

Module 7.1

Superchilling General Aspects and Potential of the technology

Ingrid C. Claussen* and Michael Bantle

SINTEF Energi AS, Dep. of Thermal Energy

Trondheim (Norway)

Ingrid.c.claussen@sintef.no

Outline

- 1. Background
- 2. Superchilling
- 3. Superchilling methods
- 4. Technologies for superchilling
- 5. Industrial benefits
- 6. Environmental benefits
- 7. Consumer benefits
- 8. Challenges
- 9. Future potentials
- 10.Conclusions

References

Learning Outcomes

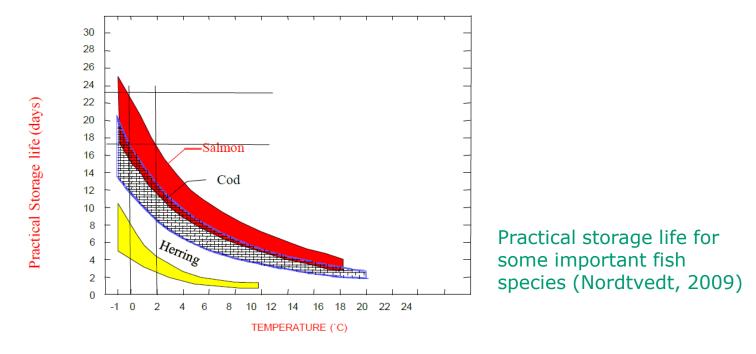
CORE organic

 \Rightarrow What is superchilling?

 \Rightarrow What is the potential of the technology?

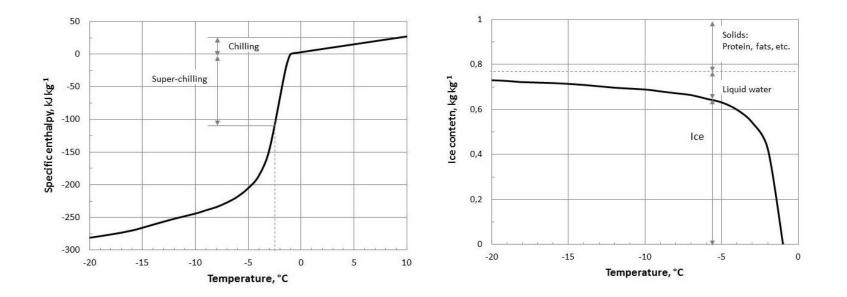
- From a producer perspective
- From a consumper perspective
- ⇒How products canbe processed into superchilled products.
- ⇒How much ice content commonly is achieved in superchilling.
- What shelf life extensions can be expected for superchilled products?

Background I


- Described already in the 1920's by Le Danois
- In 1970's and 1980's: transportation of fish at sea- low temperatures increased the shelf-life
- Continuous development of the concept during the last 20 years
- Norwegian food industry is currently taking on the superchilling concept but only for "in-house" use for;
 - Expand shelf life to ease production and storage planning
 - Extend the sales period for fresh product (meat)
 - ✓ Increase product yield and quality of fish fillets
- Advantages related to prolonged shelf life is not fully exploited

Background II

 The general accepted shelf-life depends on the storage temperature and temperature fluctuation

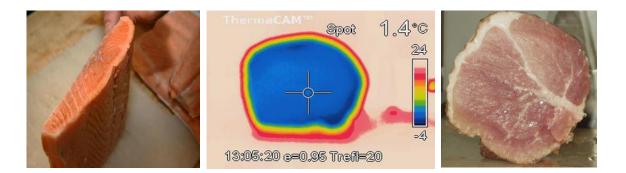


Background III

CORE organic

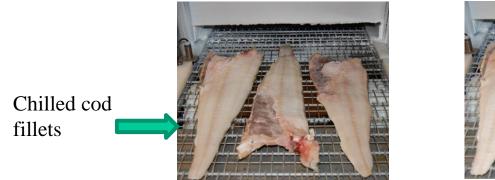
Superchilling *in short*

- Ice content of 5% to 20%
- Stable storage temperature
- Non-frozen appearance



Superchilling I

- Superchilling is a method used to extend the self-life of products without reducing the quality
- Product temperature is reduced 1-2 °C below T_{i, product} (Initial freezing point of the product)
- Different superchillings methods
- Cold air at low temperature, high speed and short time seem to be the most interesting superchilling method
- The result is a small thin layer of ice formed at the surface -"shell freezing"



