along the field edges (Schirmel, Thiele, Entling, & Buchholz, 
2016). Species diversity and arthropod abundance are enhanced by 
the seminatural habitats (Dainese, Luna, Sitzia, & Marini, 2015). Field 

edges are less disturbed habitats than crop interiors due to less effec-
tive weed and pest management, spillover from neighbouring habitats 
(Marshall & Moonen, 2002), favourable spatial habitat structure, mi-
croclimate, and alternative food sources (Bianchi, Booij, & Tscharntke, 
2006). Such habitat parameters may play a prominent role in shaping 
the trait composition of spiders and carabids in herbaceous field mar-
gins (Schirmel et al., 2016). Crop management reduces the abundance 
of ground-dwelling arthropods, e.g., ploughing causes direct mortal-
ity and emigration due to disturbance and altered habitat structure. 
Thus, many species overwinter in field margins and colonize the arable 
fields from these seminatural habitats (Thorbek & Bilde, 2004). The 
ground-dwelling movement of spiders is an effective short-distance 
dispersal mode, and dispersal by ballooning allows spiders to rapidly 
colonize remote habitats (Schmidt et al., 2005). We found smaller spi-
ders with higher ballooning propensity in field interiors and centres 
than in edges suggesting the prominent role of ballooning dispersal 
in agricultural landscapes. The different dispersal strategy of spiders 
could result in a different distribution pattern of spiders.

5  | CONCLUSIONS

Our results highlight that reduced management intensity of local 
farming practices, i.e., organic agriculture, and higher landscape 

F IGURE  3 Functional diversity indices of carabid communities. (a) Community weighted mean (CWM) Body size (continuous in mm); (b) 
CWM Food (herbivore: 0, omnivore: 0.5 and carnivore: 1); (c) CWM Flight ability (apterous/brachypterous: 0, macropterous:1); (d) Functional 
divergence (FDvar) Body size; (e) FDvar Food; (f) FDvar Flight ability; Transect: E: field edge; I: interior, C: centre. Effects of region (R), 
management (M) and transect on each index including significance level are indicated above each plot (see Table S4 for model averaging 
results) *p < 0.05, **p < 0.01, ***p < 0.001
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heterogeneity, i.e., small-scale agriculture, promote the functional di-
versity of carabids. The small-scale agriculture in the West was char-
acterized by more predatory carabids with smaller body size, which has 
been shown to increase predation rates in cereal fields (Rusch, Birkhofer, 
Bommarco, Smith, & Ekbom, 2015). Organic management appeared to 
favour larger carabids, but also a higher variation in body size of beetles 
suggesting a higher response diversity to environmental change. Larger 
body size and higher overall trait diversity of ground-dwelling spiders in 
field edges were related to an enhanced spider biocontrol in small-scale 
agricultural landscapes, due to their high edge density. Maintenance or 
restoration of seminatural edge habitats and small-scale agriculture is 
needed to maintain heterogeneity in agricultural landscapes sustaining 
functionally diverse arthropod communities and potential biocontrol. 
Functional trait composition and diversity indices are more sensitive 
to habitat quality and landscape scale changes than alpha diversity in-
dices, such as species richness (Gallé, Gallé-Szpisjak, & Torma, 2017; 
Rusch et al., 2015; Schirmel et al., 2016), and provide an insight into 
community–environment interactions and their effect on ecosystem 
functioning (e.g., Laliberte et al., 2010; Rusch et al., 2016).
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