Relevance of roughage feeding to pigs

Problem
A species-appropriate pig diet consists of different feed components with different structures. However, such a diet is technically, and in terms of ration planning, more complex to produce than a feed that is always of the same structure.

Solution
Integrate roughage feeding into ration plans and use the farm’s potential for feed production.

Benefits
Roughage feeding promotes animal health and welfare and can, at the same time, reduce feed costs on the farm. A good structure and a high crude fibre content of a ration serves as enrichment, improves the feeling of satiety and improves stomach health (Picture 1).

Practical recommendation
- With combined feeding, the energy requirement of pregnant sows can be reduced by up to 50% in the first stage of gestation and up to 20% in the last stage of gestation by providing energy-rich roughage products like grass or corn silage (Picture 2).
- For pregnant sows, the daily feed intake capacity for clover grass and maize silage is 2-4 kg fresh matter.
- In addition to clover grass silage (with a high protein value), a cereal and minerals mixture without protein-rich feed components should be used.

Applicability box

Theme
Pigs, Feeding and ration planning

Geographical coverage
In all countries

Application time
Any time

Required time
The time needed to harvest the roughage and feed animals

Period of impact
Immediate impact

Equipment
Machines for harvesting and ensiling, for delivering feed to animals as well as a feeder.

Best in
Gestation sows and finishing pigs

Picture 1: Feeding roughage, in this case, fresh grass, to sows and piglets. Photo: BOKU

Picture 2: A round bale feeder for the ad libitum feeding of rain-protected straw, hay or silage to pregnant sows. Photo: Antje Schubbert

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 773911. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract.
• In addition to maize silage, a very protein-rich concentrate is needed. The daily intake of 3.5 kg maize silage per sow can compensate for a concentrated feed quantity of up to 1 kg per day compared with pure concentrated feed.
• In addition to grass silage, 85% of complete feed requirement for pregnant sows could be provided.
• Feeding silage to suckling piglets and weaned piglets prevents diarrhoea.

Further information

Video
• The video "Feeding pigs: effect of silage" is available on Organic Farm Knowledge.

Further reading
• Patzelt, Sybille et al. (2011) Bedarfsgerechte Fütterung von Biosauen und ihren Ferkeln, FiBL, 2011, Merkblatt 1569

Weblinks
• Further documents can be found on the Organic Farm Knowledge website.

About this practice abstract and OK-Net EcoFeed

Publishers
Research Institute of Organic Agriculture (FiBL)
Ackerstrasse 113, Postfach 219, CH-5070 Frick
Phone +41 62 865 72 72, info.suisse@fibl.org, www.fibl.org
IFOAM EU, Rue du Commerce 124, BE-1000 Brussels
Phone +32 2 280 12 23, info@ifoam-eu.org, www.ifoam-eu.org

Author: Barbara Früh
Contact: barbara.frueh@fibl.org
Review: Antoine Roinsard, ITAB; Lindsay Whitstance, ORC
Layout: Andreas Basler, FiBL
Permalink: Organic-farmknowledge.org/tool/36930

OK-Net EcoFeed: This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OK-Net EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: ok-net-ecofeed.eu
Project partners: IFOAM EU Group (project coordinator), BE; Aarhus University (ICROFS), DK; Organic Research Centre (ORC), UK; Institut Technique de l’Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (FiBL), CH; Bioland, DE; Associazione Italiana per l’Agricoltura Biologica (AIAB), IT; Donau Soja DS, AT; Swedish University of Agricultural Sciences, SE; ECOVALA, ES; Soil Association, UK.

© 2019