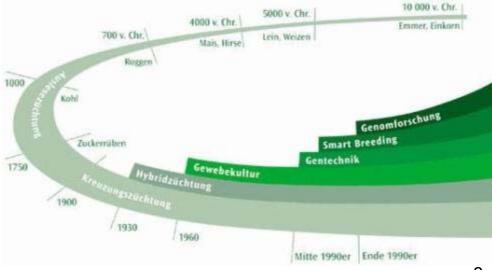


Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique


Neue Züchtungstechnologien Beurteilung gemäss den Prinzipien des ökologischen Landbaus

Monika Messmer (monika.messmer@fibl.org)
Forschungsinstitut für biologischen Landbau (FiBL, Schweiz)
Europäisches Konsortium für ökologische Pflanzenzüchtung (ECO-PB)
Mitglied der IFOAM_EU Saatgut Expertengruppe

Neue Züchtungstechniken:

- Smart Breeding
 - Markergestütze Selektion
 - > Doppelthaploide
 - > Zellfusionen
- Mutationszüchtung
 - > Tilling & Eco-tilling
 - Gezielte Mutagenese mittels Oligonukleotiden (Cibus)
 - > Gene Editing: Zinkfingernukleasen, TALEM, CRISPR-Cas9
- > Cisgenetik & Intragenetik
- > RNA Interferenz (RNAi)
- > Pfropfen auf GM Unterlage
- > Revers Breeding
- **>** Agro-Infiltration
- Minichromosomen
- Synthetische Biologie
- > Metabolomics

BL www.fibl.ora

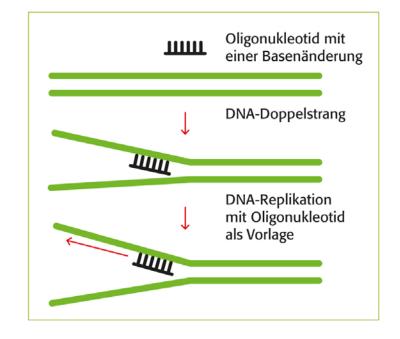
Cisgene Pflanzen

Übertragung isolierter Gene (in der selben Anordung) derselben Spezies, d.h. es werden keine artfremden Gene eingeführt

Beispiele:

- Phytophthora resistente Kartoffel
- Schorf-resistenter Apfel
- Feuerbrand-resistenter Apfel

Vorteile: Erhöhung der Resistenz bei Erhaltung aller übrigen Sorteneigenschaften, vor allem der polygen vererbte Geschmackseigenschaften, die durch konventionelle Kreuzung und Rückkreuzungsprogramme nur sehr langwierig und nicht zu 100% erreicht werden können (linkage drag)


Gezielte Mutationen mittels Oligonucleotiden

Oligonucleotide (20 – 100 Basen lange DNA-Einzelstränge) mit der gewünschten Punktmutation werden synthetisiert und via Elekroporation oder Partikelbeschuss in die Zelle transferriert

Die Oligonucleotide binden an die homologe Sequenz der

DNA Doppelhelix

Das Reparaturenzym ersetzt die entsprechenden Basen und so kann an gezielter Stelle die gewünschte Mutation erreicht werden

Clearfield®-Saatgut von BASF

iBL www.fibl.org

- ➤ Rapssorten mit mutipler Herbizidresistenz mithilfe des Cibus Rapid Trait Development Systems RTDSTM
- Dabei werden gezielte Punkt-Mutationen an dem Gen, das für die Herbizidanfälligkeit verantwortlich ist, ausgelöst und einzelne DNA Bausteine ersetzt
- Noch kein EU Entscheid, in Deutschland zuerst als equivalent zur Mutationszüchtung eingestuft → keine speziellen Anforderung am Sorten-Zulassungsverfahren, wurde jedoch angefochten, bisher noch nicht auf dem Markt in Deutschland, nur Sorten mit den gleichen Eigenschaften aus «herkömmlicher Züchtung»
- Die Clearfield®-Rapssorten werden durch die Endung CL auf den Säcken freiwillig in Deutschland gekennzeichnet.