Superchilling II

- The ice formed in the surface will absorb heat from the interior and will eventually reach equilibrium
- The water that is transformed to ice and is used to protect the product from heat impact instead of using surrounding ice (e.g. fresh fish)
- Ice fraction between 5 and 30 % ok for fish, but vary with product
- 10 to 15 % ice-fraction is "normal"
- Superchilling reduces microbiological growth and expands the product shelf life

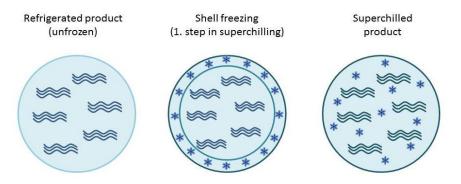
Superchilling III

Storage temperature vs. ice fraction

Product	Storage temperature	Ice fraction	Initial freezing
	(superchilled)		point
Salmon filet	-1.8 °C	6.3 %	
	-2.2 °C	18.2 %	-1.6 °C
	-2.6 °C	26.9 %	
Trout	-2.2 °C	8.2 %	-2.0 °C
	-2.6 °C	21.8 %	
	-3.0 °C	27.0 %	
Mackerel	-1.8 °C	6.3 %	-1.6 °C
	-2.2 °C	18.2 %	
	-2.6 °C	29.3 %	
Herring	-1.8 °C	4.0 %	
	-2.2 °C	11.6 %	-1.6 °C
	-2.6 °C	18.7 %	
Cod (aquaculture)	-1.2 °C	10.2 %	
	-1.6 °C	27.9 %	-1.0 °C
	-2.0 °C	38.6 %	
Beef, lean	-1.0 °C	5 %	n.a.
(Valentas 1997)	-2.0 °C	45 %	

Ice fraction is the key

- Scientifically
 - Developing/evaluating measuring methods
 - Relationship quality (sensorial, technical and bio-chemical) vs. ice fraction status and history
 - ⇒ Developing advanced dynamic process control
- Commercial
 - ⇒ Product focus
 - Developing simple process control
 - Equipment evaluation
 - ⇒ Stable storage facilities
 - ➡ Logistics



Superchilling methods II

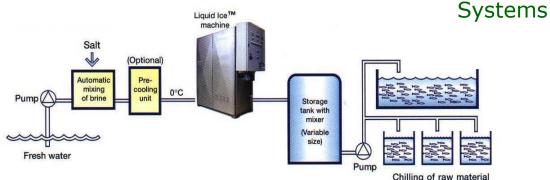
There are different methods for performing superchilling- even today:

- Superchilled storage of foods *without* any pre-treatment
- Superschilled storage after *initial surface freezing* followed by temperature equalization
- Practical superchilling methods:
 - Refrigerated sea water (RSW)
 - Air blast tunnels
 - Contact chilling
- Initial surface freezing causes a more predictable ice-content in the product

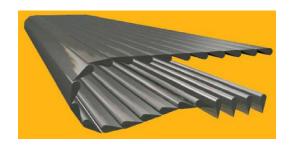
Technologies for superchilling I

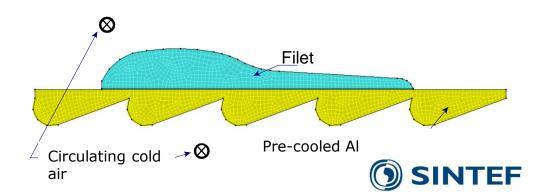
Air-blast Freezing Systems

Impingement Systems



Ice slurry as cooling agent

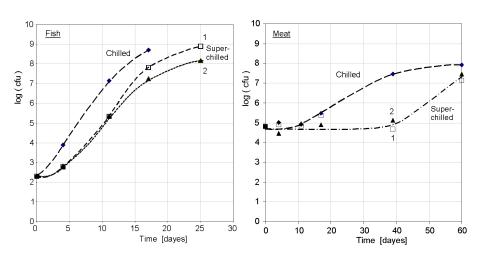




Chilling of raw material before processing and at intermediate stages.

Land-based

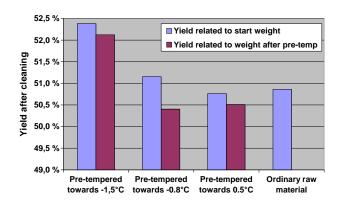
CBC - Combined Blast Contact chiller



Industrial Benefits I

Shelf-life

- Longer "fresh sale" period. Stock up before compagins
- Seasonal demand for only parts of the animals; ham, cutlets
- Superchilling reduces the demand for freezing (up to 40%)- more sold as fresh
- Reduction of total energy use for refrigeration



Industrial Benefits II

Increased yield

- Fish fillets are slightly more firm before trimming and more fish meat is wasted
- Research shows increased yield up to +1.5 % in fish fillet production

Reduced CO₂ eqv.