Gezieltes Ausschalten einzelner Gene durch RNA-Interferenz (RNAi Silencing)

- Spezifische Hemmung der Genexpression durch kurze 21-25 nt lange doppelsträngige RNA Moleküle mit komplementärer Basensequenz
- Natürlicher Mechanismus dient vermutlich
 - der Abwehr viralen RNA
 - der Ausbreitung von Transposons
 - hochspezifischen Genregulation
- ➤ Kurze RNAi können durch Liposomen oder Gentransfer in die Zelle eingeschleust werden. Ist die Expression unerwünschte Gene z.B. durch dauerhafte Methylierung ausgeschalten, kann das Konstrukt wieder ausgekreuzt werden

Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology 25: 1307-1313

RNA Interference - Anderung der Genregulation Host induced Gene silencing

- Embrapa, Brasilien: Pinto-Bohne mit Resistenz gegen Golden Mosaik Virus (Abwehrmechanismus ständig aktiv, blockiert das Gen, das das Virus zur Vermehrung benötigt)
- Arctic Apples: Äpfel, die nicht braun werden
- Innate-Kartoffeln, die weniger Acrylamid bilden, da weniger Asparagin und Zucker
- Zustätzlich noch **Phytophthoraresistenz**
- Resistenz gegen Baumwollkapsepbohrer
- **IPK Gatersleben:**
 - Gerstenmehltau
 - Ahrenfusariose bei Weizen
- MPI:
 - Kartoffelkäfer, Veränderung der Chloroplasten DNA, die RNAi produziert, blockiert Aktin-Gen im Kartoffelkäfer

In Bearbeitung:

Virusresistenzen bei Pflaumen und Cassava (Maniok)

Site-spezifische Nukleasen Gene / Genome Editing,

- > ZFN: Zinkfinger Nukleasen
- **TALEN:** Transcription Activator-Like Effector Nuclease
- > CRISPR-Cas9: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) & Nuklease (Cas9) Enzym das die DNA schneidet (Immunabwehr der Bakterien gegen Viren)

Prinzip:

Erkennungssequenz zur Anheftung an eine ganz bestimmte Genregion auf dem Chromosom

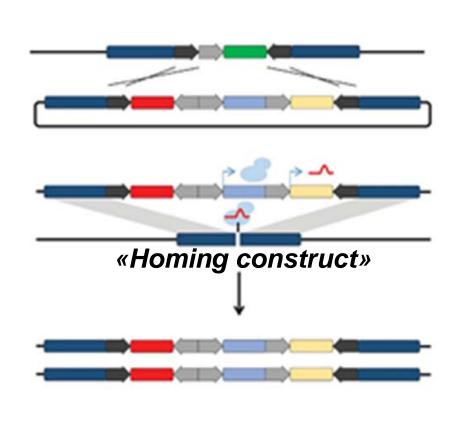
+

Nuklease= Enzym, das die DNA schneidet und DNA-Doppelstrangbrüche verursacht

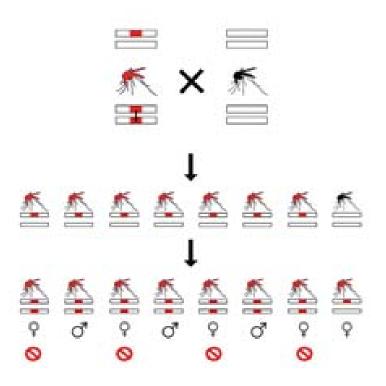
CRISPR-Cas9 Anwendungen: Gene Editing

- Doppelstrangbruch an spezifischer Stelle, Ausschalten eines Gens, Punktmutation durch Fehler bei DNA Reparatur (induzierte Mutation eines bestimmten Gens)
- Doppelstrangbruch & Matrize mit gewünschten Basenpaarsequenz, gezielter Austausch einzelner Basen des Gens, neues Allele, neues Merkmal (Gene Editing)
- Doppelstrangbruch & ein oder mehrere arteigene oder artfremde Gene wird zielgenau in Genom eingebaut (gezielter Gentransfer an bestimmter Stelle)

Voraussetzung: Gensequenz muss bekannt sein



CRISPR-Cas9 Anwendungen


www.fibl.org

- > Regulation der Genexpression durch inaktivierte (dead) dCas9 + Fusion mit
 - > Transaktivitäts oder Transrepressivitätsdomäne
 - Transport von Aktivatoren an bestimmten Genort: Aktivierung von Promotor-Region eines Gens
 - Deaktivierung der Genexpression durch Methylierung der DNA
- > RNA Silencing: Abbau von einer bestimmten RNA Sequenz spezifischer als mittels RNAi
- **> Gene drive:** Mutation eines Allele wird automatisch auf homologe Chromosomen übertragen → in einem Schritt homozygot → Ausheblung der Mendelschen Vererbungsgesetze → grosse Auswirkung auf Evolutionsprozesse

CRISPR-Cas Gene drive

Führt zu Nicht-Mendelscher Vererbung

Kulturarten die mit neuen gentechnologischen Methoden bearbeitet werden (in Pipeline)

Kulturart	Merkmal	Methode		
Apfel	Schorfresistenz	Cisgenese		
Cassava	Virusresistenz	RNAi		
Banane	Xanthomonas-Resistenz	Transgen		
Banane	Fusarium-Resistenz	RNAi		
Rebe	Pilzresistenz	Cisgenese		
Kartoffel	Phytophtora-Resistenz	Cisgenese		
Kartoffel	Virusresistenz	RNAi		
Tomate	Bakterienresistenz	Plastiden Transformation		
Weizen	Blattlaus und Weise Fliege Resistenz	RNAi		
Raps	Trockenheitsresistenz	RNAi		
Weidelgrass	Trockenheitsresistenz	Intragenesis		

Kulturarten die mit neuen gentechnologischen Methoden bearbeitet werden (in Pipeline)

Kulturart	Merkmal	Methode
Weizen	Glutenfreiheit	RNAi
Weizen	Hoher Amylosegehalt	RNAi
Kartoffel	Hoher Amylosegehalt	Intragenese
Soja	Hoher Oelsäuregehalt	RNAi
Tomate	Hoher Carotinoidgehalt	RNAi
Kartoffel	Reduzierte Acrylamidbildung	RNAi
Rebe	Hoher Anthozyangehalt	Intragenese,
Luzerne	Reduzierter Ligningehalt	RNAi, Intragenese
Apfel	Non-browning	RNAi
Gerste	Hohe Phytaseaktivität	Cisgenese
Kirsche	Virusresistenz	Veredelung auf GM- Wurzelstock

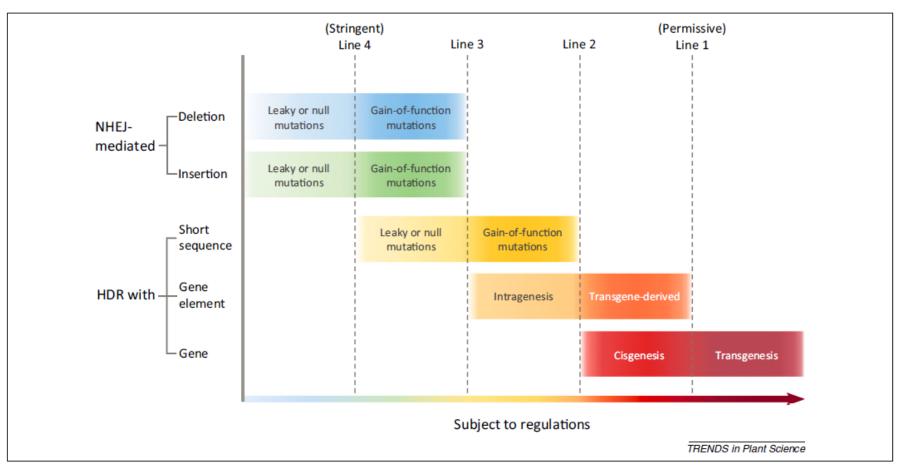
Beispiele für Genom-editing

Kulturart	Merkmal	Methode		
Mais	Amylopektin Stärke	CRISPR-Cas9		
Weizen	Mehltauresistenz	CRISPR-Cas9		
Soja	Weniger Trans-Fettsäuren	Intragenese		
Reis	Xanthomonas-Resistenz			
Weizen	Geringerer Glutengehat			
Kartoffel	Weniger Acrylamid bei Erhitzung			
Ananas	Rosa Fruchtfleisch			
Speisepilze	ohne Braunverfärbung	CRISPR-Cas9		
Hirse	Höhere Energieausbeute			

Risiken neuer gentechnologischen Methoden

Risiko ist abhängig von Kulturart und deren Verbreitung, dem eingeführten oder ausgeschalteten Merkmal, sowie dem Ausmass des gentechnischen Eingriffs