- No need for ice in fresh fish boxes during transportation
- From Norway: 900 trucks* with fresh fish each week with approx. 25-30% ice
- \circ 23 % reduction in CO₂ eqv. Changing from ice chilled fish transportation towards superchilled fish transportation
 - Fewer trucks are needed
 - Less flake-ice production

* In 2014

Environmental benefits II

- The reduced need for packaging and transport of ice in a system applying superchilling will compensate for the environmental impacts of a significant higher energy demand in superchilled production.
- Chilled fillets have ca 30 % higher impact potentials than superchilled fillets for all environmental impact categories. This number is a direct reflection of the ice content in the boxes with chilled fillets.
- The ice is the most important parameter in this assessment
- Transportation by truck and packaging material are by far the two biggest contributors to the impact potential in both systems.
- The potential for reducing the impact on global worming (GWP) is ca 77 925 tons of CO2-equivialens per year. Corresponds to the annual emissions of roughly 24 000 cars.

Environmental benefits III

Reduced food waste

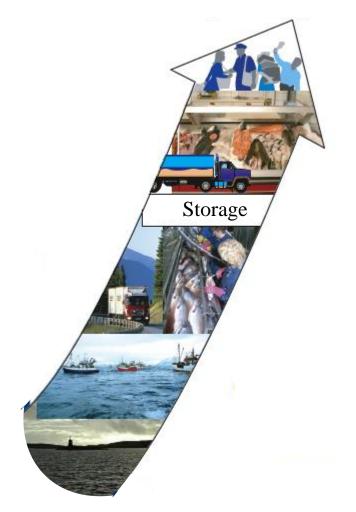
- Higher yield
- Double shelf-life reduces waste (>30 % today)
- Reduced demand of freezing

Some reported shelf-life extentions

Product	Superchilled storage temperature	Increase shelf life compare to conventional refrigeration
Cod fillets (farmed)	-2.2 °C	+ 14 days
Pork roast	-2.0 °C	+ 14 weeks
Atlantic salmon (farmed)	-1.4 °C and -3.6 °C	+ 17 - 21 days
Chicken	n.a.	+ 15 days
Lamb-leg, fresh	-1.6 °C	+ 19 days

Consumer benefits I

Food Quality


- Prolonged shelf-life
- Fresh quality- no significant difference in drip loss, colour, pH, protein degradation and sensory

Food Safety

Longer shelf-life

Food Waste

Doubled shelf-life reduces waste

Challenges with superchilling

- Food quality Increased pressure drip-loss for some products
- Food waste potenitial for superchilling not utilized today. More investigation regarding superchilling cold chain and use of PCM is needed
- Higher energi use than than traditional chilling, but lower than freezing
- Stringent demands for temperature control Ice content in the products is sensitive for temperature variations
- Foods are inhomogeneous, both regarding water content, composition and size
- The technology is not suited for all products
- Need for flexible superchilling equipment and dynamic process control for optimization
- Need for energy efficient refirgeration systems and utilization of surplus heat
- Need for highly skilled personell at the production plants, and more challenges further out in the cold chain
- Consumer involvement and approval is important

Future potential

In short term there is a high potential for the traditional meat/poultry- and fish industry AND for the organic product market

Industry

- Reduced demand for freezing, more sold as fresh
- Stock-up before campaigns.
- Increased yield in fish industry
- No ice during transport of fresh fish

Consumer
Reduced waste
Longer shelf-life

Conclusions

 Superchilling enable safe, high quality and long term storage of foods

Main advantages are

- 1. Extended shelf life
- 2. Increased production capacity
- 3. Increased yield and profit
- 4. Simplified production planning
- 5. New products and markets
- 6. Environmental friendly cold chain
- 7. Can be adapted to a wide range of products: Meat, fish, poultry...

References

- Nordvedt, T.S. (2009) *Superkjøling av fisk- en litteratirstudie og prosjektoveriskt.* In SINTEF Energiprosesser AS, Trondheim 20.
- Claussen, I.C. (2011) Literature review and experimental data of chilled, superchilled/supercooled fish quality and safety models. Deliverable D3.2.4.3 FRISBEE Food Refrigeration Innovations for Safety, Consumers' Benefit, Environmental Impact and Energy Optimisation Along the Cold Chain in Europe
- **Haugland, A.** (2006) *SUPERCHILLING innovative processing of fresh fish* NFTC, Trondheim 7-8 august 2006