- CRISPR-Cas ist ein Werkzeug mit dem sehr unterschiedliche Änderungen auf DNA Ebene und Ebene der Genexpression und Genregulation durchgeführt werden kann, vom Auslösen von Punktmutationen, Austausch von Allelen, über einfügen neuer Gene bis hin zu Gene Drive.
- Auswirkungen von Punktmutationen durch Genom-Editing sind eher abschätzbar, Risiko von off-Target-Effekten kann durch gezieltere Techniken reduziert werden
- Nebenwirkungen vom Eingriff in die Genregulation k\u00f6nnen schwerwiegender sein, da die verschiedenen R\u00fcckkopplungs-Regelsysteme noch nicht vollst\u00e4ndig verstanden
- **> Gene Drive:** Auswirkungen nicht abschätzbar, starker Eingriff in die Evolution, Auslöschen von ganzen Spezies möglich



Akzeptanz von Genome-editing

Araki M. & Ishii, T. Towards social acceptance of plant breeding by genome editing

Opinion

Trends in Plant Science March 2015, Vol. 20, No. 3

Risiken neuer gentechnologischen Methoden

- Neue Techniken werden für Symptombekämpfung eine schlechten Praxis eingesetzt, statt neue nachhaltigere Landwirtschaftskonzepte zu entwickeln
 - > Bt gegen Maiswurzelbohrer statt Fruchtfolge und Habitatmanagement
- Xontrolle der eingesetzten Techniken schwierig, da teilweise nicht nachweisbar
- Xontrolle der Akteure schwierig, da im Vergleich zu früheren gentechnischen Methoden viel weniger Infrastruktur und Know-how nötig ist
- Diese Techniken führen zur vermehrter Patentierung von Pflanzen und damit Aushebelung des Züchtervorbehalts und Landwirteprivileg.

Diskussionsgrundlagen die für Beurteilung der Techniken der EU-Kommissionen

- > Werden neue Genkombinationen geschaffen?
- > Werden neue Nukleotide eingefügt?
 - > Wieviele?
 - > Handelt es sich um rekombinierte Nukleotide?
- > Werden diese dauerhaft exprimiert oder nur vorübergehend?
- > Werden die Veränderungen vererbt?
- Xönnen diese Veränderungen auch in der Natur vorkommen oder mit herkömmlichen Methoden erreicht werden?
- Wie unterscheiden sich die Sorten von herkömmlich gezüchteten Sorten?

Es gibt noch keine verabschiedete Stellungnahme

Gentechnische Methoden & Biolandbau

- Why Organic Farming Should Embrace Co-Existence with Cisgenic Late Blight—Resistant Potato, Godelieve Gheysen 1,* & René Custers 2 Sustainability 2017, 9(2), 172
- Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques, Edwin Nuijten, Monika M. Messmer & Edith T. Lammerts van Bueren, Sustainability 2017, 9(1), 18;
- > Should Organic Agriculture Maintain Its Opposition to GM? New Techniques Writing the Same Old Story, by Fern Wickson, Rosa Binimelis & Amaranta Herrero, Sustainability 2016, 8(11), 1105;
- Are we ready for back-to-nature crop breeding? Michael G. Palmgren, Anna Kristina Edenbrandt, Suzanne Elizabeth Vedel, Martin Marchman Andersen, Xavier Landes3, Jeppe Thulin Østerberg, Janus Falhof, Lene Irene Olsen, Søren Brøgger Christensen, Peter Sandøe, Christian Gamborg, Klemens Kappel, Bo Jellesmark Thorsen, & Peter Pagh, Trends in Plant Science (2014) 1–10
- **Towards social acceptance of plant breeding by genome edit**ing, Motoko Araki and Tetsuya Ishii, Trends in Plant Science, March 2015, Vol. 20, No. 3 145

Grundlagenpapier zur Biozüchtung im Oktober 2011 verabschiedet, von ECO-PB 2013 bestätigt

- > Leitbild der Biozüchung im engeren Sinne (Kat. III)
 - > Respekt vor der Schöpfung
 - > Ziele der ökologischen Pflanzenzüchtung
 - **Ethische Kriterien** (Integrität der Zelle, Fortpflanzungsfähigkeit, Möglichkeit zur Weiterzüchtung, Respektierung von Kreuzungsbarrieren, Nachbaufähigkeit)
 - **> Züchtungsstrategische Kriterien** (phänotypische Selektion immer unter Biobedingungen, Ergänzungen z.B. durch molekulare Marker möglich)
 - > Sozioökonomische Kriterien (keine Patentierung, Transparenz der Kreuzungseltern und Züchtungsmethoden, partizipative Züchtung, möglichst viele Zuchtprogramme)
- Xonsequenzen für die Sortenwahl von (I) konventionellen Züchtungsprogrammen und (II) Züchtung für den Biolandbau

Züchtungs- Methode	Eingriff Genom	Eingriff Zelle	Fortpflanz ungsfähig beeinträc htigt	Weiterzücht ung beeinträchti gt	Ueberschr eiten von Kreuzung s barriern	Nachbau Beeinträcht igt	Nac hwei s bar
Genediting Typ I + II	JA	JA	Nein	Ja (Patent)	Nein	Ja (Patent)	Nein
Genediting Typ III (plus Genkonstrukt)	JA	JA	Nein	Ja (Patent)	Möglich	Ja (Patent)	Ja
Cisgentik	JA	JA	Nein	Ja (Patent)	Nein	Ja (Patent)	?
Transgene	JA	JA	Möglich	Ja (Patent)	JA	Ja (Patent)	Ja
RNA Interferenz (RNAi)	JA	JA	Nein	Ja (Patent)	Nein	Ja (Patent)	Nein
Reverse Breeding	JA	JA	Nein	Nein	Nein	Ja (Patent)	Nein
Minichromosomen	JA	JA	Nein	Ja (Patent)	JA	Ja (Patent)	JA

Stand der Diskussion im Biosektor

Biozüchtung:

- > keine Methoden, die technisch unterhalb der Zellebene eingreifen (e.g. Cisgenetik, Genom-editing, Zellfusion) oder ionisierende Strahlung (e.g. Gamma Strahlen) einsetzen
- Selektion unter Biobedingungen
- > Keine Patentierung

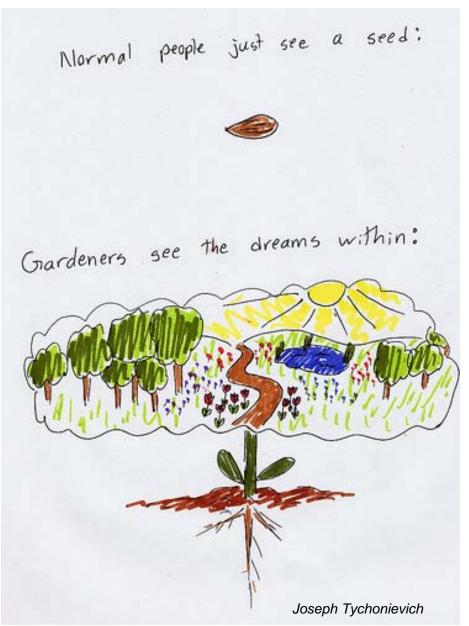
Bioanbau:

- Xein Anbau von GVO-Sorten
- für einige Verbände kein Anbau von Zellfusions-Sorten (Positivliste) obwohl nach EU-Ökoverordnung erlaubt
- > Der Anbau von Sorten, die mittels neuen gentechnischen Methoden entwickelt wurden, wird von IFOAM EU abgelehnt. Zur Zeit läuft eine Vernehmlassung von IFOAM International

Auswirkungen auf den Bio-Sektor

- > Der Bio-Sektor ist **Prozess-basiert** und nicht nur Produktorientiert, daher ist die Art und Weise der Züchtung ebenfalls wichtig! (Äquivalenz des Produkts oder Fehler eines Nachweises ist vielfach gegeben für Bio vs. Konv. Produkte)
- > Wie kann die Wahlfreiheit für Landwirte und Konsumenten garantiert werden, wenn die Sorten nicht reguliert und keine gesetzliche Kennzeichnungspflicht eingeführt wird?
- > Wie stellt man sicher, dass den Bioproduzenten genügend Sorten zur Verfügung stehen, wenn diese Techniken routinemässig eingesetzt werden?
- Welches Ausgangsmaterial steht den Biozüchtern, die diese Techniken nicht anwenden wollen, in Zukunft noch zur Verfügung?
- > Wie stellt man sicher, dass nicht alles Zuchtmaterial mit diesen Techniken verändert wird?
- Wichtigstes Anliegen: **Transparenz & Rückverfolgbarkeit**Fibl. www.fibl.org

Alternative Ansätze zu gentechnologischen Methoden Ökologische Intensivierung & Risikomanagement



Vielen Dank für Ihre Aufmerksamkeit

